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A NOTE ON TOPOLOGICALLY TRANSITIVE
TREE MAPS∗
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Abstract In this note, W is a tree. F : W → W is a continuous map.
K(W ) = {C ⊂ W : C ̸= ∅ and C is compact} is endowed with a Hausdorff
metric. The paper gives a sufficient and necessary condition under which F
is topologically transitive. Furthermore, it is shown that both a topologically
transitive tree map F : W → W and the continuous map F on K(W ) which
is induced by F are cofinitely sensitive, where F (C) = {F (x) : x ∈ C} for any
C ∈ K(W ).

Keywords Sensitivity, topologically mixing, topologically weak mixing, topo-
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1. Introduction
In the following, for simplicity, “dynamical system” is denoted by “D.S.”, “topolog-
ically weak mixing” is denoted by “TWM”, “topologically mixing” is denoted by
“TM”, and “topologically transitive” is denoted by “TT”.

As one knows, sensitivity characterizes the unpredictability of chaotic phe-
nomenon. This kind of property is one of the essential conditions of various def-
initions of a chaotic system. Hence, when is a system sensitive? From [1, 2, 8, 9,
13, 16, 18, 22, 24, 32, 34, 37–40, 44, 47, 50, 53, 60, 64] one can see the above question
has attracted some attention. Throughout the paper, a D.S. is a continuous map
F : W → W on a compact metric space (W,d) which has at least two points.
In [1], Abraham et al. established that if a measure-preserving map F on a metric
probability space (W,d,B(W ), µ) with supp µ = W is either topologically mixing
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or weak-mixing, and satisfies that for every nonempty open set U ⊂ W , there exists
a sequence {Mj} with positive upper density such that

U ∩ (
∩
j≥0

T−mjU) ̸= ∅,

then F is sensitive. Motivated by [1], He et al. relaxed the conditions of the
above result and obtained that a measure-preserving map F (resp. a measure-
preserving semi-flow φ) on (W,d,B(W ), µ) with supp µ = W is weak-mixing, then
it is sensitive [22]. Gu [16] showed that if W is a nontrivial compact metric space,
a pair (F, µ) satisfies the large deviations principle, and F is a continuous and
topologically strongly ergodic map of W , then F is sensitive. In addition, if W is
a nontrivial metric space and a map F on W is topologically mixing, then F is
sensitive [22]. Motivated by [16, 22], we presented several sufficient conditions of
sensitivity (see [37]), which relax and extend the conditions of the above results
in [1, 16, 18, 22, 37, 40]. Inspired by [37, 44], we discussed some stronger forms of
sensitivity for measure-preserving maps and semi-flows on probability spaces and
defined a new form of sensitivity, which is called to be ergodic sensitivity (see [18]).
Moreover, we obtained that, on a metric probability space with a fully supported
measure, if a measure-preserving map is weak mixing, then it is ergodically sensitive
and multi-sensitive. And if it is strong mixing, then it is cofinitely sensitive, where it
is not required that the map is continuous and the space is compact. Similar results
for measure-preserving semi-flows are obtained, where it is required in a result about
ergodic sensitivity that the space is compact in some sense and the semi-flow is
continuous. Additionally, relationships between some sensitive properties of a map
and its iterations are discussed, including syndetic sensitivity, cofinite sensitivity,
ergodic sensitivity as well as usual sensitivity, n-sensitivity, and multi-sensitivity.
Also, it was verified that multi-sensitivity, cofinite sensitivity, and ergodic sensitivity
can be lifted up by a semiopen factor map. In [9], Degirmenci and Kocak explored
how chaos conditions on maps carry over to their products. First they presented
a counterexample showing that the product of two chaotic maps (in the sense of
Devaney) need not be chaotic. Then they remarked that if two maps (or even one
of them) is sensitive, so does their product. Likewise, if two maps possess dense
periodic points, so does their product. On the other side, the product of two TT
maps need not be TT. They also gave sufficient conditions under which the product
of two chaotic maps is Devaney chaotic. Inspired by [9], we mainly considered how
chaos conditions on semi-flows carry over to their products (see [39]) and extended
the results of [9] to semi-flows. In particular, we gave the notion of ergodic sensitivity
and proved that for any two (not-necessarily continuous) maps (resp. semi-flows)
on the metric spaces W1 and W2, their product is ergodically sensitive if and only
if one of them is ergodically sensitive.

According to [44], one can see that a D.S. (W,F ) is sensitive if for every region
S of W , there are u, v ∈ S with u ̸= v and some k ∈ Z+ satisfying that the
kth iterates of them under F are significantly separated. The largeness of the
set of all k ∈ Z+ which satisfy that sensitivity happens can be considered as a
measure of how sensitive the system is. Particularly, when this set is very thin
and has arbitrarily large gaps between consecutive entries, we have some excuse for
considering such a system as practically non-sensitive [44]. For continuous maps
on metric spaces which are compact, Moothathu [44] gave a preliminary research
of some stronger forms of sensitivity formulated by using large subsets of Z+ and
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mainly explored syndetic sensitivity and cofinite sensitivity. Moreover, [44] gave
a transitive and sensitive map, where the map is not syndetically sensitive and
established the following result: (1) Every non-minimal map which is syndetically
transitive is syndetically sensitive. (2) Every sensitive map of the unit interval is
cofinitely sensitive. (3) Every sensitive subshift of finite type is cofinitely sensitive.
(4) Every infinite subshift which is syndetically transitive is syndetically sensitive.
(5) All Sturmian subshifts are not cofinitely sensitive.

In [28], the authors gave examples showing that sensitivity of a continuous
surjection F : W → W does not imply sensitivity of the set-valued mapping
F : K(W ) → K(W ). Also, they proved that if F is continuous onto interval map,
then sensitivity of F is equivalent to that of F . In [60] Xu et al. obtained that a
mixing transformation F : W → W on a manifold W is sensitive and topologically
transitive, and that a Devaney chaotic transformation F with some assumption is
an expanding map, which means a few statistical properties in this transformation
map. Motivated by [60], [32] extended the results to semi-flows.

Bauer and Sigmund [6] explored the interplay of chaos in dynamical systems
(individual chaos) with the corresponding set-valued versions (collective chaos).
For results on set-valued discrete systems we refer the reader to [4, 12, 14, 15, 20,
23, 26–28, 30, 48, 51, 58, 59] and references therein. For example, Banks [4] and
Peris [48] independently obtained that F is TWM if and only if it is transitive,
which is equivalent to the topologically weakly mixing property of F . Kwietniak
and Oprocha [23] established that under some nonrecurrence assumption, F always
has positive topological entropy. Then, Lampart and Raitha [30] showed that the
topological entropy of the induced set-valued map of a homeomorphism defined
on an interval or on a circle is zero or infinity. Guirao et al. [14] got that F
has the same chaos as F (distributional chaos, Li-Yorke chaos, ω-chaos, topological
chaos (where chaoticity include positive topological entropy), specification property,
exact Devaney chaos, total Devaney chaos). Hou et al. [20] proved that if F is a
non-minimal M -system, then F is sensitive. In [17], Gu and Guo studied the
relationships between the mixing property of F and the mixing property of F and
discussed specification of F . In [25], Liao et al. proved that F is TWM (resp. TM)
if and only if so is F , and that for a interval map F , F is chaotic (in the sense of
Devaney) if and only if F is TWM. In [15], Gu showed that if F is sensitive then so
is F , and that if F accessible (resp. Kato chaotic), then so is F . He also proved that
F is sensitive (resp. Kato chaotic) if and only if so is F in we-topology. Then, Liu
et al. [28] gave examples to show that the converse may not hold, i.e., the sensitivity
of F does not necessarily imply the sensitivity of F and they proved that if F is a
surjective continuous interval map, then the sensitivities of F and F are equivalent.
In [33], we showed that F is syndetically sensitive (resp. multi-sensitive) if and only
if F is syndetically sensitive (resp. multi-sensitive), and that if F is ergodically
sensitive, then so is F . Inspired by Furstenberg families, the interplay of chaos in
dynamical systems (individual chaos) with the corresponding set-valued versions
(collective chaos), see [39, 44]. In [55], Wu et al. obtained a few sufficient and
necessary conditions to ensure a dynamical system be F-sensitive or multi-sensitive
and some other important results on sensitivity of hyperspatial dynamical systems.
They obtained that f × g is multi-sensitive if and only if f or g is multi-sensitive,
which gives a positive answer to a question posed in [39]. In [56], to answering
tree open problems, Wu et al. proved that there is two non-syndetically sensitive
cascades defined on complete metric spaces whose product is cofinitely sensitive, and
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that there is a syndetically sensitive semifiow (G,W ) over a complete metric space
W such that (G(1),W ) is not sensitive for some syndetic closed submonoid G(1) of
G. In [57], to answering two open problems, Wu and Zhang proved that there exists
a monoid, on which neither the syndetic property nor the dual syndetic property
holds. And there is a strongly mixing semi-flow with this monoid action which
does not have thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, or
thickly periodical sensitivity. Also, they obtained that there is a thickly sensitive
cascade which is not multi-sensitive. In [35], we gave the definitions of collective
accessibility and collectively Kato chaotic for a dynamical system and explored the
relations between topologically weakly mixing and collective accessibility, or strong
accessibility, or strongly Kato chaos. Moreover, we presented some same properties
of F and F and proved that F is collectively accessible (or strongly accessible) if
and only if so is F in we-topology. More recently, in [55], Salman etal. defined the
concepts of sensitivity, multi-sensitivity, cofinite sensitivity, and syndetic sensitivity
for nonautonomous dynamical systems on uniform spaces and established some
sufficient conditions under which topological transitivity and dense periodic points
imply sensitivity for nonautonomous systems on Hausdorff uniform spaces. They
also considered sensitivity and other stronger versions of sensitivity for the systems
induced on hyperspaces and for the product of nonautonomous dynamical systems
on uniform spaces.

In [21], for a continuous map F of a tree W , Hosaka and Kato proved the
following two results: (1) if Ω(F ) is finite then it is the set of periodic points of F ,
where Ω(F ) denotes the set of nonwandering points for F , (2) Ω(F ) is contained
in the closure of the set of eventually periodic points of F . Also, they gave some
examples which imply that these results are not true for the case that W is a
dendrite or a graph. In [29], for a strictly piecewise monotone continuous map F on
a finite graph W , the authors studied the topological structure of the inverse limit
space (W,F ) by using F as a sole bonding map and obtained seven necessary and
sufficient conditions under that the topological entropy of F is zero. In [62, 63] Ye
studied properties of non-wandering points of tree maps and graph maps and showed
that the depths of tree maps and graph maps are at most 3. Inspired by [62, 63],
Mai and Sun [42] showed that the depth of a graph map is at most 2. In [7], for
a continuous map F such that any vertex of W is a fixed point of F , Canovas and
Hric proved that F is distributionally chaotic if and only if its topological entropy is
positive. In [45], Naghmouchi proved that if F is a tree map having zero topological
entropy and µ is an F -invariant Borel measure, then any scrambled set S has zero
outer µ-measure (hence µ-measurable). Particularly, if S is measurable, it has zero
µ-measure. In [43], for a tree map F : W → W , Matviichuk investigated the
dynamics of subcontinua of W under action of the map F . Particularly, he showed
that a subcontinuum of W is asymptotically periodic or asymptotically degenerate.
As an application of this result, he proved that zero topological entropy of the
system (W,F ) implies zero topological entropy of its functional envelope (endowed
with the Hausdorff metric).

In this paper, it is shown that a continuous tree map F : W → W is TT if and
only if the following condition (1) or condition (2) is satisfied.

(1) F is TM.
(2) There are an integer m > 1, a fixed point p of F with V (p) ≥ m and closed

subtrees W1,W2, · · · ,Wm ⊂ W which are non-degenerate such that W =
m∪
s=1

Ws,
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Ws∩Wt = {p} for all s ̸= t, F (Ws) = Ws+1 for all s = 1, 2, · · · ,m−1, F (Wm) = W1

and Fm|Ws
is TM for each s = 1, 2, · · · ,m.

Also, we get that a TT tree map F : W → W and the continuous map F on
K(W ) which is induced by F are cofinitely sensitive.

This note is organized as follows. In Section 2, some concepts and notations are
recalled. Main results are obtained and proved in Section 3.

2. Preliminaries
A subset A ⊂ Z+ is said to be thick if for each m ∈ Z+, there exists a bm ∈ Z+

satisfying that {bm, · · · , bm +m} ⊂ A. A subset A ⊂ Z+ is called to be syndetic if
Z+\A is not thick. A subset A ⊂ Z+ is called to be cofinite if there exists a D ∈ Z+

satisfying that {D,D + 1, · · · } ⊂ A.
A tree is a graph contains no cycles (see [46]). Let W be a tree. The valence

of a point z ∈ W is the number of connected components of W − {z}. For z ∈ W ,
V (z) denote the valence of this point and

O(W ) = {z ∈ W : V (z) ≥ 3}.

If a point has valence one it is an end. E(W ) denotes the set of endpoints of W .
For u, v ∈ W , [u, v] denotes the smallest closed connected subset which contains the
two points u, v. For a subset C ⊂ W , C0 and C be the interior and the closure of
the set C, respectively.

A subset C of a tree W is said to be an interval if there is a homeomorphism
f : H → C, where H is [0, 1], (0, 1], [0, 1) or (0, 1). The set f((0, 1)) is said to be
the interior of C. If H = [0, 1], the interval C is said to be closed. If H = (0, 1), the
interval C is said to be open. We know that an open interval may not be an open
set in W , and that the interior of this interval may not be equal to its interior in
the topology of W . Clearly, any open interval C with C ∩O(W ) = ∅ is open in W .

Let F : W → W be continuous and (W,d) be a metric space which is compact.
It is well known that the set-valued mapping F which is induced by F on K(W ) =
{C ⊂ W : C is compact and C /∈ {∅}} is defined by

F (C) = F (C) = {F (z) : z ∈ C}

for any C ∈ K(W ). Then (K(W ), F ) is a D.S., where the space K(W ) which is
endowed with the Hausdorff metric

H(C1, C2) = max{sup{d(z1, C2) : z1 ∈ C1}, sup{d(z2, C1) : z2 ∈ C2}},

for any C1, C2 ∈ K(W ) (see [20,28]).
For a D.S. (W,F ) and any S, T ⊂ W , write

NF (S, T ) = {n ∈ Z+ : S ∩ F−k(T ) ̸= ∅} = {k ∈ Z+ : F k(S) ∩ T ̸= ∅}.

A map F : W → W is TT if NF (S, T ) ̸= ∅ for any S, T ⊂ W with S, T /∈ {∅}
which are open.

F is TWM if NF×F (S, T ) ̸= ∅ for any S, T ⊂ W ×W with S, T /∈ {∅} which are
open.

F is TM if NF (S, T ) is cofinite for any S, T ⊂ W with S, T /∈ {∅} which are
open.
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For the above system, from the classical definition one can see that F is sensitive
if there exists a τ > 0, for any z ∈ W and any open neighborhood Tz of z, there
exists an integer m ∈ Z+ such that sup{d(Fm(z), Fm(w)) : w ∈ Tz} > τ . We may
denote this in the following way. For any T ⊂ W and any τ > 0, put

NF (T, τ) = {m ∈ Z+ : there exist e, f ∈ T satisfying d(Fm(e), Fm(f)) > τ}.
Then,

(1) F is sensitive if there is τ > 0 which satisfies that for any T ⊂ W with
T /∈ {∅} which is open, NF (T, δ) /∈ {∅}.

(2) F is syndetically sensitive if there is δ > 0 which satisfies that for any T ⊂ W
with T /∈ {∅} which is open, NF (T, δ) is syndetic.

(3) F is said to be cofinitely sensitive if there is δ > 0 which satisfies that for
any T ⊂ W with T /∈ {∅} which is open, NF (T, δ) is cofinite.

By [44], one can see that cofinitely sensitive is stronger than syndetically sensi-
tive, and syndetically sensitive is stronger than sensitive.

3. Main results
The following Lemmas are given for proving the main results.

Lemma 3.1 (see [61]). Assume that (W,F ) is a dynamical system, and that F is
a continuous surjection. If P (F ) = W (where P (F ) is the set of all period points
of F ), then F is TWM if and only if Fn is TT for any integer n > 0.

Lemma 3.2 (see [3]). Assume that F : W → W is a transitive tree map. Then (1)
or (2) is true:

(1) F s is TT for any integer s ≥ 1.
(2) There are an integer m ≥ 2, a fixed point p of F with V (p) ≥ m and closed

subtrees W1,W2, · · · ,Wm ⊂ W which are non-degenerate such that W =
m∪
s=1

Ws,

Ws ∩ Wt = {p} for any s ̸= t, F (Ws) = Ws+1 for all s = 1, 2, · · · ,m − 1, and
F (Wm) = W1.

Lemma 3.3 (see [62]). Let F be a tree, and F : W → W be a continuous map. If
F is TT, then P (F ) = W .

Lemma 3.4 (see [5, 54]). Let W be a compact metric space which has at least two
points, and let F : W → W be continuous. Then the following are equivalent:

(1) F is TT.
(2) There is z ∈ W satisfying

ω(z, F ) = W.

(3) For any open subset S ⊂ W with S /∈ {∅},

∞∪
n=0

Fn(S) = W.

The following Lemma is from [31]. For completeness, we give its proof here.

Lemma 3.5. Let W be a tree, F : W → W is continuous. Then the TWM of F is
equivalent to the TM of F .
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Proof. Obviously, if F is TM then F is topologically total ergodicity. It is enough
to verify that if F is TWM then F is TM. Using E(W ) and O(W ) to denote the
set of all ends of W and the set of all branching points of W , respectively. Let

W −O(W ) =

i=t∪
j=1

Ij ,

where Ij denotes a connected component of W − O(W ) for any j ∈ {1, 2, · · · , t}.
Let S ⊂ W − O(W ) and T ⊂ W − O(W ) be connected and open. Without loss of
generality, one can suppose that S ⊂ Iok for some k ∈ {1, 2, · · · , t}. It is clear that
F is TT. By Lemma 3.3,

P (F ) = W.

For any distinct p, z ∈ S ∩ P (F ), suppose that p is a periodic point of period m1

and z is a periodic point of period m2. Then we have

OF (p) ∪OF (z) ⊂ W − E(W ).

Suppose that u ∈ T is a periodic point of F with period m3 and m is a common
multiple of m1,m2 and m3. So, one has

OF (v) ∪OF (z) ∪ {u} ⊂ {y ∈ W : Fm(y) = y}.

Let g = Fm and

E =

∞∪
n=0

gn(T ).

Clearly, E is connected. Since g is TT, by Lemma 3.4, E = W and E ⊃ Ik.
Therefore, for any y ∈ OF (p) ∪OF (z), there exists an sy > 0 satisfying

y ∈ gsy (T ).

Let
s = max{sy : y ∈ OF (p) ∪OF (z)}.

Since
OF (p) ∪OF (z) ⊂ {x ∈ W : g(x) = x},

then
OF (p) ∪OF (z) ⊂ gs(T ) = F sm(T ).

One can easily see that
Fn(T ) ⊃ OF (p) ∪OF (z)

for any integer n > sm− 1. Thus, Fn(T ) ⊃ [p, z] for any integer n > sm− 1. This
deduces that

Fn(T ) ∩ S ̸= ∅

for any integer n > sm− 1.
For any transitive continuous map over a tree, the following results are obtained.
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Theorem 3.1. Let (W,F ) be a D.S. and W be a tree. Then F is TT if and only
if (1) or (2) is hold.

(1) F is TM.
(2) There is an integer m ≥ 2, a fixed point p of F with V (p) ≥ m and some closed

subtrees W1,W2, · · · ,Wm ⊂ W which are non-degenerate satisfy that W =
m∪
s=1

Ws,

Ws ∩Wt = {p} for any integer s ̸= t, F (Ws) = Ws+1 for all s = 1, 2, · · · ,m − 1,
F (Wm) = W1 and Fm|Ws

is TM for any s ∈ {1, 2, · · · ,m}.

Proof. Assume that F is TT. Then, by Lemma 3.2 one knows that exactly one
of the following two cases is true:

Case 1. F k is TT for any integer k ≥ 1.
By Lemmas 3.1, 3.3 and 3.5, F is TM.
Case 2. There exists an interger m ≥ 2, a fixed point z of F with V (z) ≥ m

and some closed subtrees which are non-degenerate W1,W2, · · · ,Wm ⊂ W satisfy
that W =

m∪
s=1

Ws, Ws ∩ Wt = {z} for all s ̸= t, F (Ws) = Ws+1 for any s ∈

{1, 2, · · · ,m− 1} and F (Wm) = W1.

Since F is TT, Fm|Ws is TT for any s ∈ {1, 2, · · · ,m}. And because z is a fixed
point of Fm|Ws and Ws − {z} is connected for every s = 1, 2, · · · ,m, by Corollary
2.5 in [26], Fm|Ws

is TM for every s = 1, 2, · · · ,m.
Hypothesis that the converse is true. Since topological mixing implies topologi-

cal transitivity, it suffices to show that case 2 implies that F is TT. Let S, T ⊂ W
with S, T /∈ {∅} be open such that S and T are connected sets. Without loss of
generality, we may assume that S, T ⊂ Wi for some i ∈ {1, 2, · · · , k} or S ⊂ Wi

and T ⊂ Wj for some i ∈ {1, 2, · · · , k} and some j ∈ {1, 2, · · · , k}, where i < j.
If S, T ⊂ Wi for some i ∈ {1, 2, · · · , k}, then, by the topological mixing of F k|Wi

,
there exists an integer n > 0 such that Fmk(S) ∩ T ̸= ∅ for any integer m ≥ n.
If S ⊂ Wi and T ⊂ Wj for some i ∈ {1, 2, · · · , k} and some j ∈ {1, 2, · · · , k} with
i < j, then, by

F j−i(Wi) = Wj

one can get that F j−i(S) ⊂ Wj . Since S is connected and F is sensitive, F j−i(S)
is a non-degenerate and connected set. So, there exists a nonempty open set S′

satisfying that S′ is connected and S′ ⊂ F j−i(S). By the topological mixing of
F k|Wj , there exists an integer l > 0 such that F km(S′) ∩ T ̸= ∅ for any integer
m ≥ l. Therefore, F km+j−i(S)∩T ⊃ F km(S′)∩T ̸= ∅. Consequently, by the above
argument one has that case 2 implies F is TT.

By Proposition 2 and Theorem 1 in [44], a TM (resp. syndetically transitive but
not minimal) map is cofinitely sensitive (resp. syndetically sensitive). Furthermore,
it is well known that every TT tree map is sensitive. The following will show that
a TT tree map F : W → W is cofinitely sensitive (Theorem 3.2). First we recall a
conclusion in [36] (the following Lemma 3.6). For completeness, the proof is given
here.

Lemma 3.6. Let (W,F ) be a D.S.. Then Fn is cofinitely sensitive for some n ≥ 2
if and only if F is cofinitely sensitive.

Proof. Clearly, cofinite sensitivity of F implies cofinite sensitivity of Fn, where
n = 1, 2, · · · . So, it suffices to prove that if Fn is cofinitely sensitive with δ as
a constant of sensitivity for some n ≥ 2, then F is cofinitely sensitive. Since F j
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is uniformly continuous for any j ∈ {0, 1, · · · , n}, there is a ϵ ∈ (0, δ), for any
j ∈ {0, 1, · · · , n},

d(F j(x), F j(y)) ≤ ε

implies
d(Fn(x), Fn(y)) ≤ δ.

Let S ⊂ W be any open set with S /∈ {∅}. Then there is some integer M > 0 such
that

{M,M + 1, · · · } ⊂ NFn(S, δ).

Therefore, for any m ∈ {M,M + 1, · · · }, there exist two point x, y ∈ U satisfying

d(Fnm(x), Fnm(y)) > δ.

This implies that
d(Fnm+i(x), Fnm+i(y)) > ε

for all i = 1, 2, · · · , n. Consequently, one can get that

{nM,nM + 1, · · · } ⊂ NF (S, δ).

Hence, by the definition, if Fn is cofinitely sensitive for some n ≥ 2, then F is
cofinitely sensitive.

Theorem 3.2. Let W be a tree, F : W → W is continuous. If F is TT, then F is
cofinitely sensitive.

Proof. Since F is TT, by Theorem 3.1, one can deduced that exactly one of Case
1 or Case 2 is satisfied:

Case 1. F is TM.
By Proposition 2 in [44], F is cofinitely sensitive.
Case 2. There exists an interger m > 1, a fixed point z of F with V (z) ≥ m

and some closed subtrees W1,W2, · · · ,Wm ⊂ W which are non-degenerate and
satisfy that W =

m∪
s=1

Ws, Ws ∩ Wt = {z} for all s ̸= t, F (Ws) = Ws+1 for all

s = 1, 2, · · · ,m− 1, F (Wm) = W1 and Fm|Ws
is TM for each s = 1, 2, · · · ,m.

By Proposition 2 in [44], Fm|Ws
is cofinitely sensitive for any s ∈ {1, 2, · · · ,m}.

Let S ⊂ W be any open set with S /∈ {∅}. Then there is i ∈ {1, 2, · · · , k} such that
S ∩Wi ̸= ∅. So, S ∩Wi is a nonempty and open subset of Wi. Clearly,

NFk|Wi
(S ∩Wi, δ) ⊂ NFk(S, δ),

where δ is a constant of sensitivity of F k|Wi
for all 1 ≤ i ≤ k. Since Fm|Wi

is
cofinitely sensitive, then

NFm|Wi
(S ∩Wi, δ)

is cofinite. Therefore, NFm(S, δ) is cofinite. By the definition, one gets that Fm is
cofinitely sensitive. By Lemma 3.6, F is cofinitely sensitive.

Theorem 3.3. Let W be a tree, F : W → W is continuous. If F is TT, then the
continuous map F : K(W ) → K(W ) is cofinitely sensitive.
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Proof. Since F is TT, by Theorem 3.1 one can deduced that Case 1 or Case 2 is
satisfied:

Case 1. F is TM.
By [26], F is TM if and only if F is TT. So, F is TT. Consequently, by Propo-

sition 2 in [11], one knows that F is cofinitely sensitive.
Case 2. There exists a k > 1, a fixed point y of F with V (y) ≥ k and some

closed subtrees W1,W2, · · · ,Wk ⊂ W which are non-degenerate and satisfy that

W =
k∪

i=1

Wi, Wi ∩Wj = {y} for all i ̸= j, F (Wi) = Wi+1 for all i = 1, 2, · · · , k − 1,

F (Wk) = W1 and F k|Wi
is TM for each i = 1, 2, · · · , k.

Clearly,
F k = F

k
.

It follows from [28] that F k|Wi
is TM for each i = 1, 2, · · · , k. By Proposition 2

in [44], F k|Wi
is cofinitely sensitive for each i = 1, 2, · · · , k. Clearly,

K(W ) ⊃
k∪

i=1

K(Wi).

For any positive integer n, let Gi be nonempty and open subset of W , i = 1, 2, · · · , n.
Write

BW (G1, G2, · · · , Gn) = {S ∈ K(W ) : S ⊂
n∪

i=1

Gi, S ∩Gi ̸= ∅, 1 ≤ i ≤ n}

and
Gij = Gj ∩Wi,

for every 1 ≤ i ≤ k and every 1 ≤ j ≤ n. Then one has

BWi
(Gi1, Gi2, · · · , Gin) = {S ∈ K(Wi) : S ⊂

n∪
j=1

Gij , S ∩Gij ̸= ∅, 1 ≤ j ≤ n},

for each 1 ≤ i ≤ k. Since

K(W ) ⊃
k∪

i=1

K(Wi),

BW (G1, G2, · · · , Gn) ⊃
k∪

i=1

BWi
(Gi1, Gi2, · · · , Gin).

So, for any δ > 0,

N
Fk(BW (G1, G2, · · · , Gn), δ) ⊃

k∪
i=1

N
Fk|Wi

(BWi
(Gi1, Gi2, · · · , Gin), δ). (3.1)

Note that F is TM if and only if F is TM too. Therefore, by Proposition 2 in [44],
one can conclude that if F is TM, then F is cofinitely sensitive, which implies

F k|Wi
= F |Wi

k
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is cofinitely sensitive. By (3.1), it is easy to get that

F k = F
k

is cofinitely sensitive. It is known from Lemma 3.6 that F is cofinitely sensitive.

Theorem 3.4. Let (W,F ) be a D.S. and W be a tree. Then F is TT if and only
if (a) or (b) is true:

(a) The induced continuous map F : K(W ) → K(W ) is TM.
(b) There exists a k > 1, a fixed point y of F with V (y) ≥ k and some closed

subtrees W1,W2, · · · ,Wk ⊂ W which are non-degenerate and satisfy that W =
k∪

i=1

Wi, Wi∩Wj = {y} for any integer i ̸= j, F (Wi) = Wi+1 for all i = 1, 2, · · · , k−1,

F (Wk) = W1 and each induced map F
k|Aj

is TM for each j = 1, 2, · · · , k, where
Aj = Wj.

Proof. By the above Theorem 3.1 and Theorem 3.6 in [17] (or Theorem 3.5 in
[25]), Theorem 3.4 is true.

The we-topology on K(W ) generated by the sets e(B), where B is an open subset
in W and e(B) = {S ∈ K(W ) : S ⊂ W} (see [15, 49]). In [15], R. Gu obtained
that a continuous map F over a compact metric space is Kato chaotic if and only
if so is F in we-topology. Inspired by this result we have the following result in
we-topology.

Theorem 3.5. Let (W,F ) be a D.S. and W be a tree. Then F is TT if and only
if exactly one of the following is hold.

(a) The induced continuous map F : K(W ) → K(W ) is TM in the we-topology.
(b) There exists a k > 1, a fixed point y of F with V (y) ≥ k and some closed

subtrees
W1,W2, · · · ,Wk ⊂ W

which are non-degenerate such that

W =

k∪
i=1

Wi, Wi ∩Wj = {y}

for any integer i ̸= j,
F (Wi) = Wi+1

for all i = 1, 2, · · · , k − 1,
F (Wk) = W1

and each induced map F
k|Aj

is TM in the we-topology for each j = 1, 2, · · · , k,
where Aj = Wj.

Proof. By the definitions, one can easily show that a continuous F on a compact
metric space W is TM if and only if so is F in the we-topology. By Theorem 3.1,
Theorem 3.5 holds.

As examples of our main theorems, we give the following Example 3.1 and
Example 3.2.
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Example 3.1. Suppose that W is the m-star having branching point 0 and end-
points x1, x2, · · · , xm, and that each branch of the star has length 1. Let yj be the
midpoint of [0, xj ]. We define a continuous function F : W → W by F (yj) = yj+1

for every j ∈ {1, 2, · · · ,m − 1}, F (ym) = y1, F (0) = 0 and F (txj) = (1 − t)xj+1

for any t ∈ [0, 1] and every j ∈ {1, 2, · · · ,m− 1}, where [0, xj ] = {txj |t ∈ [0, 1]} for
every j ∈ {1, 2, · · · ,m}. Then the map W is TT and cofinitely sensitive, and W is
cofinitely sensitive.

Proof. Let Wj = [0, xj ]. Clearly, Fm|Wj is topologically conjugate to the tent
map. So, Fm|Wj is TM. By Theorem 3.1, Fm is TT, which implies that F is TT.
By Theorems 3.2 and 3.3, W is cofinitely sensitive, and W is cofinitely sensitive.

Example 3.2. Suppose that F is the tent map. Then the map W is TT and
cofinitely sensitive, and W is cofinitely sensitive.

Proof. Since the tent map is TT. By Theorems 3.1, 3.2 and 3.3, Example 3.2 is
true.
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