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A BLOW-UP RESULT FOR THE WAVE
EQUATION: THE SCALE-INVARIANT
DAMPING AND MASS TERM WITH

COMBINED NONLINEARITIES

Makram Hamouda1,† and Mohamed Ali Hamza1

Abstract We are interested in this article in studying the damped wave
equation in the scale-invariant case with mass term and two combined non-
linearities. More precisely, we consider the following equation:

(E) utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = |ut|p + |u|q, in RN × [0,∞),

with small initial data. Under some assumptions on the mass and damping
coefficients, ν and µ > 0, respectively, we show that blow-up region and the
lifespan bound of the solution of (E) remain the same as the ones obtained in
[12] in the case of a mass-free wave equation, i.e. (E) with ν = 0. Furthermore,
using in part the computations done for (E), we enhance the result in [30] on
the Glassey conjecture for the solution of (E) with omitting the nonlinear term
|u|q. Indeed, the blow-up region is extended to p ∈ (1, pG(N + µ)] yielding,
hence, a better estimate of the lifespan when (µ − 1)2 − 4ν2 < 1. Otherwise,
the two results coincide. Finally, we may conclude that the mass term has no
influence on the dynamics of (E) (resp. (E) without the nonlinear term |u|q).

Keywords Blow-up, lifespan, nonlinear wave equations, scale-invariant damp-
ing, time-derivative nonlinearity.
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1. Introduction
We consider the following family of semilinear damped wave equations

utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = a|ut|p + b|u|q, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN ,

(1.1)

where a and b are nonnegative constants and µ, ν ≥ 0. The parameter ε is a positive
number which is characterizing the smallness of the initial data, and f and g are
two compactly supported non-negative functions on BRN (0, R), R > 0.

We assume along this article that p, q > 1 and q ≤ 2N
N−2 if N ≥ 3.
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The linear equation associated with (1.1) reads as follows:

uLtt −∆uL +
µ

1 + t
uLt +

ν2

(1 + t)2
uL = 0. (1.2)

It is clear that the equation (1.2) is invariant under the transform

ũL(x, t) = uL(Ωx,Ω(1 + t)− 1), Ω > 0.

This explains somehow the name of scale-invariant case for (1.1). One can apply
two types of transformation to (1.2) leading to whether a purely damped wave
equation or a wave equation with mass term. For the analysis of these cases, we
introduce the parameter δ defined as

δ = (µ− 1)2 − 4ν2. (1.3)

It is worth to recall that the scale-invariant damping is the critical case between the
class of parabolic equations (for δ large enough) and the one of hyperbolic equations
(when δ is small). Note that the parameter δ has an important role in the dynamics
of the solution of (1.2) and consequently (1.1), see e.g. [21, 25].

Indeed, for δ ≥ 0, by setting

uL(x, t) = (1 + t)−αvL(x, t), (1.4)

where
α =

µ− 1−
√
δ

2
which verifies α2 − (µ− 1)α+ ν2 = 0, (1.5)

then the obtained equation for vL is a damped wave equation (without mass term),
which reads as follows:

vLtt −∆vL +
1 +

√
δ

1 + t
vLt = 0. (1.6)

However, for δ < 0, the situation is different and we introduce the Liouville trans-
form:

wL(x, t) = (1 + t)
µ
2 uL(x, t),

with wL satisfies a free-damped wave equation with mass term

wL
tt −∆wL +

1− δ

4(1 + t)2
wL = 0. (1.7)

1.1. The non perturbed case
Let µ = ν = 0 throughout this subsection. Then, by taking (a, b) = (0, 1) in (1.1),
the equation (1.1) reduces to the classical semilinear wave equation in relationship
with the Strauss conjecture for which we recall the critical power qS which is solution
of

(N − 1)q2 − (N + 1)q − 2 = 0, (1.8)

and which is given by

qS = qS(N) :=
N + 1 +

√
N2 + 10N − 7

2(N − 1)
. (1.9)
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For q ≤ qS and under suitable sign assumptions for the initial data, there is no
global solution for (1.1), and for q > qS the existence of a global solution is ensured
for small initial data; see e.g. [18, 34,40,41] among other references.

Now, in the case (a, b) = (1, 0), the Glassey conjecture yields the critical power
pG which is given by

pG = pG(N) := 1 +
2

N − 1
. (1.10)

The critical power, pG, separates the two regions for the power p characterized by
the global existence (for p > pG) and the nonexistence (for p ≤ pG) of a global
solution under the smallness of the initial data; see e.g. [14, 16,17,32,33,37,42].

Here, we are interested in the case a, b 6= 0, thus, we may assume that (a, b) =
(1, 1). Let p and q satisfy p ≤ pG or q ≤ qS , the blow-up of the solution of (1.1)
can be similarly obtained. However, for p > pG and q > qS , there is a new blow-up
border which is characterized by

λ(p, q,N) := (q − 1) ((N − 1)p− 2) < 4. (1.11)

The reader may consult [6, 13, 15, 39] for more details, see also [1, 10] where the
Tricomi wave euqation with combined nonlinearities is studied.

It is proven in [15] that, for p > pG and q > qS , (1.11) implies the global existence
of the solution of (1.1) (with µ = ν = 0 and (a, b) = (1, 1)). This is specific to the
case of mixed nonlinearities. Therefore, it is interesting to see if this phenomenon
still occurs for the damping case µ > 0. This will be exposed in the next subsection.

1.2. The scale-invariant damped case
We consider here µ > 0, ν = 0 and (a, b) = (0, 1). Hence, for µ large enough, the
equation (1.1) is of a parabolic type, namely it behaves like a heat-type equation;
see e.g. [2, 3, 38]. However, for small µ, the solution of (1.1) is like a wave. In
fact, the damping has a shifting effect by µ > 0 on the critical power qS , and more
precisely we have the blow-up for

0 < µ <
N2 +N + 2

N + 2
and 1 < q ≤ qS(N + µ);

see e.g. [28, 30, 31, 35, 36], and [4, 5] for the case µ = 2 and N = 2, 3. The global
existence for µ = 2 is proven in [4, 5, 23].

Now, for (a, b) = (1, 0), we first mention the blow-up result for the solution
of (1.1) (with (a, b) = (1, 0)) obtained by Lai and Takamura in [20] where a first
estimate of the lifespan upper bound is given. Then, Palmieri and Tu improved
this result in [30] by extending the blow-up region for p in the system (1.1) with
(a, b) = (1, 0), one time-derivative nonlinearity (i.e. (1.14) below) and a mass term.
More precisely, they obtain a blow-up result for p ∈ (1, pG(N + σ(µ, 0))] where

σ = σ(µ, ν) :=

µ+ 1−
√
δ if δ ∈ [0, 1),

µ if δ ≥ 1,
(1.12)

and δ is given by (1.3). Nevertheless, the result in [30] was recently refined in [12]
by extending the upper bound for p from pG(N + σ(µ, 0)) to pG(N + µ).
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Finally, in the presence of two mixed nonlinearities, i.e. (a, b) = (1, 1), it is
proved in [11, 12] that the blow-up region of the solution of (1.1), in this case, is
in fact a shift by µ of the one related to the same problem but without damping.
Obviously, for p ≤ pG(N + µ) and q ≤ qS(N + µ), the blow-up of the solution of
(1.1) can be easily obtained. Furthermore, for p > pG(N + µ), q > qS(N + µ)
and the combination of a weak damping term and two mixed nonlinearities, the
blow-up bound becomes λ(p, q,N +µ) < 4 instead of (1.11) which characterizes the
free-damping case.

1.3. The scale-invariant damping and mass case

Along this part, we assume that µ > 0 and ν > 0. Therefore, let us start with the
case (a, b) = (0, 1). It is known in the literature that the mass and the scale-invariant
damping terms are in competition generating thus several cases depending on the
values of µ and ν, see e.g. [25]. More precisely, as mentioned for the linear equation
(1.2), one can recall that the mass term disappears in the dynamics for δ ≥ 0.
Indeed, for δ ≥ (N+1)2, which corresponds to the large values of δ and consequently
the large values of the damping term µ, it is proven that the critical exponent is the
shifted Fujita exponent qF (N + µ−1−

√
δ

2 ) where qF (N) = 1 + 2
N , see [22,26,27,29].

However, for δ ∈ [0, 1) (corresponding to the small values of δ), the authors in [28]
show the appearance of a competition between the Fujita and the Strauss exponents.
Indeed, they obtained a blow-up result for q ≤ max(qF (N + µ−1−

√
δ

2 ), qS(N + µ)).
We note that a recent improvement and a better comprehension of the transition
from the heat-like equation to the wave-like one are obtained in [19]. On the other
hand, a blow-up result is proven in [31] for all δ ≥ 0 and q ≤ qS(N+µ). Nevertheless,
for δ < 0, the situation is much different leading to the well-known Klein-Gordon
equation where the mass term is more influent, and to the best of our knowledge
the dynamics are less understood in the literature; see e.g. [21].

In this article, we first consider the particular case (a, b) = (1, 1) in (1.1). More
precisely, we are interested in studying the following Cauchy problem in the scale-
invariant case and combined nonlinearities:

utt −∆u+
µ

1 + t
ut +

ν2

(1 + t)2
u = |ut|p + |u|q, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN ,

(1.13)

where µ, ν2 > 0, N ≥ 1, ε > 0 is a sufficiently small parameter, and f, g are
compactly supported non-negative functions on which some assumptions will be
specified later on.

One of the objectives in the present work is to study the Cauchy problem (1.13)
for µ, ν2 > 0 and the influence of the parameters µ and ν on the blow-up result and
the lifespan estimate. Indeed, thanks to the transform (1.4), for δ ≥ 0, and a better
comprehension of the linear problem corresponding to (1.13), we surprisingly show
that there is no influence of the mass term in the blow-up dynamics of the solution
of (1.13).

Moreover, under the same hypotheses on the data as for (1.13), we are interested
now in studying the following equation which is characterized by the presence of a



1820 M. Hamouda & M. A. Hamza

one nonlinearity of time-derivative type, namely
utt −∆u+

µ

1 + t
ut +

ν2

(1 + t)2
u = |ut|p, in RN × [0,∞),

u(x, 0) = εf(x), ut(x, 0) = εg(x), x ∈ RN .

(1.14)

Using the computations obtained for (1.13), we will enhance the blow-up interval,
p ∈ (1, pG(N + σ)] (σ is given by (1.12)), proven in [30], to arrive at the interval
p ∈ (1, pG(N + µ)], for δ ∈ (0, 1). Nevertheless, for δ ≥ 1, our result for (1.14)
coincides with the one in [30]. Inspired from [12], we may conjecture here again
that the obtained upper bound exponent is the critical one in the sense that it
separates the blow-up and the global existence regions. Notice that our method
is different form the one in [30] where the use of an integral representation of the
solution is employed. However, in the present work, we make use of the multiplier
technique together with the fact that G2(t), defined in (3.12) below, is coercive
starting from relatively large time thanks to the presence of the nonlinearity |ut|p
which controls in part the negativity of G2(t). Recently, in [9], the aforementioned
blow-up result for (1.14) was extended to an analogous equation to (1.14) with a
Tricomi term which expresses the time-dependency of the speed of propagation.

The rest of the article is organized as follows. First, Section 2 is devoted to the
definition of the weak formulation of (1.1), in the energy space, together with the
statement of the main theorems of our work. Then, we prove in Section 3 some
technical lemmas. These auxiliary results, among other tools, are used to conclude
the proof of the main results in Sections 4 and 5. Indeed, in Section 4 (resp. Sec. 5),
we prove the blow-up of the solution of (1.13) (resp. (1.14)) for p and q satisfying
λ(p, q,N + µ) < 4 (resp. for p verifying p ∈ (1, pG(N + µ)]).

2. Main Results
In this section, we will state the main results in this work. To this end, we first give
a sense to the solution of (1.1) in the corresponding energy space. Hence, the weak
formulation of (1.1) reads as:

Definition 2.1. We call u is a weak solution of (1.13) on [0, T ) ifu ∈ C([0, T ),H1(RN )) ∩ C1([0, T ), L2(RN )),

u ∈ Lq
loc((0, T )× RN ) and ut ∈ Lp

loc((0, T )× RN ),

verifies, for all Φ ∈ C∞
0 (RN × [0, T )) and all t ∈ [0, T ), the following identity:∫

RN

ut(x, t)Φ(x, t)dx−
∫
RN

ut(x, 0)Φ(x, 0)dx−
∫ t

0

∫
RN

ut(x, s)Φt(x, s)dx ds

+

∫ t

0

∫
RN

∇u(x, s) · ∇Φ(x, s)dx ds+

∫ t

0

∫
RN

µ

1 + s
ut(x, s)Φ(x, s)dx ds

+

∫ t

0

∫
RN

ν2

(1 + s)2
u(x, s)Φ(x, s)dx ds

=

∫ t

0

∫
RN

{a|ut(x, s)|p + b|u(x, s)|q}Φ(x, s)dx ds,

(2.1)
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together with u(x, 0) = f(x).

Hence, with the help of the multiplier m(t) defined by

m(t) := (1 + t)µ, (2.2)

we can rewrite Definition 2.1, by considering m(t)Φ(x, t) as a test function, in the
following equivalent formulation.

Definition 2.2. We say that u is a weak solution of (1.13) on [0, T ) ifu ∈ C([0, T ),H1(RN )) ∩ C1([0, T ), L2(RN )),

u ∈ Lq
loc((0, T )× RN ) and ut ∈ Lp

loc((0, T )× RN ),

satisfies, for all Φ ∈ C∞
0 (RN × [0, T )) and all t ∈ [0, T ), the following equation:

m(t)

∫
RN

ut(x, t)Φ(x, t)dx−
∫
RN

ut(x, 0)Φ(x, 0)dx

−
∫ t

0

m(s)

∫
RN

ut(x, s)Φt(x, s)dx ds+

∫ t

0

m(s)

∫
RN

∇u(x, s) · ∇Φ(x, s)dx ds

+

∫ t

0

∫
RN

ν2m(s)

(1 + s)2
u(x, s)Φ(x, s)dx ds

=

∫ t

0

m(s)

∫
RN

{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds.

(2.3)

In the following, we will state the main results in this article.

Theorem 2.1. Let p, q > 1, ν2, µ ≥ 0 and δ ≥ 0 such that

λ(p, q,N + µ) < 4, (2.4)

where λ is given by (1.11), and p > pG(N + µ), q > qS(N + µ). Furthermore,
assume that f ∈ H1(RN ) and g ∈ L2(RN ) are non-negative functions which are
compactly supported on BRN (0, R), do not vanish everywhere and satisfy

µ− 1−
√
δ

2
f(x) + g(x) ≥ 0. (2.5)

Let u be an energy solution of (1.13) on [0, Tε) such that supp(u) ⊂ {(x, t) ∈ RN ×
[0,∞) : |x| ≤ t+R}. Then, there exists a constant ε0 = ε0(f, g,N,R, p, q, µ, ν) > 0
such that Tε verifies

Tε ≤ C ε−
2p(q−1)

4−λ(p,q,N+µ) ,

where C is a positive constant independent of ε and 0 < ε ≤ ε0.

Theorem 2.2. Let ν2, µ ≥ 0 and δ ≥ 0. Assume that f ∈ H1(RN ) and g ∈ L2(RN )
are non-negative and compactly supported functions on BRN (0, R) which do not
vanish everywhere and verify (2.5). Let u be an energy solution of (1.14) on [0, Tε)
such that supp(u) ⊂ {(x, t) ∈ RN × [0,∞) : |x| ≤ t + R}. Then, there exists a
constant ε0 = ε0(f, g,N,R, p, µ, ν) > 0 such that Tε verifies

Tε ≤

C ε−
2(p−1)

2−(N+µ−1)(p−1) for 1 < p < pG(N + µ),

exp
(
Cε−(p−1)

)
for p = pG(N + µ),
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where C is a positive constant independent of ε and 0 < ε ≤ ε0.

Remark 2.1. The local existence of (1.1) can be proven using the classical energy
methods and by assuming that the initial data are regular, namely f, g ∈ C∞

0 (RN ).
But, the study of the minimal regularity of the initial data yielding the local exis-
tence is not our objective in this article. It is easy to show the local (and global)
existence for the linear problem, corresponding to (1.1), with finite speed of prop-
agation. Nevertheless, we assume here the local existence of the solution of the
nonlinear problem (1.1).

Remark 2.2. For δ ≥ 0, we note that the result in Theorem 2.1 does not depend
on the parameter ν. Hence, thanks to [12, Remark 2.3], we have the existence of
a pair (p0(N + µ), q0(N + µ)) which satisfies (2.4), p0(N + µ) > pG(N + µ) and
q0(N + µ) > qS(N + µ). Consequently, the hypothesis on p and q in Theorem 2.1
makes sense.

Remark 2.3. It is clear that the limiting value pG(N + µ) is less or equal to the
critical exponent for p in Theorem 2.2 and the blow-up result there does not depend
on the parameter ν. Hence, we believe, as observed in [12, Remark 2.1], that this
limiting value is the critical one. The rigorous proof of this assertion (which is
related to the global existence) will be the subject of a forthcoming work.

Remark 2.4. We note that for q ≤ qS(N + µ) and p ≤ pG(N + µ) (δ ≥ 0) a blow-
up result for (1.13) is proven in [31] and [12], respectively. Moreover, as explained
before, the presence of two mixed nonlinearities in (1.13) generates a new region in
both cases µ = 0 and µ > 0; see [15] and [12], respectively. Hence, we concentrate
our effort in the present work to look for the blow-up in the region q > qS(N + µ)
and p > pG(N + µ); this justifies the hypotheses on p and q in Theorem 2.1.

3. Some auxiliary results
First, we introduce the positive test function ψ(x, t) which is defined by

ψ(x, t) := ρ(t)ϕ(x); ϕ(x) :=


∫
SN−1

ex·ωdω for N ≥ 2,

ex + e−x for N = 1,

(3.1)

where ϕ(x) is introduced in [40] and ρ(t), [24, 31,35,36], is solution of

d2ρ(t)

dt2
− ρ(t)− d

dt

(
µ

1 + t
ρ(t)

)
+

ν2

(1 + t)2
ρ(t) = 0. (3.2)

Then, the expression of ρ(t) reads as follows:

ρ(t) = (t+ 1)
µ+1
2 K√

δ
2

(t+ 1), (3.3)

where
Kξ(t) =

∫ ∞

0

exp(−t cosh ζ) cosh(ξζ)dζ, ξ ∈ R.

Clearly, the function Kξ(t) is positive for all t ≥ 0.
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Using for example the equation (18) in [24] (see also the proof of Lemma 2.1
in [36] (with η = 1) or [31]), we have

K ′
ξ(t) = −Kξ+1(t) +

ξ

t
Kξ(t). (3.4)

Hence, we infer that

ρ′(t)

ρ(t)
=
µ+ 1 +

√
δ

2(1 + t)
−
K√

δ
2 +1

(t+ 1)

K√
δ

2

(t+ 1)
. (3.5)

From [8], we have the following property for the function Kξ(t):

Kξ(t) =

√
π

2t
e−t(1 +O(t−1)), as t→ ∞. (3.6)

Combining (3.5) and (3.6), we infer that

ρ′(t)

ρ(t)
= −1 +O(t−1), as t→ ∞. (3.7)

Finally, we refer the reader to [7] for more details about the properties of the
function Kµ(t). Moreover, the function ϕ(x) verifies ∆ϕ = ϕ.

Note that the function ψ(x, t) satisfies the conjugate equation corresponding to
(1.2), namely we have

∂2t ψ(x, t)−∆ψ(x, t)− ∂

∂t

(
µ

1 + t
ψ(x, t)

)
+

ν2

(1 + t)2
ψ(x, t) = 0. (3.8)

Along this article, we will denote by C a generic positive constant which may
depend on the data (p, q, µ, ν,N, f, g, ε0) but not on ε < ε0, and whose value may
change from line to line. However, the dependence of the constant C may be
described when needed depending on the context.

The following lemma holds true for the function ψ(x, t).

Lemma 3.1 ( [40]). Let r > 1. There exists a constant C = C(N,R, p, r) > 0 such
that ∫

|x|≤t+R

(
ψ0(x, t)

)r
dx ≤ C(1 + t)

(2−r)(N−1)
2 , ∀ t ≥ 0, (3.9)

where ψ0(x, t) := e−tϕ(x), and ϕ(x) is given by (3.1), and∫
|x|≤t+R

(
ψ(x, t)

)r
dx ≤ Cρr(t)ert(1 + t)

(2−r)(N−1)
2 , ∀ t ≥ 0, (3.10)

where ψ(x, t) is given by (3.1).

Now, we define here the functionals that we will use to prove the blow-up criteria
later on:

G1(t) :=

∫
RN

u(x, t)ψ(x, t)dx, (3.11)

and
G2(t) :=

∫
RN

∂tu(x, t)ψ(x, t)dx. (3.12)
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We aim in the following to show that the functionals G1(t) and G2(t) are coer-
cive. This will be the first observation that we will use later on to improve the main
results of this article. We note here that the proof of Lemma 3.2 below is known
in the literature; see e.g. [24,35,36]. However, for a later use of some computations
in the proof of Lemma 3.2, we choose to detail the steps therein. Nevertheless,
Lemmas 3.3 and 3.4 constitute somehow a novelty in this work and their utilization
in the proofs of Theorems 2.1 and 2.2 is fundamental.

Let us stress out in what follows the particularity of the dynamics of G2(t) in
terms of time t. The first observation consists in showing that G2(t) possesses a
negative lower bound; see Lemma 3.3 below. Then, the second property states
that G2(t) is coercive starting from relatively large time which is growing as ε is
approaching zero; see Lemma 3.4 below. Hence, in comparison with our previous
work [12], where we studied the same problem (1.13) without the mass term (ν = 0),
we note here that the functional G2(t), while dealing with the mass term, exhibits
a different behavior. More precisely, we remark that G2(t) starts with a positive
value (since the initial data are positive) and then it may take some negative values,
maybe several times, to end up with the coercive characteristics for large time.
However, the functional G1(t) is coercive starting from a positive finite time which
is independent of ε.

Lemma 3.2. Let u be an energy solution of the system (1.13) with initial data
satisfying the assumptions in Theorem 2.1. Then, there exists T0 = T0(µ, ν) > 1
such that

G1(t) ≥ CG1 ε, for all t ≥ T0, (3.13)
where CG1 is a positive constant which may depend on f , g, N,µ and ν.

Proof. Let t ∈ [0, T ). Using Definition 2.1 and performing an integration by parts
in space in the fourth term in the left-hand side of (2.1), we obtain∫

RN

ut(x, t)Φ(x, t)dx− ε

∫
RN

g(x)Φ(x, 0)dx

−
∫ t

0

∫
RN

{ut(x, s)Φt(x, s) + u(x, s)∆Φ(x, s)} dx ds

+

∫ t

0

∫
RN

µ

1 + s
ut(x, s)Φ(x, s)dx ds+

∫ t

0

∫
RN

ν2

(1 + s)2
u(x, s)Φ(x, s)dx ds

=

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q}Φ(x, s)dx ds, ∀ Φ ∈ C∞
0 (RN × [0, T )).

(3.14)
Substituting in (3.14) Φ(x, t) by ψ(x, t), performing an integration by parts for the
third term in the first line and the first term in the second line of (3.14) and utilizing
(3.1) and (3.8), we obtain∫

RN

[
ut(x, t)ψ(x, t)− u(x, t)ψt(x, t) +

µ

1 + t
u(x, t)ψ(x, t)

]
dx

=

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds+ εC(f, g),

(3.15)

where
C(f, g) :=

∫
RN

[(
µρ(0)− ρ′(0)

)
f(x) + ρ(0)g(x)

]
ϕ(x)dx. (3.16)
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Using (3.3), (3.4) and (3.5), we infer that

µρ(0)− ρ′(0) =
µ− 1−

√
δ

2
K√

δ
2

(1) +K√
δ

2 +1
(1). (3.17)

Hence, we have

C(f, g)=K√
δ

2

(1)

∫
RN

[µ−1−
√
δ

2
f(x)+g(x)

]
ϕ(x)dx+K√

δ
2 +1

(1)

∫
RN

f(x)ϕ(x)dx.

(3.18)
Thanks to (2.5) we deduce that the constant C(f, g) is positive.

Hence, using the definition of G1, as in (3.11), and (3.1), the equation (3.15)
yields

G′
1(t)+Γ(t)G1(t) =

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds+εC(f, g), (3.19)

where
Γ(t) :=

µ

1 + t
− 2

ρ′(t)

ρ(t)
. (3.20)

Multiplying (3.19) by (1+t)µ

ρ2(t) and integrating over (0, t), we obtain

G1(t) ≥
G1(0)

ρ2(0)

ρ2(t)

(1 + t)µ
+ εC(f, g)

ρ2(t)

(1 + t)µ

∫ t

0

(1 + s)µ

ρ2(s)
ds. (3.21)

Observing that G1(0) = εK√
δ

2

(1)
∫
RN f(x)ϕ(x)dx > 0 and using (3.3), the estimate

(3.21) implies that

G1(t) ≥ εC(f, g)(1 + t)K2√
δ

2

(t+ 1)

∫ t

t/2

1

(1 + s)K2√
δ

2

(s+ 1)
ds. (3.22)

Using (3.6), we infer that there exists T0 = T0(µ, ν) > 1 such that

(1 + t)K2√
δ

2

(t+ 1) >
π

4
e−2(t+1) and (1 + t)−1K−2√

δ
2

(t+ 1) >
1

π
e2(t+1), ∀ t ≥ T0/2.

(3.23)

Hence, we have

G1(t) ≥
ε

4
C(f, g)e−2t

∫ t

t/2

e2sds ≥ ε

8
C(f, g)e−2t(e2t − et), ∀ t ≥ T0. (3.24)

Finally, using e2t > 2et,∀ t ≥ 1, we deduce that

G1(t) ≥
ε

16
C(f, g), ∀ t ≥ T0. (3.25)

This ends the proof of Lemma 3.2.
As mentioned above, we will see that the functional G2(t) cannot be nonnegative

for all t ≥ 0 (see the Appendix for some numerical simulations). However, we will
prove in the following lemma that this functional possesses a negative lower bound
independent of ε.
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Lemma 3.3. Assume the existence of an energy solution u of the system (1.13)
with initial data satisfying the hypotheses in Theorem 2.1. Then, for all t ∈ (0, T ),
we have

G2(t) +Kν2
{
1 + ν

2
p−1 e

p
p−1 t(1 + t)

N−1
2

}
≥ 0, (3.26)

where K is a positive constant which may depend on p, f , g, N,R, ε0 and µ but not
on ε < ε0 and ν∗.

Proof. Let t ∈ [0, T ). Then, using Definition 2.2, performing an integration by
parts in space in the fourth term in the left-hand side of (2.3) and choosing ψ0(x, t)
as a test function†, we infer that

m(t)

∫
RN

ut(x, t)ψ0(x, t)dx− ε

∫
RN

g(x)ψ0(x, 0)dx

+

∫ t

0

m(s)

∫
RN

{ut(x, s)ψ0(x, s)− u(x, s)ψ0(x, s)} dx ds

+

∫ t

0

∫
RN

ν2m(s)

(1 + s)2
u(x, s)ψ0(x, s)dx ds

=

∫ t

0

m(s)

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds.

(3.27)

We introduce the following functionals

F1(t) :=

∫
RN

u(x, t)ψ0(x, t)dx, (3.28)

and
F2(t) :=

∫
RN

ut(x, t)ψ0(x, t)dx, (3.29)

where ψ0(x, t) := e−tϕ(x), and ϕ(x) is given by (3.1).
Hence, using the definition of F1 and the fact that∫ t

0

m(s)F ′
1(s)ds = −

∫ t

0

m′(s)F1(s)ds+m(t)F1(t)− F1(0),

the equation (3.27) yields

m(t)(F ′
1(t) + 2F1(t))− εC0(f, g) +

∫ t

0

ν2m(s)

(1 + s)2
F1(s) ds

=

∫ t

0

m′(s)F1(s)ds+

∫ t

0

m(s)

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds,

(3.30)

where
C0(f, g) :=

∫
RN

{f(x) + g(x)}ϕ(x)dx.

∗We choose here to make explicit the dependence of the constant K on ν to point out the
difference between the cases with and without the mass term.

†Note that it is possible to consider here not compactly supported test functions thanks to
the support property of u. Indeed, it is sufficient to replace ψ0(x, t) by ψ0(x, t)χ(x, t) where χ is
compactly supported such that χ(x, t) ≡ 1 on supp(u).
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Hence, using the definition of F1 and F2, given respectively by (3.11) and (3.12),
and the fact that

F ′
1(t) + F1(t) = F2(t), (3.31)

the equation (3.30) yields

m(t)(F2(t) + F1(t))− εC0(f, g) +

∫ t

0

ν2m(s)

(1 + s)2
F1(s) ds

=

∫ t

0

m′(s)F1(s)ds+

∫ t

0

m(s)

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds.

(3.32)

Differentiating the equation (3.32) in time and using (3.31), we obtain

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) =m(t)(F1(t) + F2(t))−

ν2m(t)

(1 + t)2
F1(t) (3.33)

+m(t)

∫
RN

{|ut(x, t)|p + |u(x, t)|q}ψ0(x, t)dx.

Using (3.32), the identity (3.33) becomes

d

dt
{F2(t)m(t)}+ 2m(t)F2(t)

=εC0(f, g) +

∫ t

0

m(s)

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ0(x, s)dx ds

+m(t)

∫
RN

{|ut(x, t)|p + |u(x, t)|q}ψ0(x, t)dx+Σ1(t) + ν2Σ2(t) + ν2Σ3(t),

(3.34)
where (m(t) = (1 + t))µ)

Σ1(t) =

∫ t

0

m′(s)F1(s)ds = µ

∫ t

0

(1 + s)µ−1F1(s)ds, (3.35)

Σ2(t) = −
∫ t

0

m(s)

(1 + s)2
F1(s) ds = −

∫ t

0

(1 + s)µ−2F1(s) ds, (3.36)

and
Σ3(t) = − m(t)

(1 + t)2
F1(t) = −(1 + t)µ−2F1(t). (3.37)

Thanks to (3.21) and the fact that G1(t) = etρ(t)F1(t), we deduce that Σ1(t) ≥ 0.
From (3.31), we obtain

F1(t) = F1(0)e
−t + e−t

∫ t

0

esF2(s)ds, (3.38)

that we plug in (3.36) and then integrate by parts. Hence, we deduce that∫ t

0

(1 + s)µ−2F1(s) ds

=F1(0)

∫ t

0

(1 + s)µ−2e−sds+

(∫ t

0

(1 + s)µ−2e−sds

)(∫ t

0

esF2(s)ds

)
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−
∫ t

0

esF2(s)

(∫ s

0

(1 + τ)µ−2e−τdτ

)
ds. (3.39)

Hence, we infer that

∣∣ ∫ t

0

(1 + s)µ−2F1(s)ds
∣∣ ≤ CF1(0) + C

∫ t

0

es|F2(s)|ds. (3.40)

Therefore we have
|Σ2(t)| ≤ CF1(0) + C

∫ t

0

es|F2(s)|ds. (3.41)

Using (3.38), we easily conclude that

|Σ3(t)| ≤ CF1(0) + C

∫ t

0

es|F2(s)|ds. (3.42)

Employing (3.28), we recall here that F1(0) = ε

∫
RN

f(x)ϕ(x)dx.

Combining (3.41) and (3.42) in (3.34) and using m(t) ≥ 1, we obtain

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) ≥

∫ t

0

∫
RN

|ut(x, s)|pψ0(x, s)dx ds

−C0ε0ν
2 − C0ν

2

∫ t

0

es|F2(s)|ds,
(3.43)

where C0 = C0(µ, f,N).
Using the definition of F2(t), given by (3.29), and Lemma 3.1, we have

C0ν
2et|F2(t)| ≤

∫
RN

|ut(x, t)|pψ0(x, t)dx+ Cν
2p

p−1 e
p

p−1 t

∫
|x|≤t+R

ψ0(x, t)dx

≤
∫
RN

|ut(x, t)|pψ0(x, t)dx+ Cν
2p

p−1 e
p

p−1 t(1 + t)
N−1

2 .

(3.44)
Integrating (3.44) in time yields

C0ν
2

∫ t

0

es|F2(s)|ds ≤
∫ t

0

∫
RN

|ut(x, s)|pψ0(x, s)dx ds+ Cν
2p

p−1 e
p

p−1 t(1 + t)
N−1

2 .

(3.45)
From (3.43) and (3.45) we infer that

d

dt
{F2(t)m(t)}+ 2m(t)F2(t) + Cν2 + Cν

2p
p−1 e

p
p−1 t(1 + t)

N−1
2 ≥ 0, (3.46)

which can be written as

d

dt

{
e2tF2(t)m(t)

}
+ Cν2e2t + Cν

2p
p−1 e

3p−2
p−1 t(1 + t)

N−1
2 ≥ 0. (3.47)

Integrating the above inequality in time gives

F2(t)+Cν
2 e

−2t

m(t)

∫ t

0

e2sds+Cν
2p

p−1
e−2t

m(t)

∫ t

0

e
3p−2
p−1 s(1+s)

N−1
2 ds≥ e−2t

m(t)
F2(0)≥0. (3.48)
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Hence, we deduce that

F2(t) + Cν2(1 + t)−µ + Cν
2p

p−1 e
p

p−1 t(1 + t)
N−1

2 −µ ≥ 0. (3.49)

Recall that G2(t) = etρ(t)F2(t), we obtain

G2(t) + Cν2etρ(t)(1 + t)−µ + Cν
2p

p−1 etρ(t)e
p

p−1 t(1 + t)
N−1

2 −µ ≥ 0. (3.50)

On the other hand, using (3.3) and (3.23), we get

ρ(t)et ≤ C(1 + t)
µ
2 , ∀ t ≥ T0/2. (3.51)

Obviously, for 0 ≤ t ≤ T0/2, the function etρ(t)(1 + t)−µ is bounded independently
of ε. Finally, from (3.50) and (3.51), we conclude (3.26).

This ends the proof of Lemma 3.3.

Remark 3.1. We note that G1(t) is positive for all t ∈ (0, T ) thanks to (3.21), and
accordingly to the fact that G1(t) = ρ(t)etF1(t), the same holds for F1(t). However,
G2(t) may not be positive all the time and so is for F2(t); see the figures in the
Appendix. In fact, the functional G2(t) may start with negative values for small
times.

Remark 3.2. The estimate (3.26), obtained in Lemma 3.3 for G2(t), constitutes a
first observation useful in obtaining later on the lower bound for G2(t) for t large
enough. In fact, the negative bound in (3.26) is due to the presence of a mass term
in (1.13). Obviously, for ν = 0, we find again here the known result on the positivity
of G2(t) in the absence of the mass term, see e.g. [12].

We will see in the following that the functional G2(t), after taking some negative
values for small time, becomes positive for large time. The last assertion is obtained
in Lemma 3.4 below thanks to the compensation of the negative sign of the linear
part in the functional G2(t) by the time derivative nonlinearity. However, the
nonlinearity |u|q is not involved in the proofs of Lemmas 3.3 and 3.4. This allows
us to use the result in Lemma 3.4 for the problem (1.14) to prove Theorem 2.2 in
Section 5 below.

Now we are in a position to prove the following lemma.

Lemma 3.4. For any energy solution u of the system (1.13) with initial data
satisfying the assumptions in Theorem 2.1 and for all ε ≤ ε0 where ε0 is small
enough, there exists T1 > 0 such that

G2(t) ≥ CG2 ε, for all t ≥ T1 = − ln(ε), (3.52)

where CG2 is a positive constant which depends on p, f , g, N,R, ε0, ν and µ.

Proof. Let t ∈ [0, T ). Using (3.1), (3.11), (3.12) and the fact that

G′
1(t)−

ρ′(t)

ρ(t)
G1(t) = G2(t), (3.53)

the equation (3.19) implies

G2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G1(t)

=

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds+ εC(f, g).

(3.54)
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Differentiating in time (3.54) yields

G′
2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G′

1(t)−
(

µ

(1 + t)2
+
ρ′′(t)ρ(t)− (ρ′(t))2

ρ2(t)

)
G1(t) (3.55)

=

∫
RN

{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx.

Exploiting (3.2) and (3.53), the equation (3.55) can be written as follows:

G′
2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G2(t) +

(
−1 +

ν2

(1 + t)2

)
G1(t) (3.56)

=

∫
RN

{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx.

Thanks to the definition of Γ(t) given by (3.20), we infer that

G′
2(t) +

3Γ(t)

4
G2(t) ≥ Σ4(t) + Σ5(t) +

∫
RN

{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx,

(3.57)
where

Σ4(t) :=

(
− ρ′(t)

2ρ(t)
− µ

4(1 + t)

)(
G2(t) +

(
µ

1 + t
− ρ′(t)

ρ(t)

)
G1(t)

)
, (3.58)

and

Σ5(t) :=

(
1− ν2

(1 + t)2
+

(
ρ′(t)

2ρ(t)
+

µ

4(1 + t)

)(
µ

1 + t
− ρ′(t)

ρ(t)

))
G1(t). (3.59)

Making use of (3.54) and (3.7), we have the existence of T̃1 = T̃1(µ, ν) ≥ T0 such
that

Σ4(t) ≥ CC(f, g) ε+
1

4

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds, ∀ t ≥ T̃1,

(3.60)
where C(f, g) is given by (3.18).

Now, using Lemma 3.2 and (3.7), we deduce that there exists T̃2 = T̃2(µ, ν) ≥
T̃1(µ, ν) verifying

Σ5(t) ≥ 0, ∀ t ≥ T̃2. (3.61)
Gathering (3.57), (3.60) and (3.61), we get

G′
2(t) +

3Γ(t)

4
G2(t) ≥CC(f, g) ε+

∫
RN

{|ut(x, t)|p + |u(x, t)|q}ψ(x, t)dx

+
1

4

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q}ψ(x, s)dx ds, ∀ t ≥ T̃2.

(3.62)
At this level we can ignore the nonlinear terms. In fact, we could remove the
nonlinear terms from almost the beginning of the proof (say (3.55) for example),
but we adopted to keep the nonlinear terms in (3.62) to make it useful in the proof
of Theorem 2.2 in Section 5 below. Hence, we have

G′
2(t) +

3Γ(t)

4
G2(t) ≥ CC(f, g) ε, ∀ t ≥ T̃2. (3.63)
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Multiplying (3.63) by (1+t)3µ/4

ρ3/2(t)
and integrating over (T̃2, t), we infer that

G2(t) ≥G2(T̃2)
(1 + T̃2)

3µ/4ρ3/2(t)

ρ3/2(T̃2)(1 + t)3µ/4

+ CC(f, g) ε
ρ3/2(t)

(1 + t)3µ/4

∫ t

T̃2

(1 + s)3µ/4

ρ3/2(s)
ds, ∀ t ≥ T̃2. (3.64)

Thanks to (3.26) we have

G2(T̃2)
(1 + T̃2)

3µ/4

ρ3/2(T̃2)
≥ −K̃, (3.65)

where K̃ := Kν2
{
1 + ν

2
p−1 e

p
p−1 T̃2(1 + T̃2)

N−1
2

} (1 + T̃2)
3µ/4

ρ3/2(T̃2)
.

Recalling (3.23) and (3.65), we deduce from (3.64) that for all t ≥ T̃ = T̃ (µ, ν) :=
2T̃2, we have

G2(t) ≥ −K̃e−3t/2 + CC(f, g) εe−3t/2

∫ t

t/2

e3s/2ds (3.66)

≥ −K̃e−3t/2 + CC(f, g) ε, (3.67)

Therefore, for ε small, we get

G2(t) ≥ CG2
ε, ∀ t ≥ T1 := − ln(ε). (3.68)

This concludes the proof of Lemma 3.4.

Remark 3.3. Notice that in the proof of Lemma 3.2 we only used the positivity
of each one of the nonlinearities (|ut|p and |u|q). Indeed, the result in this lemma
is based on the comprehension of the dynamics in the linear part and, thus, the
same conclusion can be handled similarly for any positive nonlinearity of the form
N (u, ut) instead of |ut|p + |u|q. Furthermore, in the proof of Lemma 3.4 we use the
result on the negative lower bound of G2(t) obtained in Lemma 3.3 where we make
use of the nonlinearity |ut|p to control in part the negativity of G2(t).

Remark 3.4. Naturally, the results of Lemmas 3.2 and 3.4 hold true when we
consider a more general nonlinearity N (u, ut) = |ut|p+Ñ (u, ut) (with Ñ (u, ut) ≥ 0)
instead of |ut|p + |u|q, as it is the case for example in (1.14).

4. Proof of Theorem 2.1
The aim of this section is to prove the first theorem in this article, namely Theorem
2.1, which is related to the blow-up result and the lifespan estimate of the solution
of (1.13). To this end, we will employ the lemmas proven in Section 3 and a Kato
lemma type.

First, using the hypotheses in Theorem 2.1, we recall that supp(u) ⊂ {(x, t) ∈
RN × [0,∞) : |x| ≤ t+R}.

Let t ∈ [0, T ). Then, thanks to the hypotheses in Theorem 2.1, we define

F (t) :=

∫
RN

u(x, t)dx. (4.1)
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By choosing the test function Φ in (2.1) such that Φ ≡ 1 in {(x, s) ∈ RN × [0, t] :
|x| ≤ s+R}‡ and using the definition of F (t), we obtain

F ′(t) +

∫ t

0

µ

1 + s
F ′(s)ds+

∫ t

0

ν2

(1 + s)2
F (s) ds

=F ′(0) +

∫ t

0

∫
RN

{|ut(x, s)|p + |u(x, s)|q} dx ds.
(4.2)

Differentiating in time the equation (4.2), we have

F ′′(t) +
µ

1 + t
F ′(t) +

ν2

(1 + t)2
F (t) =

∫
RN

{|ut(x, t)|p + |u(x, t)|q} dx. (4.3)

In order to get rid of the mass term in (4.3) (i.e. ν2

(1+t)2F (t)), we introduce a new
functional G(t) which is defined as

G(t) := ζ(t)F (t) with ζ(t) = (1 + t)α, (4.4)

where α is given by (1.5).
Using (4.4), the equation (4.3) yields

G′′(t) +
1 +

√
δ

1 + t
G′(t) = (1 + t)α

∫
RN

{|ut(x, t)|p + |u(x, t)|q} dx. (4.5)

Now, we introduce the following multiplier

M(t) := (1 + t)1+
√
δ. (4.6)

Multiplying (4.5) by M(t) and integrating over (0, t), we infer that

M(t)G′(t) = G′(0) +

∫ t

0

M(s)(1 + s)α
∫
RN

{|ut(x, s)|p + |u(x, s)|q} dx ds. (4.7)

Observe that G′(0) = µ−1−
√
δ

2

∫
RN f(x)dx+

∫
RN g(x)dx ≥ 0 thanks to the hypothesis

(2.5). Hence, we have

M(t)G′(t) ≥
∫ t

0

M(s)(1 + s)α
∫
RN

{|ut(x, s)|p + |u(x, s)|q} dx ds. (4.8)

Integrating (4.8) over (0, t), after dividing it by M(t), and using the fact that
G(0) =

∫
RN f(x)dx ≥ 0, we infer that

G(t) ≥
∫ t

0

1

M(s)

∫ s

0

M(τ)(1 + τ)α
∫
RN

{|ut(x, τ)|p + |u(x, τ)|q} dx dτ ds. (4.9)

Utilizing the estimates (3.10) and (3.52) together with Hölder’s inequality, a lower
bound fo the nonlinear term can be obtained as follows:∫

RN

|ut(x, t)|pdx ≥ Gp
2(t)

(∫
|x|≤t+R

(
ψ(x, t)

) p
p−1

dx

)−(p−1)

≥ Cρ−p(t)e−ptεp(1 + t)−
(N−1)(p−2)

2 , ∀ t ≥ T1,

(4.10)

‡The choice Φ ≡ 1 is possible since the initial data f and g are supported on BRN (0, R).
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where T1 is defined by (3.52).
From (3.3) and (3.23), we deduce that

ρ(t)et ≤ C(1 + t)
µ
2 , ∀ t ≥ T0/2 (T0 < T1). (4.11)

Hence, we get ∫
RN

|ut(x, t)|pdx ≥ Cεp(1 + t)−
µp+(N−1)(p−2)

2 , ∀ t ≥ T1. (4.12)

Combining the above inequality with (4.9) and (4.6) yields

G(t) ≥ Cεp
∫ t

0

1

(1 + s)1+
√
δ

∫ s

0

(1 + τ)1+
√
δ+α−µp+(N−1)(p−2)

2 dτ ds. (4.13)

A straightforward computation gives

G(t) ≥ Cεp(1 + t)2+α−µp+(N−1)(p−2)
2 , ∀ t ≥ T1. (4.14)

Again here thanks to the fact that supp(u) ⊂ {(x, t) ∈ RN × [0,∞) : |x| ≤ t+R},
we have (∫

RN

u(x, t)dx
)q

≤ C
(
t+ 1

)N(q−1)
∫
|x|≤t+R

|u(x, t)|qdx, (4.15)

and, hence, we deduce that

Gq(t) ≤ C
(
t+ 1

)N(q−1)+αq
∫
|x|≤t+R

|u(x, t)|qdx. (4.16)

Differentiating in time (4.7), we obtain

(M(t)G′(t))′ = M(t)(1 + t)α
∫
RN

{|ut(x, t)|p + |u(x, t)|q} dx

≥ M(t)(1 + t)α
∫
RN

|u(x, t)|qdx.
(4.17)

Incorporating (4.16) into (4.17) and dividing by M(t) the new equation resulting
from (4.17)), we get for

L(t) :=
√
M(t)G(t),

L′′(t) +
1− δ

4(1 + t)2
L(t) ≥ C

Lq(t)(
1 + t

)(N+µ
2 )(q−1)

, ∀ t > 0. (4.18)

At this level, we recall that L(t) ≥ 0 thanks to the positivity of G(t) which is
obtained in (4.9). Therefore, two cases will presented in the subsequent depending
on the value of the parameter δ, defined in (1.3).

First case (δ ≥ 1).
Since L(t) is nonnegative, the estimate (4.18) yields

L′′(t) ≥ C
Lq(t)(

1 + t
)(N+µ

2 )(q−1)
, ∀ t > 0. (4.19)



1834 M. Hamouda & M. A. Hamza

Recall the definition of L(t) :=
√
M(t)G(t) and using (4.8) and (4.9), we deduce

that L′(t) ≥ 0. Hence, multiplying (4.19) by L′(t) gives

{(
L′(t)

)2}′

≥ C

(
Lq+1(t)

)′
(1 + t)(N+µ

2 )(q−1)
, ∀ t > 0. (4.20)

A simple integration in time of (4.20) yields(
L′(t)

)2
≥ C

Lq+1(t)

(1 + t)(N+µ
2 )(q−1)

+
(
(L′(0))2 − CLq+1(0)

)
, ∀ t > 0. (4.21)

For ε small enough, thanks to the hypothesis on the smallness of the initial data,
we obviously have the positivity of the last term in the right-hand side of (4.21).
Therefore, the estimate (4.21) implies that

L′(t)

L1+θ(t)
≥ C

L
q−1
2 −θ(t)

(1 + t)
(2N+µ)(q−1)

4

, ∀ t > 0, (4.22)

for θ > 0 small enough.
Second case (δ < 1).
First, we recall that L′(t) > 0. Then, multiplying (4.18) by (1 + t)2L′(t) yields

(1 + t)2

2

(
(L′(t))

2
)′

+
1− δ

8

(
L2(t)

)′ ≥ C

(
Lq+1(t)

)′
(
1 + t

)(N+µ
2 )(q−1)−2

, ∀ t > 0. (4.23)

We integrate the above inequality and observe that t 7→ 1/
(
1 + t

)(N+µ
2 )(q−1)−2 is a

decreasing function (thanks to N(q − 1) − 2 > 0 since q > 1 + 2
N which is related

to the case q > qS(N + µ)§). Hence, we obtain

(1 + t)2

2
(L′(t))

2
+

1− δ

8
L2(t) ≥C1

Lq+1(t)(
1 + t

)(N+µ
2 )(q−1)−2

+ L2(0)

(
1− δ

8
− CLq−1(0)

)
, ∀ t > 0.

(4.24)

Again here, we simply show that the last term in the right-hand side of (4.24) is
positive using the smallness of the initial data (ε small enough). Therefore we infer
that

(1 + t)2

2
(L′(t))

2
+

1− δ

8
L2(t) ≥ C1

Lq+1(t)(
1 + t

)(N+µ
2 )(q−1)−2

. (4.25)

Utilizing the estimate (4.14), the expression of L(t), the definition of λ(p, q,N), as
in (1.11), and the expression of M(t) (given by (4.6)), we conclude that

Lq−1(t)(
1 + t

)(N+µ
2 )(q−1)−2

> C2ε
p(q−1)(1 + t)2−

λ(p,q,N+µ)
2 , ∀ t ≥ T1(ε). (4.26)

§Obviously if q ≤ qS(N + µ) the blow-up result can be proven by only considering the nonlin-
earity |u(x, s)|q .
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Now, we choose T2 such that

T2 = max

(
C

− 2
4−λ(p,q,N+µ)

3 ε−
2p(q−1)

4−λ(p,q,N+µ) , T1(ε)

)
, (4.27)

where C3 = 4C1C2/(1 − δ) and T1(ε) is defined by (3.52). Note that for ε small
enough

T2 = T2(ε) := C
− 2

4−λ(p,q,N+µ)

3 ε−
2p(q−1)

4−λ(p,q,N+µ) . (4.28)
Hence, the above choice of T2 implies that

Lq−1(t)(
1 + t

)(N+µ
2 )(q−1)−2

>
1− δ

4C1
, ∀ t ≥ T2. (4.29)

Now, combining (4.29) in (4.25), we obtain the following estimate:

(1 + t)2 (L′(t))
2 ≥ C1

Lq+1(t)(
1 + t

)(N+µ
2 )(q−1)−2

, ∀ t ≥ T2, (4.30)

that we rewrite as

L′(t)

L1+θ(t)
≥ C

L
q−1
2 −θ(t)

(1 + t)
(2N+µ)(q−1)

4

, ∀ t ≥ T2, (4.31)

for θ > 0 small enough.
Finally, for δ ≥ 1 or δ < 1, we obtain almost the same estimates (4.29) and

(4.31), respectively, however, they only differ by the starting times which are 0 and
T2, respectively. In conclusion, the estimate (4.31) is true in both cases for all t ≥ T2
where T2 is given by (4.28).

The rest of the proof follows the same lines as in the corresponding part in
the proof of Theorem 2.2 in [12, Section 4] which starts from (4.30) in the same
paper [12].

This achieves the proof of Theorem 2.1.

5. Proof of Theorem 2.2.
We are interested in this section in proving Theorem 2.2 which is related to the
derivation of the critical exponent associated with the nonlinear term in the problem
(1.14). As mentioned earlier in this work, we will make use of the computations
already done in Section 3. More precisely, we recall that Lemma 3.2 remains true for
the solution of (1.14) (see Remark 3.3) since we only use the fact that the nonlinear
terms are positive. Furthermore, Lemma 3.4, which is based on the result of Lemma
3.3, only uses the nonlinear time derivative term |ut|p and therefore remains true
for the solution of (1.14).

In fact, we proved in Lemma 3.4 that G2(t) is coercive starting from relatively
large time which is increasing as the initial data are getting smaller, namely as
ε → 0. This observation constitutes a novelty for (1.14) compared to the equation
without mass; see e.g. [12].

Taking advantage from the above observation about G2(t), we improve the blow-
up result in [30] for p ∈ (1, pG(N+σ)], where pG(N) is the Glassey exponent given by
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(1.10) and σ is given by (1.12), to reach the new blow-up region p ∈ (1, pG(N +µ)).
Indeed, our result for (1.14) enhances the corresponding one in [30], for δ < 1,
and coincides with it for δ ≥ 1. In particular, we may conjecture that the mass
term has no influence on the dynamics for δ ≥ 0, i.e., ν2 ≤ (µ−1)2

4 , by simply
comparing [12, Theorem 2.4] and Theorem 2.2 in the present work. Finally, we
believe that the derived limiting exponent pG(N + µ) may get to the threshold
between the blow-up and the global existence regions.

In the subsequent we will use the estimate (3.62) with omitting the nonlinear
term |u(x, t)|q and keeping the other nonlinearity |ut(x, t)|p. Hence, we obtain

G′
2(t) +

3Γ(t)

4
G2(t) ≥

1

4

∫ t

0

∫
RN

|ut(x, s)|pψ(x, s)dxds

+

∫
RN

|ut(x, t)|pψ(x, t)dx+ C5 ε, ∀ t ≥ T̃2.

(5.1)

Let
H(t) :=

1

8

∫ t

T3(ε)

∫
RN

|ut(x, s)|pψ(x, s)dxds+
C6ε

8
,

where T3(ε) := max(T1, T̃2, T̃3), C6 = min(C5, 8CG2
) (CG2

is defined in Lemma 3.4)
and T̃3 is chosen such that 1

4 −
3Γ(t)
32 > 0 and Γ(t) > 0 for all t ≥ T̃3 (this is possible

thanks to (3.20) and (3.7)). Since T1, given by (3.52), is large for ε small, we can
hereafter set T3(ε) = − ln(ε). Now, we introduce

F(t) := G2(t)−H(t),

which satisfies

F ′(t) +
3Γ(t)

4
F(t) ≥

(
1

4
− 3Γ(t)

32

)∫ t

T3(ε)

∫
RN

|ut(x, s)|pψ(x, s)dxds

+
7

8

∫
RN

|ut(x, t)|pψ(x, t)dx+ C6

(
1− 3Γ(t)

32

)
ε

≥0, ∀ t ≥ T3(ε).

(5.2)

Then, the estimate (5.2) yields

F(t) ≥ F(T3(ε))
(1 + T3(ε))

3µ/4

ρ3/2(T3(ε))

ρ3/2(t)

(1 + t)3µ/4
, ∀ t ≥ T3(ε), (5.3)

where ρ(t) is defined by (3.3).
Hence, we have F(T3(ε)) = G2(T3(ε))−

C6ε

8
≥ G2(T3(ε))−CG2

ε ≥ 0 thanks to
Lemma 3.4 and the fact that C6 = min(C5, 8CG2

) ≤ 8CG2
.

Consequently, we have

G2(t) ≥ H(t), ∀ t ≥ T3(ε). (5.4)

Using the Hölder’s inequality and the estimates (3.10) and (3.52), we can easily see
that∫

RN

|ut(x, t)|pψ(x, t)dx ≥ Gp
2(t)

(∫
|x|≤t+R

ψ(x, t)dx

)−(p−1)

≥ CGp
2(t)ρ

−(p−1)(t)e−(p−1)t(1 + t)−
(N−1)(p−1)

2 .

(5.5)
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Thanks to (4.11), we get∫
RN

|ut(x, t)|pψ(x, t)dx ≥ CGp
2(t)(1 + t)−

(N+µ−1)(p−1)
2 , ∀ t ≥ T3(ε). (5.6)

From the above estimate and (5.4), we infer that

H ′(t) ≥ CHp(t)(1 + t)−
(N+µ−1)(p−1)

2 , ∀ t ≥ T3(ε). (5.7)

Observing that H(T3(ε)) = C6ε/8 > 0, we deduce the upper bound of the lifespan
estimate as stated in Theorem 2.2.

6. Appendix
In this Appendix we will display some figures obtained by simple computations on
Matlab. Indeed, the aim here is to enhance the observations obtained in Lemmas
3.3 and 3.4, and more precisely to show the behavior of the functional F2(t), defined
by (3.29), for different values of δ = (µ − 1)2 − 4ν2 (and consequently this yields
the dynamics of G2(t)). We recall here that

F2(t) = F ′
1(t) + F1(t),

where F1(t) satisfies the equation (3.33) with ignoring the nonlinear terms and using
the above equation:

F ′′
1 (t) +

(
2 +

µ

1 + t

)
F ′
1(t) +

(
µ

1 + t
+

ν2

(1 + t)2

)
F1(t) = 0. (6.1)

The numerical treatment of (6.1) yields the graphs for F2(t) as shown below.
We end this appendix by stating some observations on the above figures which

we believe have the merit to be mentioned:

• We note that the free-mass case (ν = 0) exhibits the positivity of F2(t), and
hence that of G2(t), for all time starting from the initial time t = 0 (see Figure
1). This is in agreement with our results in [12] on the positivity of F2(t) and
G2(t).

• From Figures 2, 3 and 4, which correspond to the cases δ > 0, δ = 0 and
δ < 0, respectively, we notice a negative lower bound of F2(t), but, for large
time the functional F2(t) is positive. However, more oscillations near t = 0
are observed when δ < 0. Of course the case δ < 0 is not studied in this work
but will be the subject of a future investigation.
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Figure 1. The case µ = 10, ν = 0 (the free-
mass case with δ > 0).
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Figure 2. The case µ = 10, ν = 4 which cor-
responds to δ > 0.
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Figure 3. The case µ = 9, ν = 4 which corre-
sponds to δ = 0.
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Figure 4. The case µ = 10, ν = 20 which
corresponds to δ < 0.
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