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Abstract Dusty plasma has become a hot topic in physics in recent years
because of its wide application in the space environment, industrial process-
ing and fusion reaction. The (3+1)-dimensional modified Zakharov-Kuznetsov
(mZK) equation describing waves propagation in dusty plasma is derived via
the reduced perturbation method, based on the governing equation. Further-
more, integer-order equation is derived as the fractional modified Zakharov-
Kuznetsov (TF-mZK) equation. The exact solution and Bäcklund transfor-
mation are obtained by the fractional transformation and Bell polynomials.
Finally, the rouge wave phenomenon in magnetized dusty plasma is described,
and the effects of fractional order, phase velocity and dust-cyclotron frequency
on the propagation characteristics of dust acoustic rogue waves are analyzed.
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nomials, Bäcklund transformation, rouge waves, dusty plasma.

MSC(2010) 34A08, 76D25, 35Q56, 35L65.

1. Introduction
With the progress of science and technology, researchers have discovered a com-
plex plasma, that is, dusty plasma. [23, 27, 34] Plasma is a form of matter mainly
composed of free electrons and charged ions, which exists widely in the universe.
Dusty plasma is special in that it contains charged dust particles compared with
ordinary ionized bodies. These charged dust particles vary greatly in size, and
their movements are influenced by electromagnetic forces and gravity. Due to these
characteristics of dusty plasma, the dusty plasma system presents many complex
physical phenomena.

Dusty plasmas widely exist in nature, laboratory and astronomical environment.
In the early 1980s, spokes were observed in Saturn’s rings from the photos returned
by Voyager 2 spacecraft, these spokes are composed of fine particles. Hill et al. [17]
proposed for the first time that interplanetary dust particles enter Jupiter’s plasma
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layer to be charged. For the first time, in 1989 Selwyn et al. [30] reported the
dust pollution in the process of plasma etching conductor chip. Before that, people
mistakenly thought that the chip was polluted in the air. In 1994, Yi et al. [8] and
Morfill et al. [31] obtained the crystal structure of dusty plasma for the first time
in their experiments almost simultaneously.

Dusty plasma can produce not only abundant wave modes but also nonlinear
coherent structures. When the balance between the nonlinear effect and dispersion
effect is reached, dust acoustic waves [1, 19] will be formed. Dust acoustic wave
is an important nonlinear coherent structure in dusty plasma, and it is the focus
of research on wave motion in dusty plasmas. In 1990, Rao et al. [26] predicted
the wave motion pattern in dusty plasma in theory, until 1995, Barkan et al. [5]
confirmed this wave motion pattern for the first time in experiments. Since then,
many scholars have devoted themselves to the research of dust acoustic waves.
Jharna et al. [32] obtained the solitary wave solution and dynamic transition of
dust ion acoustic waves based on the damped Korteweg de Vries (DKdV) equation,
Mahmoud et al. [20] studied the nonlinear dust acoustic waves produced by the
interaction of flowing protons and electrons with dusty plasma, El-Taibany et al. [12]
derived a Korteweg-de Vries (KdV) equation

ut + r1uux + r2uxxx = 0,

and researched the nonlinear propagation of dust acoustic waves in a variable size
grains dusty plasma. In 1974, Zakharov and Kuznetsov derived the ZK equation
from magnetized plasma containing cold ions and hot isothermal electrons. Later,
the stability of the periodic wave solution of the ZK equation in plane and solitary
traveling wave solution has also been studied by many physicists. Munro and Parkes
derived the mZK equation when the ions or electrons in the plasma did not satisfy
the Boltzmann distribution. Recently, Popel et al. [24] took dusty plasma research
to a new level by studying the effect of the Earth’s magnetotail magnetic field on
dusty plasma on the surface of the Moon illuminated by sunlight. At present, most
of the researches on dusty plasma are based on low-dimensional physical models.
We know that the propagation space of waves in nature should be multidimensional
in general. Therefore£¬for more general theoretical and practical problems, we
still need to consider multidimensional models.

Recently, El-Shiekh [13] established a two-dimensional Kadomtsev-Petviashvili
Burgers(KPB) equation

(ut + r1uux + r2uxxx)x + r3uyy + r4uxx = 0,

to study bright and dark solitons, periodic soliton wave and shock wave in dusty
plasma and quantum plasma.

Fractional order calculus [2, 3] may still be unfamiliar to most people, but it
was put forward as early as 300 years ago. In 1695, in a famous letter to Leibniz,
L’Hospital wrote, ”For a simple linear function f(x)=x, what happens if the deriva-
tive degree of the function is a fraction instead of an integer? ”. It is acknowledged
that the fractional differential is mentioned for the first time. For a long time, there
are many researches on fractional calculus in the field of mathematical pure theory.

Nowadays, the methods of solving fractional differential equations are becoming
more and more perfect, with the wide application of fractional calculus in biological
system, thermal systems and mechanical systems. Mahmoud [21] derived the time
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fractional Gardner equation

Dω
τ u+ r1uuxr2u

2ux + r3uxxx = 0,

and discussed the time fractional effect of dust sound bilayer waves. Veeresha et
al. [33] obtained the solutions for fractional potential KdV and Benjamin equations
via q-homotopy analysis transform method, Devendra et al. [10] found nonlinear
fractional differential equations of variable order by using Bernoulli wavelet method.
In the past, most scholars used integer order models to study wave propagation
in dusty plasma. In some practical cases, fractional-order equations can describe
some complex plasma processes and phenomena more accurately than integer-order
equations.

Until now the linear wave theory in plasma has been mature and systematic,
and the exploration of various nonlinear wave modes has attracted more and more
scholars’ interest. In 1965, Draper [11] first proposed the concept of strange waves.
Rogue waves [6, 9, 35] have very high peaks and short duration. There is no sign
before rogue waves appear, they will pop up in one area at one time, and then
disappear quickly. Generally, a single wave with a wave height greater than twice
the effective wave height can be called a rogue wave. Because these characteristics
are different from other nonlinear waves, the study of rogue waves has become a
hot topic. For the first time in 2011, the rogue waves in plasmas was observed
in experiments by Bailung et al. [7]. After that, Almutalk et al. [4] obtained the
numerical solution of dusty acoustic super rogue waves in a strongly coupled dusty
plasma, Sun and Tian [28] investigated the Dust ion-acoustic rogue waves in an
ultracold quantum dusty plasma, Mouhammadoul et al. [22] found the influence of
the different plasma parameters of the highly energetic rogue wave.

The letter is organized as follows. In Section 2, we derive a (3+1)-dimensional
mZK equation by the reduced perturbation method [15]. In Section 3, by means
of semi-inverse method, Euler-Lagrange equation and fractional variational princi-
ple [14], the TF-mZK equation is obtained from integer order mZK equation. In
Section 4, exact solution and Bäcklund transformation are given via the defini-
tion and properties of the bell polynomials [29]. The phenomenon of rouge waves
in magnetized dusty plasma, effects of fractional order, phase velocity and dust-
cyclotron frequency on the propagation characteristics of dust acoustic rogue waves
are analyzed in Section 5.

2. Mathematical model and derivation of the mZK
equation

The governing equations are based on a magnetized dusty plasma system consisting
of dust particles, superthermal electrons, and two populations of ions with two
distinct temperatures.

In order to derive the differential equation describing the propagation of dust
acoustic wave in magnetized dusty plasma, it is first assumed that there is no
dust particle collision effect in the system. Second, the second explanation is the
acoustic wave propagates along the direction of x-axis, but the high-order transverse
disturbance in the y-axis and z-axis directions is weak.

Since dusty plasma is electrically neutral at equilibrium

ne0 + nd0Zd0 = nih0 + nic0,
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where ne0, nd0, nih0, and nic0 denote the unperturbed number densities of electrons,
dust particles, cold ions and thermionic ions, respectively, and Zd0 denotes the
unperturbed number of charges on dust particles.

On the basis of the above explanations, the nonlinear dynamics of dust acoustic
waves is described by the normalized fluid equations

∂nd
∂t

+
∂(ndud)

∂x
+
∂(ndvd)

∂y
+
∂(ndwd)

∂z
= 0,

∂ud
∂t

+ ud
∂ud
∂x

+ vd
∂ud
∂y

+ wd
∂ud
∂z

=
∂ϕ

∂x
,

∂vd
∂t

+ ud
∂vd
∂x

+ vd
∂vd
∂y

+ wd
∂vd
∂z

=
∂ϕ

∂y
+Ωwd,

∂wd
∂t

+ ud
∂wd
∂x

+ vd
∂wd
∂y

+ wd
∂wd
∂z

=
∂ϕ

∂z
− Ωvd,

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= nd + (γic + γih − 1)ne − γicnic − γihnih,

(2.1)

where the number density of the dust particles nd is normalized by nd0. ud, vd and
wd are the velocities of the dust-fluid along x, y and z directions, respectively, and
normalized by dust acoustic speed Cd = (Zd0Tih

md
)

1
2 , where md denotes dust particle

mass, Tih denotes effective temperature. The space variable (x, y, z) are normalized
by the dusty plasma Debye radius λd = ( Tih

4πnd0Zd0e2
)

1
2 , and the time variable t is

normalized by the inverse of the dust-plasma frequency ω−1
pd = ( md

4πnd0Z2
d0e

2 )
1
2 . The

electrostatic potential ϕ is normalized by Tih

e , where e denotes the magnitude of the
electric charge. Ω is the normalized dust-cyclotron frequency. ne, nic and nih denote
the number densities of the electrons, cold ions, and thermionic ions respectively,
and normalized by nd0Zd0. γic and γih are the undisturbed number density ratios
of cold ions to dust and thermionic ions to dust.

The densities of electrons and ions are as follows

ne = (1− ϕ

κ− 3
2

)−κ+
1
2 , nic = [1− (q − 1)ϕ]

(3q−1)
2(q−1) ,

nih = [1− σ(q − 1)ϕ]
(3q−1)
2(q−1) .

(2.2)

According to Eq. (2.2) and Poisson’s equation, we have

∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= nd − 1 + C1ϕ+ C2ϕ

2 + C3ϕ
3, (2.3)

where

C1 = γe
(κ− 1

2 )

(κ− 3
2 )

+ (γic + γihσ)
(3q − 1)

2
,

C2 = γe
(κ2 − 1

4 )

2(κ− 3
2 )

2
− (γic + γihσ

2)
(3q − 1)(q + 1)

8
,

C2 = γe
(κ2 − 1

4 )(κ+ 3
2 )

2(κ− 3
2 )

3
+ (γic + γihσ

3)
(3q − 1)(q + 1)(3− q)

48
.

(2.4)
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Next, the reduced perturbation method is used to process Eq. (2.1), and the
mZK equation is obtained for studying the evolutionary properties. First, making
the following scale analysis

ξ = ε(x− λt), η = εy, ζ = εz, τ = ε3t. (2.5)

According to Eq. (2.5), we obtain as

∂

∂x
= ε

∂

∂ξ
,
∂

∂y
= ε

∂

∂η
,
∂

∂z
= ε

∂

∂ζ
,
∂

∂t
= ε3

∂

∂τ
− ελ

∂

∂ξ
. (2.6)

The dependent variables nd, ud, vd, wd and ϕ are expanded in the powers of ε as
follows 

nd = 1 + εnd1 + ε2nd2 + ε3nd3 + · · · ,
ud = εud1 + ε2ud2 + ε3ud3 + · · · ,
vd = ε2vd1 + ε3vd2 + · · · ,
wd = ε2wd1 + ε3wd2 + · · · ,
ϕ = εϕ1 + ε2ϕ2 + ε3ϕ2 + · · · .

(2.7)

Substituting Eqs. (2.6) and (2.7) into Eq. (2.1) yields



ε3
∂nd
∂τ

− ελ
∂nd
∂ξ

+ ε
∂(ndud)

∂ξ
+ ε

∂(ndvd)

∂η
+ ε

∂(ndwd)

∂ζ
= 0,

ε3
∂ud
∂τ

− ελ
∂ud
∂ξ

+ εud
∂ud
∂ξ

+ εvd
∂ud
∂η

+ εwd
∂ud
∂ζ

= ε
∂ϕ

∂ξ
,

ε3
∂vd
∂τ

− ελ
∂vd
∂ξ

+ εud
∂vd
∂ξ

+ εvd
∂vd
∂η

+ εwd
∂vd
∂ζ

= ε
∂ϕ

∂η
+Ωwd,

ε3
∂wd
∂τ

− ελ
∂wd
∂ξ

+ εud
∂wd
∂ξ

+ εvd
∂wd
∂η

+ εwd
∂wd
∂ζ

= ε
∂ϕ

∂ζ
− Ωvd,

ε2
∂2ϕ

∂ξ2
+ ε2

∂2ϕ

∂η2
+ ε2

∂2ϕ

∂ζ2
= nd − 1 + C1ϕ+ C2ϕ

2 + C3ϕ
3.

(2.8)

According to Eq. (2.8) and equating coefficients of like powers of the ε, at the
lowest order

ε : nd1 + C1ϕ1 = 0. (2.9)

ε2 :


− λ

∂nd1
∂ξ

+
∂ud1
∂ξ

= 0, − λ
∂ud1
∂ξ

=
∂ϕ1
∂ξ

,

∂ϕ1
∂η

+Ωwd1 = 0,
∂ϕ1
∂ζ

− Ωvd1 = 0,

nd2 + C1ϕ2 + C2ϕ
2
1 = 0,

(2.10)
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ε3 :



− λ
∂nd2
∂ξ

+
∂ud2
∂ξ

+
∂(nd1ud1)

∂ξ
+
∂(vd1)

∂η
+
∂(wd1)

∂ζ
= 0,

− λ
∂ud2
∂ξ

+ ud1
∂ud1
∂ξ

=
∂ϕ2
∂ξ

,

− λ
∂vd1
∂ξ

=
∂ϕ2
∂η

+Ωwd2 ,

− λ
∂wd1
∂ξ

=
∂ϕ2
∂ζ

− Ωvd2 ,

∂2ϕ1
∂ξ2

+
∂2ϕ1
∂η2

+
∂2ϕ1
∂ζ2

= nd3 + C1ϕ3 + 2C2ϕ1ϕ2 + C3ϕ
3
1.

(2.11)

According to Eq. (2.10) and Eq. (2.11), one has

nd1 =
ud1
λ
, ud1 = −ϕ1

λ
, C1 =

1

λ2
,

nd2 = −C2ϕ
2
1 − C1ϕ2, ud2 =

1

2λ3
ϕ21 −

1

λ
ϕ2,

vd2 = − λ

Ω2

∂2ϕ1
∂ξη

+
1

Ω

∂ϕ2
∂η

, wd2 = − λ

Ω2

∂2ϕ1
∂ξζ

− 1

Ω

∂ϕ2
∂η

, C2 = − 3

2λ4
.

(2.12)

At the highest order of the ε, we get

ε4 :



∂nd1
∂τ

− λ
∂nd3
∂ξ

+
∂ud3
∂ξ

+
∂(nd1ud2)

∂ξ
+
∂(nd2ud1)

∂ξ
+
∂nd1vd1
∂η

+
∂vd2
∂η

+
∂nd1wd1
∂ζ

+
∂wd2
∂ζ

= 0,

∂ud1
∂τ

− λ
∂ud3
∂ξ

+ ud1
∂ud2
∂ξ

+ ud2
∂ud1
∂ξ

+ vd1
∂ud1
∂η

+ wd1
∂ud1
∂ζ

=
∂ϕ3
∂ξ

.

(2.13)

Substituting Eq. (2.12) into Eq. (2.13), the (3+1)-dimensional mZK equation
is obtained as

∂ϕ1
∂τ

+ a1ϕ
2
1

∂ϕ1
∂ξ

+ a2
∂3ϕ1
∂3ξ

+ a3(
∂3ϕ1
∂ξηη

+
∂3ϕ1
∂ξζζ

) = 0, (2.14)

where
a1 = −λ

2

2
(
6λ2 − 6

2λ5
− 3λC3), a2 =

λ3

2
, a3 =

λ3

2
(1 +

1

Ω2
). (2.15)

Remark 2.1. When the parameter a3 = 0, the KdV equation can be obtained
from Eq. (2.14). The (3+1)-dimensional mZK equation is a generalized form of
the traditional KdV equation. Further discussion of the new equation is of great
significance to the study of dusty plasma.

3. Derivation of the TF-mZK equation
A new (3+1)-dimensional integer order mZK equation is obtained in the above
section. In this section, the semi-inverse method and fractional variational prin-
ciple are used to establish the (3+1)-dimensional generalized TF-mZK equation.
Introducing the following definitions of fractional
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Definition 3.1. The Riemann-Liouville fractional derivative [14]

Dω
τ f(τ) =


1

Γ(n− ω)

dn

dτn

∫ τ

0

(τ − T )n−ω−1f(T )dT, n− 1 < α < n,

∂nf(t)

∂τn
, ω = n.

(3.1)

Definition 3.2. The fractional integration by parts is given as [14]∫ b

a

(dτ)ωf(τ)Dωτ g(τ) = Γ(1 + ω)[g(τ)f(τ)|ba −
∫ b

a

(dτ)ωg(τ)Dωτ f(τ)],

f(τ), g(τ) ∈ [a, b].

(3.2)

Eq. (2.14) can be expressed by

ψτ + a1ψ
2ψξ + a2ψξξξ + a3(ψξηη + ψξζζ) = 0. (3.3)

Letting ψ(ξ, η, ζ, τ) = φξ(ξ, η, ζ, τ), where φ(ξ, η, ζ, τ) denotes a potential func-
tion, the potential equation of Eq. (3.3) is

φξτ + a1φ
2
ξφξξ + a2φξξξξ + a3(φξξηη + φξξζζ) = 0. (3.4)

Then, the semi-inverse method [20] is used to derive the Lagrangian form of Eq.
(3.2). The functional form of Eq. (3.3) can be expressed as

J(φ) =

∫
X

dξ

∫
Y

dη

∫
Z

dζ

∫
T

dτ [φ(b1φξτ + b2a1φ
2
ξφξξ

+ b3a2φξξξξ + b4a3φξξηη + b5a3φξξζζ)],

(3.5)

where bi(i = 1, 2, . . . , 5) denote the Lagrangian multipliers.
Applying integration by parts to Eq. (3.5), and letting φξ|T = φξ|X = φξξξ|X =

φξηη|X = φξζζ |X = φξ|Y = φξ|Z = 0, we get

J(φ) =

∫
X

dξ

∫
Y

dη

∫
Z

dζ

∫
T

dτ [−b1φξφτ −
1

3
b2a1φ

4
ξ + b3a2φ

2
ξξ

− b4a3φ
2
ξη − b5a3φ

2
ξζ ].

(3.6)

Lagrangian multipliers bi(i = 1, 2, . . . , 5) can be determined by the variation of
Eq. (3.6) to make them optimal. Via the variation of Eq. (3.6) and the optimal
conditions, integrate each term by parts, and get

L(ξ, η, ζ, τ, φτ , φξ, φξη, φξζ , φξξ)

=
∂F

∂φ
− ∂

∂τ
(
∂F

∂φτ
)− ∂

∂ξ
(
∂F

∂φξ
) +

∂2

∂ξ2
(
∂F

∂φξξ
)− ∂2

∂ξη
(
∂F

∂φξη
)− ∂2

∂ξζ
(
∂F

∂φξζ
)

= 2b1φξτ + 4b2a1φ
2
ξφξξ + 2b3a2φξξξξ + 2b4a3φξξηη + 2b5a3φξξζζ = 0.

(3.7)

Eq. (3.7) is equivalent to Eq. (3.4), so Lagrangian multipliers bi(i = 1, 2, 3, 4, 5)
are

b1 = b3 = b4 = b5 =
1

2
, b2 =

1

4
. (3.8)
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According to Eq. (3.6) and Eq. (3.8), the Lagrangian form of mZK equation
can be obtained as

L(φτ , φξ, φξξ, φξη, φξζ) = −1

2
φξφτ −

1

12
a1φ

4
ξ +

1

2
a2φ

2
ξξ −

1

2
a3φ

2
ξη −

1

2
a3φ

2
ξζ . (3.9)

Further the Lagrangian form of the TF-mZK equation is given by

L(Dω
τ φ,φξ, φξξ, φξη, φξζ)

=− 1

2
φξD

ω
τ φ− 1

12
a1φ

4
ξ +

1

2
a2φ

2
ξξ −

1

2
a3φ

2
ξη −

1

2
a3φ

2
ξζ ,

(3.10)

and, the functional is

JL(φ) =

∫
X

dξ

∫
Y

dη

∫
Z

dζ

∫
T

(dτ)ωL(Dωτ φ,φξ, φξξ, φξη, φξζ). (3.11)

Using the Agrawal’s method [18], the variation of Eq. (3.11) with respect to
ψ(ξ, η, ζ, τ) is

δJL(φ) =

∫
X

dξ

∫
Y

dη

∫
Z

dζ

∫
T

(dτ)ω[(
∂L

∂Dωτ φ
)δDωτ φ

+ (
∂L
∂φξ

)δφξ + (
∂L
∂φξξ

)δφξξ + (
∂L
∂φξη

)δφξη + (
∂L
∂φξζ

)δφξζ ].

(3.12)

According to Definition 3.2 and Eq.(3.12), we obtain

δJL(φ) =

∫
X

dξ

∫
Y

dη

∫
Z

dζ

∫
T

(dτ)ω[−Dω
τ (

∂L
∂Dω

τ φ
)− ∂

∂ξ
(
∂L
∂φξ

)

+
∂2

∂ξ2
(
∂L
∂φξξ

)− ∂2

∂ξη
(
∂L
∂φξη

)− ∂2

∂ξζ
(
∂L
∂φξζ

)]δφ.

(3.13)

Optimizing the variation of the functional JL(φ), the Euler-Lagrange equation
is given by

−Dω
τ (

∂L
∂Dω

τ φ
)− ∂

∂ξ
(
∂L
∂φξ

) +
∂2

∂ξ2
(
∂L
∂φξξ

)− ∂2

∂ξη
(
∂L
∂φξη

)− ∂2

∂ξζ
(
∂L
∂φξζ

) = 0. (3.14)

Substituting of Eq. (3.9) into Eq. (3.14) yields

Dω
τ φξ + a1(φξ)

2φξξ + a2φξξξξ + a3φξξηη + a3φξξζζ = 0. (3.15)

And finally, substituting φξ(ξ, η, ζ, τ) = ψ(ξ, η, ζ, τ) into Eq. (3.15), (3+1)-
dimensional TF-mZK equation is given by

Dω
τ ψ + a1ψ

2ψξ + a2ψξξξ + a3(ψξηη + ψξζζ) = 0. (3.16)

Remark 3.1. According to Definition 3.1, when the time fractional order ω = 1,
Eq. (3.16) is an integer order mZK equation. Therefore, compared with the integer-
order model, Eq. (3.16) is more general. It is meaningful to use fractional equation
to study complex physical phenomena about dusty plasma.
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4. Solutions of the TF-mZK equation
Researchers usually use bilinear method to obtain the rogue wave solution of the
equation. However, the application of bilinear methods requires great skill in se-
lecting variable transformations. Therefore, in this section, we obtain the bilinear
form of the equation through the relationship between Bell polynomials and bilinear
derivatives, and then get the rogue wave solution.

Definition 4.1. Taking f = f(x1, x2, · · · , xn) be a C∞ function with n vari-
ables, the multi-dimensional Bell polynomials(generalized Bell polynomial or Y-
polynomials) [29] are given by

Yn1x1,··· ,nlxl
(f) ≡ Yn1,··· ,nl

(fr1x1,··· ,rlxl
) = e−f∂n1

x1
· · · ∂nl

xl
ef , (4.1)

here
fr1x1,··· ,rlxl

= ∂n1
x1

· · · ∂nl
xl
f (r1 = 0, · · · , n1; · · · ; rl = 0, · · · , nl). (4.2)

Definition 4.2. Bell polynomials containing functions ϑ and ϖ are called multi-
dimensional binary Bell polynomials [18]

Yn1x1,··· ,nlxl
(ϑ,ϖ) ≡ Yn1,··· ,nl

(f) | fr1x1,··· ,rlxl

=

{
ϑr1x1,··· ,rlxl

, r1 + r2 + · · ·+ rl is odd,
ϖr1x1,··· ,rlxl

, r1 + r2 + · · ·+ rl is even.
(4.3)

Theorem 4.1. The Y-polynomials and Hirota D-operator satisfy [18]

Yn1x1,··· ,nlxl
(ϑ = ln

F

G
,ϖ = lnFG) = (FG)−1Dn1

x1
· · ·Dnl

xl
F ·G, (4.4)

here n1 + n2 + · · ·+ nl ≥ 1.

Next, introducing fractional-order transformations are

t =
j1τ

ω

Γ(1 + ω)
, (4.5)

where j1 is an arbitrary constant.
With the Eq. (4.5), ∂ωψ

∂τω = j1
∂ψ
∂t is obtained. Therefore, Eq. (3.3) can be

rewritten as
ψt + a1ψ

2ψξ + a2ψξξξ + a3(ψξηη + ψξζζ) = 0. (4.6)

Let ψ = ϑξ, Eq. (4.6) can be expressed as

ϑξt + a1ϑ
2
ξϑξξ + a2ϑξξξξ + a3(ϑξξηη + ϑξξζζ) = 0. (4.7)

Introducing constraints ϑη = pϑξ, ϑζ = qϑξ, where p and q are arbitrary con-
stants. The following equation is obtained as

ϑξt + a1ϑ
2
ξϑξξ + a2ϑξξξξ + a3(pϑξξξη + qϑξξξζ) = 0. (4.8)

According to Eq. (4.7) and constraints ϑη = pϑξ, ϑζ = qϑξ, we obtain

ϑt +
a1
3
ϑ3ξ + a2ϑξξξ + a3(p

2ϑξξξ + q2ϑξξξ) = 0. (4.9)



Bäcklund transformations and rouge waves. . . 1851

When a1 = −6[a2 + a3(p
2 + q2)], Eq. (4.9) can be expressed as

ϑt+[a2+a3(p
2+q2)](ϑξξξ+3ϖξξϑξ+ϑ

3
ξ)−3[a2+a3(p

2+q2)](ϑ3ξ+ϖξξϑξ) = 0. (4.10)

According to constraints and Eq. (4.10), we get
ϑη = pϑξ,

ϑζ = qϑξ,

ϑt + [a2 + a3(p
2 + q2)](ϑξξξ + 3ϖξξϑξ + ϑ3ξ) = 0,

− 3[a2 + a3(p
2 + q2)](ϑ2ξ +ϖξξ) = 0.

(4.11)

Then, the bell polynomial form of Eq. (4.6) is
Yη(ϑ,ϖ) = pYξ(ϑ,ϖ),

Yζ((ϑ,ϖ) = qYξ(ϑ,ϖ),

− 3[a2 + a3(p
2 + q2)]Yξξ(ϑ,ϖ) = 0,

Yt(ϑ,ϖ) + [a2 + a3(p
2 + q2)]Yξξξ(ϑ,ϖ) = 0.

(4.12)

According to Theorem 4.1 and ϑ = ln(g/f), ϖ = ln(gf), the bilinear form of
Eq. (4.6) is given by

Dη(g · f) = pDξ(g · f),
Dζ(g · f) = qDξ(g · f),
− 3[a2 + a3(p

2 + q2)]D2
ξ(g · f) = 0,

Dt(g · f)) + [a2 + a3(p
2 + q2)]D3

ξ(g · f) = 0.

(4.13)

Assuming f and g can be expanded as follows{
f = 1 + ϵf (1) + ϵ2f (2) + · · · ,
g = 1 + ϵg(1) + ϵ2g(2) + · · · .

(4.14)

Substituting Eq. (4.14) into Eq. (4.13), we obtain

ϵ :



g(1)η − f (1)η = p(g
(1)
ξ − f

(1)
ξ ),

g
(1)
ζ − f

(1)
ζ = q(g

(1)
ξ − f

(1)
ξ ),

− 3[a2 + a3(p
2 + q2)](g

(1)
ξξ − f

(1)
ξξ ) = 0,

g
(1)
t − f

(1)
t + [a2 + a3(p

2 + q2)](g
(1)
ξξξ − f

(1)
ξξξ) = 0.

(4.15)

Assume f (1) = d1 exp(θ1), g
(1) = d2 exp(θ1), where d1, d2, d3 are arbitrary con-

stants, θ1 = k1ξ + l1η +m1ζ + n1t+ d3. Solving Eq. (4.15), we get{
l1 = pk1, m1 = qk1, d1 = −d2,
n1 = −[a2 + a3(p

2 + q2)]k31.
(4.16)

Therefore, the solution is obtained as

ψ = [ln(
1 + g(1)

1 + f (1)
)]x =

2k1d2 exp(θ1)

[1 + d1 exp(θ1)][1 + d2 exp(θ1)]
, (4.17)

where θ1 = k1ξ + l1η +m1ζ + n1
τω

Γ(1+ω) + d3.
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5. Bilinear Bäcklund transformations
We further study the Bäcklund transformation [16,25] of the equation with param-
eters based on the bell polynomial form of the equation deduced previously. The
Bäcklund transformation not only describes the integrability of the equation, but
is also a transformation that relates one solution to another.

According to Eq. (4.11), we set
P1(ϑ,ϖ) = ϑη − pϑξ,

P2(ϑ,ϖ) = ϑζ − qϑξ,

P3(ϑ,ϖ) = ϑt + [a2 + a3(p
2 + q2)](ϑξξξ + 3ϖξξϑξ + ϑ3ξ) = 0,

P4(ϑ,ϖ) = −3[a2 + a3(p
2 + q2)](ϑ2ξ +ϖξξ) = 0.

(5.1)

Assume that Eq. (5.1) has the following two different sets of solutions

ϑ = ln(g/f), ϖ = ln(gf); ϑ̃ = ln(g̃/f̃), ϖ̃ = ln(g̃f̃). (5.2)

Introducing

ϑ1 = ln(f̃/f), ϖ1 = ln(f̃f), ϑ2 = ln(g̃/g), ϖ2 = ln(g̃g),

ϑ3 = ln(g̃/f), ϖ3 = ln(g̃f), ϑ′ = ln(f̃/g), ϖ′ = ln(fg̃),
(5.3)

and considering the four conditions
P1(ϑ,ϖ)− P1(ϑ̃, ϖ̃) = 0,

P2(ϑ,ϖ)− P2(ϑ̃, ϖ̃) = 0,

P3(ϑ,ϖ)− P3(ϑ̃, ϖ̃) = 0,

P4(ϑ,ϖ)− P4(ϑ̃, ϖ̃) = 0.

(5.4)

From Eq. (5.2) and Eq. (5.3), some relationships are obtained as

ϑ1 − ϑ2 = ϑ̃− ϑ, 2ϑ3 − ϑ1 − ϑ2 = ϑ̃+ ϑ,

ϖ1 −ϖ2 + 2ϑ3 = ϖ̃ −ϖ, ϖ1 +ϖ2 = ϖ̃ −ϖ.
(5.5)

Based on Eq. (5.4), one has

P1(ϑ,ϖ)− P1(ϑ̃, ϖ̃) = (ϑ̃− ϑ)η − p(ϑ̃− ϑ)ξ

= (ϑ2 − ϑ1)η − p(ϑ2 − ϑ1)ξ.
(5.6)

The following two Bell polynomials can be obtained from Eq. (5.5)

Yη(ϑ1, ϖ1)− pYξ(ϑ1, ϖ1) = 0, Yη(ϑ2, ϖ2)− pYξ(ϑ2, ϖ2) = 0. (5.7)

Similarly, we have

P2(ϑ,ϖ)− P2(ϑ̃, ϖ̃) = (ϑ2 − ϑ1)ζ − p(ϑ2 − ϑ1)ξ, (5.8)

and
Yζ(ϑ1, ϖ1)− pYξ(ϑ1, ϖ1) = 0, Yζ(ϑ2, ϖ2)− pYξ(ϑ2, ϖ2) = 0. (5.9)
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Then, the following constraints were introduced as

(ϑ3)ξ = λ(t) exp(ϑ1 − ϑ2), (ϑ4)ξ = U(t) exp(ϑ2 − ϑ1). (5.10)

According to Eq. (5.9), we obtain

P4(ϑ,ϖ)− P4(ϑ̃, ϖ̃)

=− 3[a2 + a3(p
2 + q2)][(ϖ̃ξξ −ϖξξ) + (ϑ̃2ξ − ϑ2ξ)]

=− 3[a2 + a3(p
2 + q2)][(ϖ1 −ϖ2 + 2ϑ3)ξξ + (2ϑ3 − ϑ1 − ϑ2)ξ(ϑ2 − ϑ1)ξ]

=3[a2 + a3(p
2 + q2)][((ϖ2)ξξ + (ϑ22)ξξ)− ((ϖ1)ξξ + (ϑ21)ξξ)].

P3(ϑ,ϖ)− P3(ϑ̃, ϖ̃)

=(ϑ′−ϑ)t+[a2+a3(p
2+q2)][((ϑ′)ξξξ+3(ϖ′)ξξ(ϑ

′)ξ+(ϑ′)3ξ)−(ϑξξξ+3ϖξξϑξ+ϑ
3
ξ)]

=(ϑ2−ϑ1)t+[a2+a3(p
2+q2)][((ϑ2)ξξξ+3(ϖ2)ξξ(ϑ2)ξ+(ϑ2)

3
ξ)+3λ(t)U(t)(ϑ2)ξ]

− [a2 + a3(p
2 + q2)][((ϑ1)ξξξ + 3(ϖ1)ξξ(ϑ1)ξ + (ϑ1)

3
ξ) + 3λ(t)U(t)(ϑ1)ξ].

(5.11)
From Eq. (5.11), six Bell polynomials can be obtained as follows

3[a2 + a3(p
2 + q2)]Yξξ(ϑ1, ϖ1) = 0,

3[a2 + a3(p
2 + q2)]Yξξ(ϑ2, ϖ3) = 0,

Y(ϑ3) = λ(t) exp(ϑ1 − ϑ2),

Yt(ϑ1) + [a2 + a3(p
2 + q2)][Yξξξ(ϑ1, ϖ1) + 3λ(t)U(t)Yξ(ϑ1)] = 0,

Yt(ϑ2) + [a2 + a3(p
2 + q2)][Yξξξ(ϑ1, ϖ1) + 3λ(t)U(t)Yξ(ϑ1)] = 0,

Y(ϑ4) = U(t) exp(ϑ2 − ϑ1).

(5.12)

According to the Bäcklund transformation of the Bell polynomial form, the bilinear
Bäcklund transformation can be written as

(Dη − pDξ)(f̃ · f) = 0, (Dη − pDξ)(g̃ · g) = 0,

(Dζ − pDξ)(f̃ · f) = 0, (Dζ − pDξ)(g̃ · g) = 0,

− 3[a2 + a3(p
2 + q2)]D2

ξ(f̃ · f) = 0,

− 3[a2 + a3(p
2 + q2)]D2

ξ(g̃ · g) = 0,

Dξ(g̃ · f) = λ(t)(f̃ · g), Dξ(f̃ · g) = U(t)(g̃ · f).
(Dt + [a2 + a3(p

2 + q2)]D3
ξ + 3λ(t)U(t)Dξ)(f̃ · f) = 0,

(Dt + [a2 + a3(p
2 + q2)]D3

ξ + 3λ(t)U(t)Dξ)(g̃ · g) = 0.

(5.13)

6. Dust acoustic rogue waves
The existence and propagation characteristics of dust acoustic anomalies in frac-
tional model of magnetized dusty plasma are studied. In particular, we analyzed
the fractional effect, phase velocity and dust-cyclotron frequency on the propagation
characteristics of dust acoustic rogue waves.

We discover the existence of dust acoustic rogue waves in Figure.1 (a), it is
obvious that the peak of the wave is very sharp and the wave height is very high.



1854 J. Xu, Z. Zhang, H. Dong & H. Yang

0

5

10

15

−10

−5

0

5

10

−2

2

6

10

ξτ

ψ

(a)

0 5 10 15
−10

−5

0

5

10

ξ

τ

(b)

Figure 1. The profile of Eq. (4.17) with p = 1.6, k1 = 1.99, q = 0.1, λ = 0.8,Ω = 0.6, d1 = 0.5, d3 =
1, ω = 1, ζ = 0, η = 1.
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Figure 2. The profile of Eq. (4.17) with k1 = 1.99, p = 1.6, d1 = 0.5, d3 = 1, ω = 1, τ = ζ = 0.

To show this whole progress more delicately, the vertical view is exhibited in Figure.1
(b), and we found the duration of wave is very short. (between t = 0 and t = 2).

Dust acoustic rogue waves in space (x, y) at t = 0 is shown in Figure.2 (a), and
the vertical view is exhibited in Figure.2 (b). Dust acoustic rogue waves in space
(x, z) at t = 0 is shown in Figure.3 (a), and Figure.3 (b) is the vertical view. Dust
acoustic rouge waves suddenly appear in space-time, and its amplitude is several
times that of the surrounding waves. In this case, the energy is confined to a very
small space and time range before reaching the formation of dust acoustic rogue
waves. These characteristics more powerfully explain the existence of dust acoustic
rogue waves.

Note that Figures 1, 2 and 3 are all obtained when the time fractional order
ω = 1, that is, we only analyzed the phenomenon of dust acoustic rogue waves in
the integer order equation. To intuitively understand the propagation of acoustic
rogue waves, the pictures in Figures 1, 2 and 3 show the three-dimensional pattern
of rogue waves in the (ξ, τ, ψ) coordinate system. It can be seen from the three sets
of figures that the amplitude of acoustic rogue waves decreases with the increase of
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Figure 4. The panels show the evolution of the dust acoustic rogue waves.The parameters are k1 =
1.99, p = 1.6, q = 0.1, λ = 0.8,Ω = 0.6, d1 = 0.5, d3 = 1, η = 1 and ζ = 0.



1856 J. Xu, Z. Zhang, H. Dong & H. Yang

propagation time. The reason for this phenomenon is that a1 < 0 in the dissipation
term a1ϕ

2
1
∂ϕ1

∂ξ means that the plasma system continuously releases energy to the
outside world, so the amplitude of acoustic rogue waves decreases. The existence
of dust acoustic rogue waves in the fractional model is further discussed, and the
influence of different time fractional orders on dust acoustic rogue waves in the
dusty plasma is discussed.

Figure.4 (a) and Figure.4 (c) are the figures of dust acoustic rogue waves when
ω = 0.2 and ω = 0.4, respectively. Figure.4 (b) and Figure.4 (c) are vertical
views. Compared with Figure.1 (w = 1), we find that ω can significantly change
the amplitude, time point and spatial position of rogue waves. Further study on the
effect of ω on dust acoustic rogue waves in Figure.5 (a)-(d), we continue to analyze
the figures of dust acoustic rogue waves at ω = 0.6 and ω = 0.8.
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Figure 5. The panels show the evolution of the dust acoustic rogue waves. The parameters are
k1 = 1.99, p = 1.6, q = 0.1, λ = 0.8,Ω = 0.6, d1 = 0.5, d3 = 1, η = 1 and ζ = 0.

We observe that when ω = 0.6 and ω = 0.8., the amplitude, time point and
spatial position of rogue waves are very close to those when ω = 1. In particular,
ω = 0.8, the propagation characteristics of dust acoustic rogue waves are basically
consistent with those shown in Figure. 1.

This result is consistent with previous inferences [25]. Therefore, we obtain for
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the first time the result that the propagation characteristics of dust acoustic rogue
waves in the time fractional mZK equation will appear in the fractional model
similar to the integer model when the fractional time order is close to 1, that is,
when it is close to the integer order.

It is obvious from the Figure.6 that the phase velocity λ and the dust-cyclotron
frequency Ω have an effect on the propagation of dust acoustic rogue waves. Ac-
cording to Figure.6 (a), in a certain range of values, the amplitude of dust acoustic
rogue waves increases first and then decreases with the increase of λ value, and
reaches the maximum value when λ = 0.8. Similarly, it can be seen from Figure.6
(b) that with the increase of Ω, the amplitude of dust acoustic rogue first increases
and then decreases, and reaches the maximum when Ω = 0.6.
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Figure 6. The profile of Eq. (4.17) by choosing k1 = 1.9, p = 1.5, q = 0.5, d1 = 1, d3 = 1, ζ = 0.ω =
1, ξ = 9, τ = η = 1,

7. Conclusion

In conclusion, we obtain the (3+1)-dimensional integer order mZK equation, and
further derive the (3+1)-dimensional TF-mZK equation with the semi-inverse method
and fractional variational principle. Compared with the low dimensional model, the
three-dimensional model can better describe the wave propagation in space. Com-
pared with the integer-order model, the fractional-order model is more general, so
the derived TF-mZK equation can better describe the wave propagation in dusty
plasma.

Furthermore, with the help of fractional transformations and Bell polynomials,
the Bäcklund transformation and exact solution of (3+1)-dimensional TF-mZK
equation are obtained. The rouge waves in dust acoustic waves is found, and the
influence of fractional order, phase velocity and dust-cyclotron frequency on the
propagation characteristics of dust acoustic strange waves is analyzed. We found
that the fractional order, phase velocity and dust-cyclotron frequency can all change
the amplitude of dust acoustic strange waves.
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