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Abstract In this paper, by using the Schauder fixed point theorem and Ba-
nach contraction mapping principle, the existence and uniqueness of solutions
for a coupled system of Caputo-Hadamard fractional differential equations
with p-Laplacian operator are established. As applications, two examples are
given to illustrate the main results. The interesting point of this article is
that the boundary value conditions contain integrals, and the approximate
solutions are given by using the iterative method.
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1. Introduction
Recently, the integer order differential equations have been widely used in physics,
chemistry, biology, engineering and other fields [4, 6, 15, 20, 25]. However, they also
have some limitations in describing certain practical problems, such as the descrip-
tion of capacitance and inductance in physical, the melting of polymer materials
in chemistry and so on. This has attracted more and more scholars to research
fractional differential equations [7, 12, 13, 22]. Compared with single fractional dif-
ferential equations, the conditions of coupled system are more complex and the
research results are relatively few, see [1, 3] and their references. Therefore, it is
meaningful to study the coupled system of fractional differential equations.

The Hadamard fractional derivative was introduced by Hadamard in 1892, its
integral kernel contains a logarithm function of arbitrary exponent. In [1], Aljoudi et
al. studied the following coupled system of Caputo-Hadamard fractional differential
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equations:

(CDα + λCDα−1)u(t) = f
(
t, u(t), v(t),C Dζv(t)

)
, 1 < α ≤ 2, 0 < ζ ≤ 1,

(CDβ + λCDβ−1)u(t) = f
(
t, u(t),C Dζ̄u(t), v(t)

)
, 1 < β ≤ 2, 0 < ζ̄ ≤ 1,

u(1) = 0, a1I
γ1v(η1) + b1u(T ) = K1, γ1 > 0, 1 < γ1 < T,

v(1) = 0, a2I
γ2u(η2) + b2v(T ) = K2, γ2 > 0, 1 < γ2 < T,

where λ > 0, CD(·) and I(·) are the Caputo-Hadamard fractional derivative and
Hadamard fractional integral, f, g : [1, e]× R3 → R. The uniqueness and existence
results are established by using Leary-Schauder alternative and contraction mapping
principle.

As is known to all, the differential equations with p-Laplacian operate contain the
general differential equations, moreover, it also has deep engineering and physical
significance. For example, the study of the turbulent flow in a porous media, non-
newtonian fluids and the spontaneous combustion theory of chemically active gases
all involve p-Laplacian differential equations, see [8, 16,23,24] and their references.

In [8], relying on the extension of Mawhin’s continuation theorem due to Ge,
Hu et al. considered the existence of solutions for a coupled system of fractional
p-Laplacian equations:

Dβ
0+ϕp

(
Dα

0+u(t)
)
= f

(
t, v(t), Dδ

0+v(t)
)
, t ∈ (0, 1),

Dγ
0+ϕp

(
Dδ

0+v(t)
)
= g

(
t, u(t), Dα

0+u(t)
)
, t ∈ (0, 1),

Dα
0+u(0) = Dα

0+u(1) = Dδ
0+v(0) = Dδ

0+v(1) = 0,

where D
(·)
0+ are the standard Caputo fractional derivatives. 0 < α, β, δ, γ ≤ 1,

1 < α + β < 2, 1 < γ + δ < 2, and f, g : [0, 1] × R2 → R is continuous. They
obtained sufficient conditions for the existence of at least one positive solutions.

In the literature mentioned above, the authors only obtained the existence of so-
lutions from the theoretical aspect, yet, the shape of the solutions is rarely involved,
see [2,9,17,19]. Therefore, it is quite necessary to give the numerical simulation and
existence for positive solutions to fractional differential equations with p-Laplacian
operator.

Motivated by above-mentioned ideas, we investigate the following Caputo-Hada-
mard fractional differential equations with p-Laplacian operator:

C
HDθ1

1+ϕp

(
C
HDξ1

1+u(t)
)
= f (t, u(t), v(t)) , 1 < t < e,

C
HDθ2

1+ϕp

(
C
HDξ2

1+v(t)
)
= g (t, v(t), u(t)) , 1 < t < e,

u(1) = ϕp

(
C
HDξ1

1+u(1)
)
= ϕp

(
C
HDξ1

1+u(1)
)′

= 0,

v(1) = ϕq

(
C
HDξ2

1+v(1)
)
= ϕq

(
C
HDξ2

1+v(1)
)′

= 0,

u(e) =

∫ e

1

x(s)u(s)ds, v(e) =

∫ e

1

y(s)v(s)ds,

(1.1)

where 1 < θ1, θ2, ξ1, ξ2 ≤ 2, ϕp(s) = |s|p−2s, 1 < p ≤ 2, ϕ−1
p = ϕq, 1

p + 1
q =

1. f, g : [1, e] × R3
+ → R+ are given functions, x(s), y(s) are integrable on [1, e],
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C
HD

(·)
1+ are the standard Caputo-Hadamard fractional derivatives. The existence and

uniqueness of solutions are established by using Schauder fixed point theorem and
Banach contraction principle. In this paper, we obtain some new conclusions, and
use the iterative method to simulate the examples, which further proves our results.

2. Preliminary
In this section, some basic definitions and lemmas are introduced to help us under-
stand the main results and proofs in Section 3 and 4.

Definition 2.1 ( [11]). The Hadamard fractional integral of order α > 0 for a
function y : [1,+∞) → R is defined as

HIαy(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1

y(s)
ds

s

provided the integral exists.

Definition 2.2 ( [11]). The Hadamard fractional derivative of order α > 0 of a
function y : [1,+∞) → R is given by

HDαy(t) =
1

Γ(n− α)

(
t
d

dt

)n ∫ t

1

(
log

t

s

)n−α−1

y(s)
ds

s
,

where n− 1 < α < n, n = [α] + 1, [α] is the integer of α and log(·) = loge(·).

Lemma 2.1 ( [18]). Let n ∈ N, n− 1 < α < n, δ = t d
dt and y ∈ ACn

δ [a, T ], where

ACn
δ [a, T ] =

{
y : [a, T ] → R : δn−1y(t) ∈ AC[a, T ]

}
.

(i) if α ̸= n, the Caputo-Hadamard fractional derivative of order α > 0 is defined
as

C
HDα

a+y(t) =
1

Γ(n− α)

∫ t

a

(
log

t

s

)n−α−1

δny(s)
ds

s
= HIn−αδny(t).

(ii) if α = n, the Caputo-Hadamard fractional derivative of order n is defined as
C
HDn

a+y(t) = δny(t).

Lemma 2.2 ( [10]). Let u ∈ Cn
δ ([a, T ],R). Then

HIαa+(CHDα
a+)u(t) = u(t)−

n−1∑
j=0

cj

(
ln

t

a

)j

,

where Cn
δ ([a, T ],R) =

{
u : [a, T ] → R; δn−1u ∈ C([a, T ],R)

}
, cj ∈ R.

Lemma 2.3 ( [14]). p-Laplacian operator has following basic properties:
(1) If 1 < p < 2, xy > 0, and |x|, |y| ≥ m > 0, then |ϕp(x) − ϕp(y)| ≤

(p− 1)mp−2|x− y|.
(2) If p ≥ 2, |x|, |y| ≤ N , then |ϕp(x)− ϕp(y)| ≤ (p− 1)Np−2|x− y|.

Lemma 2.4 ( [5], Schauder’s fixed point theorem). Let U is a nonempty convex
subset of a Banach space X. Let S : Ω → Ω be a continuous mapping such that Ω
is a relatively compact subset of X. Then, S has at least one fixed point in Ω.
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Lemma 2.5 ( [5], Banach contraction mapping principle). Assume (X, ρ) be a
nonempty complete metric space, F ⊆ X is a closed set, T : F → F be a mapping.
If there is a constant k ∈ [0, 1) such that

ρ (Tx, Ty) ≤ kρ(x, y).

Then T has a unique fixed point x∗ and satisfies Tx∗ = x∗, T is called the contraction
mapping.

Lemma 2.6. Let h1, h2 ∈ ACn
δ ([1, e], R), the p-Laplacian fractional differential

equation system

C
HDθ1

1+ϕp

(
C
HDξ1

1+u(t)
)
= h1(t), 1 < t < e, 1 < θ1, ξ1 ≤ 2,

C
HDθ2

1+ϕp

(
C
HDξ2

1+v(t)
)
= h2(t), 1 < t < e, 1 < θ2, ξ2 ≤ 2,

u(1) = ϕp

(
C
HDξ1

1+u(1)
)
= ϕp

(
C
HDξ1

1+u(1)
)′

= 0,

v(1) = ϕq

(
C
HDξ2

1+v(1)
)
= ϕq

(
C
HDξ2

1+v(1)
)′

= 0,

u(e) =

∫ e

1

x(s)u(s)ds, v(e) =

∫ e

1

y(s)v(s)ds

has a unique solution

u(t) =
1

Γ(ξ1)

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
HIθ1h1(τ)

) ds
s

+
ln t

Γ(ξ1) (1−M1)

×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

ϕq

(
1

Γ(θ1)

∫ τ

1

(
ln

τ

r

)θ1−1

h1(r)
dr

r

)
dτ

τ
ds

−
∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
HIθ1h1(e)

) ds
s

}
, (2.1)

and

v(t) =
1

Γ(ξ2)

∫ t

1

(
ln

t

s

)ξ2−1

ϕq

(
HIθ2h2(τ)

) ds
s

+
ln t

Γ(ξ2) (1−M2)

×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ2−1

ϕq

(
1

Γ(θ2)

∫ τ

1

(
log

τ

r

)θ2−1

h2(r)
dr

r

)
dτ

τ
ds

−
∫ t

1

(
ln

t

s

)ξ2−1

ϕq

(
HIθ2h2(e)

) ds
s

}
, (2.2)

where

M1 =

∫ e

1

x(s) ln(s)ds < 1,M2 =

∫ e

1

y(s) ln(s)ds < 1.

Proof. According to Lemma 2.2, we can obtain

ϕp

(
C
HDξ1

1+u(t)
)
= HIθ1h1(t) + cu1 + cu2 ln t, (2.3)

and
ϕp

(
C
HDξ2

1+v(t)
)
= HIθ2h2(t) + cv1 + cv2 ln t. (2.4)
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By the boundary conditions

ϕp

(
C
HDξ1

1+u(1)
)
= ϕq

(
C
HDξ2

1+u(1)
)′

= 0,

and
ϕp

(
C
HDξ2

1+v(1)
)
= ϕq

(
C
HDξ2

1+v(1)
)′

= 0,

we have cu1 = cu2 = cv1 = cv2 = 0.
Then

C
HDξ1

1+u(t) = ϕq

(
HIθ1h1(t)

)
,

and
C
HDξ2

1+v(t) = ϕq

(
HIθ2h2(t)

)
.

In a similar way, the equations (2.3) and (2.4) can be written as

u(t) = HIξ1ϕq

(
HIθ1h1(t)

)
+ cu3 + cu4 ln t, (2.5)

and
v(t) = HIξ2ϕq

(
HIθ2h2(t)

)
+ cv3 + cv4 ln t. (2.6)

Since u(1) = v(1) = 0, then cu3, cv3 = 0.
Consider the boundary conditions

u(e) =

∫ e

1

x(s)u(s)ds, v(e) =

∫ e

1

y(s)v(s)ds.

We can obtain that

u(e) = HIξ1ϕq

(
HIθ1h1(e)

)
+ cu4 =

∫ e

1

x(s)u(s)ds

=

∫ e

1

x(s)
(
HIξ1ϕq

(
HIθ1h1(s)

)
+ cu4 ln s

)
ds,

and

v(e) = HIξ2ϕq

(
HIθ2h2(e)

)
+ cv4 =

∫ e

1

y(s)v(s)ds

=

∫ e

1

y(s)
(
HIξ2ϕq

(
HIθ2h2(s)

)
+ cv4 ln s

)
ds.

Therefore

cu4 =
1

Γ(ξ1) (1−M1)
×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

ϕq

(
HIθ1h1(τ)

) dτ
τ
ds

−
∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
HIθ1h1(e)

) ds
s

}
, (2.7)

and

cv4 =
1

Γ(ξ2) (1−M2)
×
{∫ e

1

y(s)

∫ s

1

(
ln

s

τ

)ξ2−1

ϕq

(
HIθ2h2(τ)

) dτ
τ
ds

−
∫ t

1

(
ln

t

s

)ξ2−1

ϕq

(
HIθ2h2(e)

) ds
s

}
. (2.8)

Substituting (2.7), (2.8) into (2.5), (2.6), we get (2.1) and (2.2).



1890 W. Sun, Y. Su & X. Han

3. Main results
In this section, we set a operator for equation (1.1), and then give some sufficient
conditions for the existence and uniqueness of solutions. In particular, two examples
are simulated by using the iterative method.

Let X = {u : u ∈ C([1, e],R)} , Y = {v : v ∈ C([1, e],R)}, be the spaces with
the norm ∥u∥X = max

t∈[0,1]
|u(t)|, ∥v∥Y = max

t∈[0,1]
|v(t)|. Define the norm ∥(u, v)∥X×Y =

∥u∥X + ∥v∥Y for any (u, v) ∈ X × Y . Obviously, (X × Y, ∥ · ∥) is a Banach space.
Define the operator A : X × Y → X × Y as follows:

A(u, v)(t) = (A1u(t), A2v(t)),

where

A1u(t) =
1

Γ(ξ1)

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
HIθ1f(τ, u(τ), v(τ))

) ds
s

+
ln t

Γ(ξ1) (1−M1)

×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

ϕq

(
1

Γ(θ1)

∫ τ

1

(
ln

τ

r

)θ1−1

f(r, u(r), v(r))
dr

r

)
dτ

τ
ds−

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
HIθ1g(e)

) ds
s

}
,

and

A2v(t) =
1

Γ(ξ2)

∫ t

1

(
ln

t

s

)ξ2−1

ϕq

(
HIθ2g(τ, u(τ), v(τ))

) ds
s

+
ln t

Γ(ξ2) (1−M2)

×
{∫ e

1

y(s)

∫ s

1

(
ln

s

τ

)ξ2−1

ϕq

(
1

Γ(θ2)

∫ τ

1

(
ln

τ

r

)θ2−1

g(r, u(r), v(r))
dr

r

)
dτ

τ
ds−

∫ t

1

(
ln

t

s

)ξ2−1

ϕq

(
HIθ2g(e)

) ds
s

}
.

In order to establish main results, we need the following assumptions.
(H1) There exist two positive constants L1, L2 such that

L1 = max
t∈[1,e]

|f (t, u(t), v(t))| ,

L2 = max
t∈[1,e]

|g (t, v(t), u(t))| .

(H2) There exist positive functions φ1(t), φ2(t) such that

|f(t, x, y, z)− f(t, x′, y′, z′)| ≤ φ1(t) (|x− x′|+ |y − y′|+ |z − z′|) ,
|g(t, x, y, z)− g(t, x′, y′, z′)| ≤ φ2(t) (|x− x′|+ |y − y′|+ |z − z′|) ,

for all t ∈ [1, e] and u, x, y, z, u′, x′, y′, z′ ∈ R. Let α = max
t∈[1,e]

|f(t, 0, 0)|, β =

max
t∈[1,e]

|g(t, 0, 0)|.

Theorem 3.1. Assume f, g : [1, e] × R3 → R are continuous functions, and (H1)
hold, the coupled system of p-Laplacian fractional differential equation (1.1) has at
least one solution.
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Proof. Let

Ωω = {(u, v) : (u, v) ∈ X × Y, ∥ (u, v) ∥X×Y ≤ ω} ,

ω = ω1 + ω2, where

ω1 =
2−M1 +

∫ e

1
x(s)ds

Γ(ξ1 + 1) (1−M1)
ϕq

(
L1

Γ(θ1 + 1)

)
,

and
ω2 =

2−M2 +
∫ e

1
y(s)ds

Γ(ξ2 + 1) (1−M2)
ϕq

(
L2

Γ(θ2 + 1)

)
.

Since f, g are continuous functions, then A1, A2 are also continuous, it implies
that A is continuous. The proof has two steps.

1). A : Ωω → Ωω is uniformly bounded.
According to (H2), for any (u, v) ∈ Ωω, we have

∥A1u(t)∥X

≤ 1

Γ(ξ1)

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
L1

Γ(θ1)

∫ s

1

(
ln

s

τ

)θ1−1 dτ

τ

)
ds

s
+

ln t

Γ(ξ1) (1−M1)

×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

ϕq

(
L1

Γ(θ1)

∫ τ

1

(
ln

τ

r

)θ1−1 dr

r

)
dτ

τ
ds

+

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
L1

Γ(θ1)

∫ e

1

(
ln

e

τ

)θ1−1 dτ

τ

)
ds

s

}
≤ 1

Γ(ξ1)

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
L1

Γ(θ1 + 1)

)
ds

s

+
ln t

Γ(ξ1) (1−M1)
×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

ϕq

(
L1

Γ(θ1 + 1)

)
dτ

τ
ds

+

∫ t

1

(
ln

t

s

)ξ1−1

ϕq

(
L1

Γ(θ1 + 1)

)
ds

s

}

≤ 1

Γ(ξ1 + 1)
ϕq

(
L1

Γ(θ1 + 1)

)
+

∫ e

1
x(s)ϕq

(
L1

Γ(θ1+1)

)
ds+ ϕq

(
L1

Γ(θ1+1)

)
Γ(ξ1 + 1) (1−M1)

≤
2−M1 +

∫ e

1
x(s)ds

Γ(ξ1 + 1) (1−M1)
ϕq

(
L1

Γ(θ1 + 1)

)
= ω1.

In a similar way, we can get that

∥A2v(t)∥Y ≤
2−M2 +

∫ e

1
y(s)ds

Γ(ξ2 + 1) (1−M2)
ϕq

(
L2

Γ(θ2 + 1)

)
= ω2.

Hence
∥A(u, v)(t)∥X×Y = ∥A1u(t)∥X + ∥A2v(t)∥Y ≤ ω,

which implies that A : Ωω → Ωω is uniformly bounded.
2). A is equicontinuous.
Let t1, t2 ∈ [1, e] and t1 < t2, we have

|A1u(t2)−A1u(t1)|
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≤ 1

Γ(ξ1)

∫ t1

1

((
ln

t2
s

)ξ1−1

−
(
ln

t1
s

)ξ1−1
)
ϕq

(
L1

Γ(θ1 + 1)

)
ds

s

+
1

Γ(ξ1)

∫ t2

t1

(
ln

t2
s

)ξ1−1

ϕq

(
L1

Γ(θ1 + 1)

)
ds

s

+
ln t2 − ln t1

Γ(ξ1) (1−M1)
×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

ϕq

(
L1

Γ(θ1 + 1)

)
dτ

τ
ds

+

∫ t1

1

((
ln

t2
s

)ξ1−1

−
(
ln

t1
s

)ξ1−1
)
ϕq

(
L1

Γ(θ1 + 1)

)
ds

s

+

∫ t2

t1

(
ln

t2
s

)ξ1−1

ϕq

(
L1

Γ(θ1 + 1)

)
ds

s

}
.

Then, if t2 → t1, we have |A1u(t2)−A1u(t1)| → 0.
Similarly, if t2 → t1, we can obtain that |A2v(t2)−A2v(t1)| → 0, it shows that

A is equicontinuous. By Arzela-Ascoli’s theorem, the operator A is compact on Ωω.
Hence, all the conditions of Lemma 2.4 are satisfied, the coupled system of

p-Laplacian fractional differential equation (1.1) has at least one solution.

Example 3.1. Consider the following coupled system of p-Laplacian fractional
differential equation

C
HD

7
4

1+ϕp

(
C
HD

3
2

1+u(t)
)
=

t2

20π

(
1 +

1

1 + u(t)
+

1

1 + v(t)

)
, 1 ≤ t ≤ e,

C
HD

5
3

1+ϕp

(
C
HD

4
3

1+v(t)
)
=

√
4t

3

(
2 +

5

1 + u(t) + v(t)

)
, 1 ≤ t ≤ e,

u(1) = ϕp

(
C
HD

3
2

1+u(1)
)
= ϕp

(
C
HD

3
2

1+u(1)
)′

= 0,

v(1) = ϕq

(
C
HD

4
3

1+v(1)
)
= ϕq

(
C
HD

4
3

1+v(1)
)′

= 0,

u(e) =

∫ e

1

x(s)u(s)ds, v(e) =

∫ e

1

y(s)v(s)ds.

(3.1)

Let θ1 = 7
4 , θ2 = 5

3 , ξ1 = 3
2 , ξ2 = 4

3 , x(s) = 1
2 , y(s) = 1

3 , p = q = 2,

f (t, v(t), u(t)) =
t2

20π

(
1 +

1

1 + u(t)
+

1

1 + v(t)

)
≤ 3e2

20π
,

and
g (t, v(t), u(t)) =

√
4t

3

(
2 +

5

1 + u(t) + v(t)

)
≤ 7

√
4e

3
.

We get that L1 = 3e2

20π , L2 = 7
√
4e
3 , M1 = 1

2

∫ e

1
log(s)ds = 1

2 , M2 = 1
3

∫ e

1
log(s)ds =

1
3 , ω1 ≈ 0.7786, ω2 ≈ 14.427, ω ≈ 15.2056.

According to Theorem 3.1, the coupled system of p-Laplacian fractional differ-
ential equation (3.1) at least has one solution.

Now, we use the iterative method that proposed by Wei et al in [21] to simulate
this process and give the iterative error.

Let
ν(t) = f (t, u(t), v(t)) , ν0(t) = f(t, 0, 0) =

3t2

20π
,
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and
µ(t) = g (t, v(t), u(t)) , µ0(t) = g(t, 0, 0) =

7
√
4t

3
.

By Lemma 2.6, we have

u(t) =
1

Γ( 32 )

∫ t

1

(
ln

t

s

) 1
2

ϕq

(
HI

7
4 ν(τ)

) ds

s
+

ln t
1
2 × Γ( 32 )

×
{
1

2

∫ e

1

∫ s

1

(
ln

s

τ

) 1
2

ϕq

(
1

Γ( 74 )

∫ τ

1

(
ln

τ

r

) 3
4

ν(r)
dr

r

)
dτ

τ
ds

−
∫ t

1

(
ln

t

s

) 1
2

ϕq

(
1

Γ( 74 )

∫ e

1

(
ln

e

τ

) 3
4

ν(τ)
dτ

τ

)
ds

s

}
,

and

v(t) =
1

Γ( 43 )

∫ t

1

(
ln

t

s

) 1
3

ϕq

(
HI

5
3µ(τ)

) ds

s
+

ln t
2
3 × Γ( 43 )

×
{
1

3

∫ e

1

∫ s

1

(
ln

s

τ

) 1
3

ϕq

(
1

Γ( 53 )

∫ τ

1

(
ln

τ

r

) 2
3

µ(r)
dr

r

)
dτ

τ
ds

−
∫ t

1

(
ln

t

s

) 1
3

ϕq

(
1

Γ( 53 )

∫ e

1

(
ln

e

τ

) 2
3

µ(τ)
dτ

τ

)
ds

s

}
.

The iteration formulas are

νk+1(t) = f(t, uk(t), vk(t)) =
t2

20π

(
1 +

1

1 + uk(t)
+

1

1 + vk(t)

)
,

and
µk+1(t) = g(t, vk(t), uk(t)) =

√
4t

3

(
2 +

5

1 + uk(t) + vk(t)

)
.

The iterative process and iterative error values is given in Figure 1 and Table 1.

Table 1. iterative error values E(uk) and E(vk)

k 2 5 8 12 15
E(uk) 5.7776e-02 2.0016e-05 5.8581e-08 2.3974e-12 1.7764e-15
E(vk) 2.8563e-01 1.4098e-04 2.8096e-07 7.8142e-12 9.7700e-15

By Figure 1 and Table 1, we find the iterative process of uk and vk are conver-
gent. Thus, the coupled system of p-Laplacian fractional differential equation (3.1)
at least have one solution.

Theorem 3.2. Assume f, g : [1, e]× R3 → R are continuous functions, (H2) hold,
and there exists a constant ρ such that ρ = ρ1 + ρ2 < 1, where

ρ1 =
(q − 1)Nq−2

1 φ1 ×
{∫ e

1
x(s)ds+ 2−M1

}
Γ(ξ1 + 1)Γ(θ1 + 1) (1−M1)

,

and

ρ2 =
(q − 1)Nq−2

2 φ2 ×
{∫ e

1
y(s)ds+ 2−M2

}
Γ(ξ2 + 1)Γ(θ2 + 1) (1−M2)

.
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Figure 1. iterative process uk and vk

the coupled system of p-Laplacian fractional differential equation (1.1) has a unique
solution.

Proof. Let

ΩR = {(u, v) : (u, v) ∈ X × Y, ∥ (u, v) ∥X×Y ≤ R} ,
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where

Rq−2 ≤ 2max

{
(1−M1)Γ(ξ1 + 1)Γq−1(θ1 + 1)

Kq−1
1

(
2−M1 +

∫ e

1
x(s)ds

) ,
(1−M2)Γ(ξ2 + 1)Γq−1(θ2 + 1)

Kq−1
2

(
2−M2 +

∫ e

1
y(s)ds

) }
.

The proof has two steps.
1). AΩR ⊆ ΩR.
By condition (H2), for any (u, v) ∈ ΩR, there are constants K1,K2 such that

|f (t, u(t), v(t)) | ≤ |f (t, u(t), v(t))− f(t, 0, 0)|+ |f(t, 0, 0)|
≤φ1 (|u(t)|+ |v(t)|) + α

≤φ1R+ α ≤ K1R,

and

|g (t, v(t), u(t)) | ≤ |g (t, v(t), u(t))− g(t, 0, 0)|+ |g(t, 0, 0)|
≤φ2 (|v(t)|+ |u(t)|) + β

≤φ2R+ β ≤ K2R.

Consequently, we can obtain that

|A1u(t)| ≤
2−M1 +

∫ e

1
x(s)ds

Γ(ξ1 + 1) (1−M1)
ϕq

(
K1R

Γ(θ1 + 1)

)
,

which shows that

∥A1u(t)∥X ≤
2−M1 +

∫ e

1
x(s)ds

Γ(ξ1 + 1) (1−M1)
ϕq

(
K1R

Γ(θ1 + 1)

)
≤ R

2
.

Furthermore

∥A2v(t)∥Y ≤
2−M2 +

∫ e

1
y(s)ds

Γ(ξ2 + 1) (1−M2)
ϕq

(
K2R

Γ(θ2 + 1)

)
≤ R

2
.

Hence
∥A(u, v)(t)∥X×Y = ∥A1u(t)∥X + ∥A2v(t)∥Y ≤ R,

it implies that AΩR ⊆ ΩR.
2). A is a contraction mapping.
Let

N1 ≥
∣∣∣∣ 1

Γ(θ1)

∫ e

1

(
ln

e

s

)θ1−1

f(t, u(t), v(t))
ds

s

∣∣∣∣ ,
N2 ≥

∣∣∣∣ 1

Γ(θ2)

∫ e

1

(
ln

e

s

)θ2−1

g(t, v(t), u(t))
ds

s

∣∣∣∣ .
Since 1 < p ≤ 2, then q ≥ 2. By Lemma 2.3 and (H2), for any (u, v) ∈ ΩR,

t ∈ [1, e], we have

∥A1(u, v)(t)−A1(u
′, v′)(t))∥X

≤ 1

Γ(ξ1)

∫ t

1

(
ln

t

s

)ξ1−1 ∣∣∣∣ϕq

(
1

Γ(θ1)

∫ s

1

(
ln

s

τ

)θ1−1

f (τ, u(τ), v(τ))
dτ

τ

)
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− ϕq

(
1

Γ(θ1)

∫ s

1

(
ln

s

τ

)θ1−1

f (τ, u′(τ), v′(τ))
dτ

τ

)∣∣∣∣ dss +
ln t

Γ(ξ1) (1−M1)

×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1
∣∣∣∣ϕq

(
1

Γ(θ1)

∫ τ

1

(
ln

τ

r

)θ1−1

f (r, u(r), v(r))
dr

r

)
− ϕq

(
1

Γ(θ1)

∫ τ

1

(
ln

τ

r

)θ1−1

f (r, u′(r), v′(r))
dr

r

)∣∣∣∣ dττ ds

+

∫ t

1

(
ln

t

s

)ξ1−1 ∣∣∣∣ϕq

(
1

Γ(θ1)

∫ e

1

(
ln

e

τ

)θ1−1

f (τ, u(τ), v(τ))
dτ

τ

)
− ϕq

(
1

Γ(θ1)

∫ e

1

(
ln

e

τ

)θ1−1

f (τ, u′(τ), v′(τ))
dτ

τ

)∣∣∣∣ dss
}

≤ (q − 1)Nq−2
1

Γ(ξ1)Γ(θ1 + 1)

∫ t

1

(
ln

t

s

)ξ1−1

φ1 (|u− u′|+ |v − v′|) ds
s

+
(q − 1)Nq−2

1

Γ(ξ1)Γ(θ1 + 1) (1−M1)
×
{∫ e

1

x(s)

∫ s

1

(
ln

s

τ

)ξ1−1

φ1(|u− u′|

+ |v − v′|)dτ
τ
ds+

∫ t

1

(
ln

t

s

)ξ1−1

φ1 (|u− u′|+ |v − v′|) ds
s

}
≤ (q − 1)Nq−2

1 φ1∥(u, v)− (u′, v′)∥
Γ(ξ1 + 1)Γ(θ1 + 1)

+
(q − 1)Nq−2

1 φ1∥(u, v)− (u′, v′)∥ ×
{∫ e

1
x(s)ds+ 1

}
Γ(ξ1 + 1)Γ(θ1 + 1) (1−M1)

=
(q − 1)Nq−2

1 φ1 ×
{∫ e

1
x(s)ds+ 2−M1

}
Γ(ξ1 + 1)Γ(θ1 + 1) (1−M1)

∥(u, v)− (u′, v′)∥

=ρ1∥(u, v)− (u′, v′)∥.

In a similar process, we get that

∥A2(u, v)(t)−A2(u
′, v′)(t))∥Y

≤
(q − 1)Nq−2

2 φ2 ×
{∫ e

1
y(s)ds+ 2−M2

}
Γ(ξ2 + 1)Γ(θ2 + 1) (1−M2)

∥(u, v)− (u′, v′)∥

=ρ2∥(u, v)− (u′, v′)∥.

Then

∥A(u, v)(t)−A(u′, v′)(t)∥ ≤ρ1∥(u, v)− (u′, v′)∥+ ρ2∥(u, v)− (u′, v′)∥
=ρ∥(u, v)− (u′, v′)∥.

Hence A is a contraction mapping. By using the Banach contraction principle,
the coupled system of p-Laplacian fractional differential equation (1.1) has a unique
solution.

Example 3.2. Consider the following coupled system of p-Laplacian fractional
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differential equation

C
HD

5
4

1+ϕp

(
C
HD

3
2

1+u(t)
)
=

t2

40
(1 + u(t) + v(t)), 1 ≤ t ≤ e,

C
HD

3
2

1+ϕp

(
C
HD

11
10

1+v(t)
)
=

√
t

10
(1 + u(t) + v(t)), 1 ≤ t ≤ e,

u(1) = ϕp

(
C
HD

3
2

1+u(1)
)
= ϕp

(
C
HD

3
2

1+u(1)
)′

= 0,

v(1) = ϕq

(
C
HD

11
10

1+v(1)
)
= ϕq

(
C
HD

11
10

1+v(1)
)′

= 0,

u(e) =

∫ e

1

x(s)u(s)ds, v(e) =

∫ e

1

y(s)v(s)ds.

(3.2)

Where θ1 = 5
4 , θ2 = 3

2 , ξ1 = 3
2 , ξ2 = 11

10 , x(s) = 1
50 , y(s) = 1

100 , p = q = 2,
M1 = 1

50 , M2 = 1
100 .

We have
|f(t, u, v)− f(t, u′, v′)| ≤ e2

40
(|u− u′|+ |v − v′|) ,

and
|g(t, u, v)− g(t, u′, v′)| ≤

√
e

10
(|u− u′|+ |v − v′|) ,

φ1 = e2

40 , φ2 =
√
e

10 , ρ1 ≈ 0.2521, ρ2 ≈ 0.2403, ρ ≈ 0.4915 < 1.
Thus, all the conditions of Theorem 3.2 are satisfied, it show that the coupled

system of p-Laplacian fractional differential equation (3.2) has a unique solution.
Now, we use the iterative method to simulate the example, and give the iterative

process and iterative error.
Let

ν(t) = f (t, u(t), v(t)) , ν0(t) = f(t, 0, 0) =
t2

40
,

and
µ(t) = g (t, v(t), u(t)) , µ0(t) = g(t, 0, 0) =

√
t

10
.

By Lemma 2.6, we have

u(t) =
1

Γ( 32 )

∫ t

1

(
ln

t

s

) 1
2

ϕq

(
HI

5
4 ν(τ)

) ds

s
+

ln t
1
2 × Γ( 32 )

×
{
1

2

∫ e

1

∫ s

1

(
ln

s

τ

) 1
2

ϕq

(
1

Γ( 54 )

∫ τ

1

(
log

τ

r

) 1
4

ν(r)
dr

r

)
dτ

τ
ds

−
∫ t

1

(
log

t

s

) 1
2

ϕq

(
1

Γ( 54 )

∫ e

1

(
ln

e

τ

) 1
4

ν(τ)
dτ

τ

)
ds

s

}
,

and

v(t) =
1

Γ( 1110 )

∫ t

1

(
ln

t

s

) 1
10

ϕq

(
HI

3
2µ(τ)

) ds

s
+

ln t
2
3 × Γ( 1110 )

×
{
1

3

∫ e

1

∫ s

1

(
log

s

τ

) 1
10

ϕq

(
1

Γ( 32 )

∫ τ

1

(
ln

τ

r

) 1
2

µ(r)
dr

r

)
dτ

τ
ds
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−
∫ t

1

(
ln

t

s

) 1
10

ϕq

(
1

Γ( 32 )

∫ e

1

(
ln

e

τ

) 1
2

µ(τ)
dτ

τ

)
ds

s

}
.
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Figure 2. iterative process uk and vk

The iteration formulas are

νk+1(t) = f(t, uk(t), vk(t)) =
t2

40
(1 + uk(t) + vk(t)) ,
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and
µk+1(t) = g(t, vk(t), uk(t)) =

√
t

10
(1 + uk(t) + vk(t)).

The iterative process and iterative error values is given in Figure 2 and Table 2.

Table 2. iterative error values E(uk) and E(vk)

k 2 4 6 8 10
E(uk) 5.1460e-03 7.4105e-06 6.8046e-09 7.6688e-12 8.8818e-15
E(vk) 2.4443e-03 3.9906e-06 3.0372e-09 4.2119e-12 3.9968e-15

By Figure 2 and Table 2, we find the iterative process of uk and vk are conver-
gent. Thus, the coupled system of p-Laplacian fractional differential equation (3.2)
at least have one solution.
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