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ON SOLUTIONS OF INFINITE SYSTEMS OF
INTEGRAL EQUATIONS COORDINATEWISE
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Abstract In the paper we are going to prove the existence of solutions
of an infinite system of nonlinear quadratic integral equations of Volterra-
Hammerstein type. Those solutions are continuous and bounded functions
defined on the real half-axis R+ and created by function sequences which are
coordinatewise converging to proper limits at infinity. Considerations of the
paper are located in the Banach space consisting of functions defined, contin-
uous and bounded on R+ with values in the space of real bounded sequences.
The main tool applied in the paper is the technique of measures of noncom-
pactness.
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1. Introduction
Integral equations play an important role in the description of several events ap-
pearing in the real world. Namely, they can be encountered in applications to
exact sciences (mathematics, physics, astronomy, thermodynamics, hydrodynam-
ics, propagation of waves) and also in biology, economics etc. We refer to mono-
graphs [9, 12, 17, 20, 21], where various aspects of applications of integral equations
are discussed.

In the paper we focus on the discussion of infinite systems of integral equations
which recently have turned a great attention of a lot of researchers working in non-
linear functional analysis and in numerous applications in various fields. Infinite
systems of integral equations can be applied when we consider some problems de-
scribed by partial differential equations (cf. [11, 20]). Then, we can express such
a problem with help of a nonlinear integral equation, where an unknown function
depends on two (or more) variables. Obviously, such an integral equation is very
hard to solve. In order to facilitate the desired solvability of such an equation we
can apply the method of an infinite system of integral equations, where an unknown
function is represented by a sequence of functions depending on one variable.

As the second example of the appearance of infinite system of integral equations
we can consider the infinite system of differential equations associated with the birth
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and death stochastic process (cf. [11, 13, 14]). Obviously, in some models of those
stochastic processes we obtain infinite systems of nonlinear differential equations.
Equivalently, we can investigate infinite systems of nonlinear integral equations in
place of infinite systems of differential equations. It is worthwhile mentioning that
infinite systems of differential and integral equations can be encountered in the
theory of boundary value problems for ordinary differential equations and in the
theory of integral equations of fractional orders (cf. [10, 19], for example).

Investigations of infinite systems of integral equations are connected with the
representation of solutions of those systems in the form of function sequences defined
on an interval I. In the case when the interval I is bounded the problem of the
existence of solutions is not very complicated although it is not easy (cf. [6, 19]).
However, when we are looking for function sequences being solutions of an infinite
system of integral equations defined on an unbounded interval (for example, on
R+ = [0,∞)), the problem starts to be very hard and complicated.
Up to now only a few papers have been published on solutions of infinite systems
of integral equations which are defined on the real half-axis R+ (cf. [3,4,7,8]). The
investigations of such solutions require to construct appropriate tools which enable
us to apply a fixed point theorem being convenient in the considered situation. It
turnes out that we can apply as the required tool the technique of suitable measures
of noncompactness constructed in the space of functions defined, continuous and
bounded on the interval R+ with values in the sequence space, for example, in the
spaces c0, l1 or l∞. Taking into account the expected generality of obtained results,
the sequence space l∞ seems to be the most suitable for our purposes. Such a
direction of investigations was initiated in the papers [4, 7].

In the present paper we continue and extend that direction of investigations ap-
plying a measure of noncompactness which promises to obtain the most interesting
and useful results concerning solutions of infinite systems of integral equations in
question. Namely, we prove that under suitable assumptions there exists a solution
of considered infinite system of integral equations formed by a function sequence
(xn(t)) defined on the interval R+ such that every coordinate xn = xn(t) tends to
a proper limit at infinity. Moreover, the sequence formed by those proper limits is
an element of the sequence space l∞.

As we pointed out earlier the results of the present paper extend essentially
those obtained in the mentioned papers [3, 4, 7, 8].

2. Notation, definitions and auxiliary facts
This section is devoted to establish the notation used in the paper and to provide
definitions of the concepts creating the basis of the study conducted in the paper.
Moreover, we recall also some results needed in our investigations.

In what follows we denote by R the set of real numbers and by N the set of
natural numbers. We put R+ to denote the interval [0,∞). Further, assume that
E is a Banach space with the norm ∥ · ∥E and the zero element θ. We will denote
by B(x, r) the closed ball centered at x and with radius r. We write Br to denote
the ball B(θ, r). The standard algebraic operations on subsets X, Y of the Banach
space E will be denoted by X + Y and λX, for λ ∈ R. Apart from this the symbol
X stands for the closure of the set X while Conv X denotes the closed convex hull
of the set X.
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Next, let us denote by ME the family of all nonempty and bounded subsets of
E and by NE its subfamily consisting of all relatively compact sets.
The following definition forms the basis of our study (cf. [5, 6]).

Definition 2.1. A function µ : ME → R+ is said to be a measure of noncompact-
ness in the space E if it satisfies the following conditions:

(i) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
(iii) µ(X) = µ(X).
(iv) µ(ConvX) = µ(X).
(v) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
(vi) If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for

n = 1, 2, . . . and if lim
n→∞

µ(Xn) = 0 then the set X∞ =
∞⋂

n=1
Xn is nonempty.

The family kerµ from axiom (i) is called the kernel of the measure of noncom-
pactness µ. Let us notice that the intersection set X∞ defined in axiom (vi) is
an element of the family kerµ. Indeed, it follows immediately from the inclusion
X∞ ⊂ Xn for n = 1, 2, . . .. Hence we obtain that µ(X∞) = 0 and consequently,
X∞ ∈ kerµ. This simple remark will be crucial in applications.

Further assume that µ is a measure of noncompactness in the space E. The
measure µ is called sublinear [5] provided it satisfies the following additional con-
ditions:
(vii) µ(X + Y ) ≤ µ(X) + µ(Y ).
(viii) µ(λX) = |λ|µ(X) for λ ∈ R.
If the measure of noncompactness µ satisfies the condition
(ix) µ(X ∪ Y ) = max{µ(X), µ(Y )}

then it is referred to as the measure with the maximum property. Moreover, if
kerµ = NE we say that µ is full. If µ is sublinear and full measure of noncompact-
ness with the maximum property then it is called to be regular.

From historical point of view the first measure of noncompactness was defined
in 1930 by K. Kuratowski [18]. However, the most important and useful measure
of noncompactness is the so-called Hausdorff measure of noncompactness defined
in [15,16] by the formula

χ(X) = inf{ε > 0 : X has a finite ε-net in E},

where X ∈ ME . Indeed, χ is a regular measure of noncompactness and in some Ba-
nach spaces like C([a, b]), c0 and lp we can give formulas expressing χ in connection
with the structure of the mentioned Banach spaces [1, 2, 5].

It is worthwhile mentioning that in a lot of Banach spaces we are not able to
give formulas for the Hausdorff measure of noncompactness χ. Even more, we are
not in a position to provide formulas for full measures of noncompactness [5, 6].
Therefore, in such a situation we restrict ourselves to measures of noncompactness
in the sense of Definition 2.1 which are not full. In the sequel of the paper we will
consider such a measure of noncompactness.

Now, we recall a useful fixed point theorem of Darbo type involved the concept
of measure of noncompactness (cf. [5]).



1904 J. Banaś, A. Chlebowicz & M.-A. Taoudi

Theorem 2.1. Assume that µ is a given measure of noncompactness in a Banach
space E and Ω is a nonempty, bounded, closed and convex subset of E. Let Q : Ω →
Ω be a continuous operator such that there exists a constant k ∈ [0, 1) for which
µ(QX) ≤ kµ(X) for an arbitrary nonempty subset X of Ω. Then there exists at
least one fixed point of the operator Q in the set Ω.

Remark 2.1. It can be shown that the set of all fixed points of the operator
Q belongs to the family kerµ [5]. This simple observation is very essential in
characterization of solutions of considered operator equation which are proved with
help of Theorem 2.1.

Further on, we are going to decsribe a measure of noncompactness used in con-
siderations of this paper. To this end let us first assume that E is a given Banach
space with the norm ∥ · ∥E and µ is a measure of noncompactness in the space
E. Consider the Banach space BC(R+, E) consisting of all functions x : R+ → E
which are continuous and bounded on the interval R+. The space BC(R+, E) will
be furnished with the standard supremum norm

∥x∥∞ = sup{∥x(t)∥E : t ∈ R+}.

Next, take an arbitrary nonempty and bounded subset X of the space BC(R+, E).
Fix x ∈ X, ε > 0 and define the modulus of the uniform continuity of the function
x (cf. [4]) by putting

ω∞(x, ε) = sup
{
∥x(t)− x(s)∥E : t, s ∈ R+, |t− s| ≤ ε

}
.

Observe that lim
ε→0

ω∞(x, ε) = 0 if and only if the function x is uniformly continuous
on the interval R+.
Further, let us define the following quantities

ω∞(X, ε) = sup {ω∞(x, ε) : x ∈ X},
ω∞
0 (X) = lim

ε→0
ω∞(X, ε). (2.1)

Now, let us consider the function µ∞ defined on the family MBC(R+,E) by the
formula

µ∞(X) = lim
T→∞

µT (X), (2.2)

where µT (X) is defined in the following way

µT (X) = sup
{
µ(X(t)) : t ∈ [0, T ]

}
for any fixed T > 0.

Further, for a given T > 0 let us put

bT (X) = sup
x∈X

{
sup

{
∥x(t)− x(s)∥E : t, s ≥ T

}}
.

Next, let us define the following quantity

b∞(X) = lim
T→∞

bT (X). (2.3)

Finally, linking quantities defined by (2.1), (2.2) and (2.3), we can consider the
function µb defined on the family MBC(R+,E) in the following way (cf. [4])

µb(X) = ω∞
0 (X) + µ∞(X) + b∞(X). (2.4)



On solutions of infinite systems of integral equations 1905

It can be shown that the function µb is a measure of noncompactness in the space
BC(R+, E) (cf. [4]). The kernel kerµb of the measure µb consists of all nonempty
and bounded subsets of the space BC(R+, E) such that functions from X are uni-
formly continuous and equicontinuous (equivalently, functions from X are equicon-
tinuous on R+) and tend to limits (being elements of E) at infinity with the same
rate. Apart from this, all cross-sections X(t) = {x(t) : x ∈ X} of the set X be-
long to the kernel kerµ of the measure of noncompactness µ in the Banach space
E (cf. [4]). The measure µb is not full and has the maximum property. If the
measure µ is sublinear in the space E then the measure µb defined by (2.4) is also
sublinear [4].

Let us mention that in the similar way as above we may define other measures
of noncompactness in the space BC(R+, E) (see [4]).

Taking into account our further purposes we will consider as the Banach space
E the sequence space l∞ equipped with the standard supremum norm.

Thus, in what follows we consider the Banach space BC(R+, l∞) consisting of
functions x : R+ → l∞ being continuous and bounded on R+. If x ∈ BC(R+, l∞)
then we can write this function in the form

x(t) = (xn(t)) = (x1(t), x2(t), . . .)

for t ∈ R+, where the sequence (xn(t)) is an element of the space l∞ for any fixed
t. The norm of the function x = x(t) = (xn(t)) is defined by the equality

∥x∥∞ = sup{∥x(t)∥l∞ : t ∈ R+} = sup
t∈R+

{
sup{|xn(t)| : n = 1, 2, . . .}

}
.

In our further considerations the space BC(R+, l∞) will be denoted by BC∞.
Now, we can express the formula for the measure of noncompactness defined by

(2.4) in the Banach space BC∞, provided the measure of noncompactness in the
space l∞ is defined in the following way [5]

µ1(X) = lim
n→∞

{
sup

x=(xi)∈X

{
sup{|xk| : k ≥ n}

}}
(2.5)

for X ∈ Ml∞ . In this case the component µ∞ defined by (2.2) will be denoted by
µ1
∞.

Thus, our measure of noncompactness µb defined by (2.4) will be denoted by µ1
b

and is defined as a particular case of (2.4) by the following formula

µ1
b(X) = ω∞

0 (X) + µ1
∞(X) + b∞(X), (2.6)

where the components on the right hand side of formula (2.6) are defined in the
following way [4]:

ω∞
0 (X) = lim

ε→0

{
sup
x∈X

{
sup{sup

n∈N
|xn(t)− xn(s)| : t, s ∈ R+, |t− s| ≤ ε}

}}
, (2.7)

µ1
∞(X) = lim

T→∞

{
sup

t∈[0,T ]

{
lim
n→∞

{
sup
x∈X

{
sup{|xk(t)| : k ≥ n}

}}}}
, (2.8)

b∞(X) = lim
T→∞

{
sup
x∈X

{
sup{sup

n∈N
|xn(t)− xn(s)| : t, s ≥ T}

}}
. (2.9)
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Remark 2.2. Let us notice that formula (2.2) for µ∞ can be simplified in the
following way

µ∞(X) = sup{µ(X(t)) : t ∈ R+}
for X ∈ MBC(R+,E). For the proof we refer to [7].

Thus, the quantity µ1
∞(X) defined by (2.8) can be expressed as follows

µ1
∞(X) = sup

t≥0

{
lim
n→∞

{
sup
x∈X

{
sup{|xk(t)| : k ≥ n}

}}}
(2.10)

for X ∈ MBC∞ .

Remark 2.3. Let us observe that the kernel kerµ1
b of the measure of noncompact-

ness µ1
b defined by formula (2.6) can be described as the family of all sets X ∈ MBC∞

such that functions x = x(t) = (xn(t)) from X are equicontinuous on R+ and tend
coordinatewise to proper limits at infinity i.e., for any n ∈ N there exists a number
gn ∈ R such that lim

t→∞
xn(t) = gn. Obviously, the sequence g = (gn) is an element

of the space l∞. Apart from this let us notice that the functions of the sequence
(xn(t)) tend to limits (gn) with the same rate. Additionally, let us mention that
all cross-sections X(t) of the set X belong to the kernel kerµ1 of the measure µ1

defined by (2.5) being the family of some relatively compact subsets of the space
l∞ (cf. [5]).

3. Main result
In this section we will investigate the infinite system of the quadratic integral equa-
tions of Volterra-Hammerstein type of the following form

xn(t) = an(t) + fn(t, x1(t), x2(t), . . .)

∫ t

0

kn(t, τ)gn(τ, x1(τ), x2(τ), . . .)dτ, (3.1)

where t ∈ R+ and n = 1, 2, . . ..
Our aim is to show that the infinite system of integral equations (3.1) has a

solution x(t) = (xn(t)) in the space BC∞ = BC(R+, l∞) such that there exists
a limit lim

t→∞
xn(t). Obviously that limit is an element of the space l∞. As we

pointed out in Section 2, Remark 2.3, the functions of the sequence (xn(t)) tend
coordinatewise to proper limits at infinity (with the same rate). Our considerations
are located in the mentioned Banach space BC∞ discussed previously in details.
Apart from this let us point out that in our study solutions of infinite system (3.1)
we will use the measure of noncompactness µ1

b(X) expressed by formula (2.6) given
in the previous section.

In what follows we formulate the assumptions under which the infinite system
(3.1) will be investigated.

(i) The sequence (an(t)) is an element of the space BC∞ such that there exists
the proper limit lim

t→∞
an(t) uniformly with respect to n ∈ N i.e., the following

condition of the Cauchy type is satisfied

∀ε>0 ∃T>0 ∀t,s≥T ∀n∈N |an(t)− an(s)| ≤ ε.

Moreover, lim
n→∞

an(t) = 0 for any t ∈ R+.
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(ii) The functions kn(t, τ) = kn : R2
+ → R are continuous on the set R2

+ (n =
1, 2, . . .). Moreover, the functions t → kn(t, τ) are equicontinuous on the set
R+ uniformly with respect to τ ∈ R+ i.e., the following condition is satisfied

∀ε>0 ∃δ>0 ∀n∈N ∀τ∈R+
∀t1,t2∈R+

[|t2 − t1| ≤ δ ⇒ |kn(t2, τ)− kn(t1, τ)| ≤ ε].

(iii) There exists a constant K1 > 0 such that
∫ t

0
|kn(t, τ)|dτ ≤ K1 for t ∈ R+

and n = 1, 2, . . .. Moreover, lim
t→∞

∫ t

0
|kn(t, τ)|dτ = 0 uniformly with respect to

n ∈ N i.e., the following condition is satisfied

∀ε>0 ∃T>0 ∀t≥T ∀n∈N

∫ t

0

|kn(t, τ)|dτ ≤ ε.

(iv) The sequence (kn(t, τ)) is equibounded on R2
+ i.e., there exists a constant

K2 > 0 such that |kn(t, τ)| ≤ K2 for t, τ ∈ R+ and n = 1, 2, . . . .

(v) The function fn is defined on the set R+ × R∞ and takes real values for n =
1, 2, . . .. Moreover, the function t → fn(t, x1, x2, . . .) is uniformly continuous
on R+ locally uniformly with respect to x = (xn) ∈ l∞ and uniformly with
respect to n ∈ N i.e., the following condition is satisfied

∀ε>0 ∀r>0 ∃δ>0 ∀x=(xi)∈l∞,∥x∥l∞≤r ∀n∈N ∀t,s∈R+[
|t− s| ≤ δ ⇒ |fn(t, x1, x2, . . .)− fn(s, x1, x2, . . .)| ≤ ε

]
.

(vi) The function sequence (fn) defined by the equality fn(t) = |fn(t, 0, 0, . . .)|
(for t ∈ R+ and n = 1, 2, . . .) is bounded on R+ and lim

n→∞
fn(t) = 0 for any

t ∈ R+.
(vii) For each r > 0 there exists a proper limit lim

t→∞
fn(t, x1, x2, . . .) uniformly with

respect to x ∈ l∞ such that ∥x∥l∞ ≤ r and n ∈ N i.e., the following condition
is satisfied

∀ε>0 ∀r>0 ∃T>0 ∀t,s≥T ∀x∈l∞,∥x∥l∞≤r ∀n∈N
∣∣fn(t, x)− fn(s, x)

∣∣ ≤ ε.

(viii) There exists a function m : R+ → R+ such that m is nondecreasing on R+,
continuous at 0 and the following inequality is satisfied∣∣fn(t, x1, x2, . . .)− fn(t, y1, y2, . . .)

∣∣ ≤ m(r) sup{|xi − yi| : i ≥ n}

for any r > 0, for x = (xi), y = (yi) ∈ l∞ such that ∥x∥l∞ ≤ r, ∥y∥l∞ ≤ r for
all t ∈ R+ and n = 1, 2, . . ..

(ix) The function gn is defined on the set R+ × R∞ and takes real values for
n = 1, 2, . . .. Moreover, the operator g defined on the set R+ × l∞ by the
formula

(gx)(t) = (gn(t, x)) = (g1(t, x), g2(t, x), . . .)

transforms the set R+ × l∞ into l∞ and is such that the family of functions
{(gx)(t)}t∈R+

is equicontinuous on the space l∞ i.e., for any ε > 0 there exists
δ > 0 such that

∥(gy)(t)− (gx)(t)∥l∞ ≤ ε

for any t ∈ R+ and for all x, y ∈ l∞ such that ∥x− y∥l∞ ≤ δ.
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(x) The operator g defined in assumption (ix) is bounded on the set R+ × l∞.
More precisely, there exists a positive constant G such that ∥(gx)(t)∥l∞ ≤ G
for any x ∈ l∞ and t ∈ R+.

(xi) There exists a positive solution r0 of the inequality

A+ F GK1 +GK1rm(r) ≤ r

such that GK1m(r0) < 1, where the constants G, K1 were defined above and
the constants A, F are defined in the following way

A = sup{|an(t)| : t ∈ R+, n = 1, 2, . . .},
F = sup{fn(t) : t ∈ R+, n = 1, 2, . . .}.

Now, we formulate remarks and lemmas concerning some components involved
in infinite system (3.1).

Remark 3.1. Observe that in view of assumptions (i) and (vi) the constants A
and F defined above are finite.

Remark 3.2. The function sequence (fn) from assumption (vi) is an element of
the space BC∞.

In order to prove the above assertion let us first notice that in view of assumption
(vi) the sequence (fn(t)) is an element of the space l∞ for any fixed t ∈ R+. Now,
we show that the function f : R+ → l∞ defined by the equality f(t) = (fn(t)), is
continuous on R+.

To prove this fact let us fix arbitrarily ε > 0. Then, for arbitrary t, s ∈ R+ we
have

|fn(t)− fn(s)| =
∣∣|fn(t, 0, 0, . . .)| − |fn(s, 0, 0, . . .)|

∣∣
≤ |fn(t, 0, 0, . . .)− fn(s, 0, 0, . . .)|,

for any n = 1, 2, . . .. Hence, in view of assumption (v) we can choose a number
δ > 0 such that for any n ∈ N and for arbitrary t, s ∈ R+ such that |t− s| ≤ δ, we
have

|fn(t)− fn(s)| ≤ ε.

This implies that ∥f(t)− f(s)∥l∞ ≤ ε for t, s ∈ R+, |t− s| ≤ δ. Thus the sequence
f(t) = (fn(t)) is an element of the space BC∞.

Lemma 3.1. Let the function x(t) = (xn(t)) be an element of the space BC∞.
Then the sequence (xn) is equibounded and locally equicontinuous on R+.

The proof can be conducted in the same way as the proof of Lemma 4.1 in [3]
and is therefore omitted.

Lemma 3.2. Let x(t) = (xn(t)) be an element of the space BC∞ such that there
exists a proper limit lim

t→∞
xn(t) uniformly with respect to n ∈ N i.e., the following

condition is satisfied

∀ε>0 ∃T>0 ∀t,s≥T ∀n∈N |xn(t)− xn(s)| ≤ ε

(cf. assumption (i)). Then the sequence (xn) is equibounded and equicontinuous on
R+.
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Proof. The equiboundedness of the sequence (xn) on R+ follows immediately
from Lemma 3.1. In order to prove the equicontinuity of the sequence (xn) on R+

let us fix ε > 0. Then, in view of the assumption imposed in our lemma we can
find a number T > 0 such that |xn(t)− xn(s)| ≤ ε

2 for t, s ≥ T and for n = 1, 2, . . ..
On the other hand, in virtue of Lemma 3.1 we infer that the sequence (xn) is
equicontinuous on the interval [0, T ]. This means that we can find a number δ > 0
such that |xn(t2)− xn(t1)| ≤ ε

2 for t1, t2 ∈ [0, T ] such that |t2 − t1| ≤ δ and for all
n = 1, 2, . . .

Now, let us take arbitrary numbers t1, t2 ∈ R+ such that |t2 − t1| ≤ δ. Without
loss of generality we can assume that t1 < t2.

If t1, t2 ∈ [0, T ] then, according to the above established fact we have that

|xn(t2)− xn(t1)| ≤
ε

2

for n = 1, 2, . . ..
If t1, t2 ≥ T then in view of the above made choice of the number T we have

that
|xn(t2)− xn(t1)| ≤

ε

2
.

Further, let us assume that t1 < T ≤ t2. Then, for an arbitrarily fixed n ∈ N,
taking into account the above established facts we get

|xn(t2)− xn(t1)| ≤ |xn(t2)− xn(T )|+ |xn(T )− xn(t1)| ≤
ε

2
+

ε

2
= ε.

This shows that the sequence (xn) is equicontinuous on the interval R+.
Now, we are prepared to formulate the main result of this paper.

Theorem 3.1. Under assumptions (i) - (xi) the infinite system of integral equations
(3.1) has at least one solution x(t) = (xn(t)) in the space BC∞ = BC(R+, l∞) which
is uniformly continuous on R+ and tends at infinity to a limit being an element of
the space l∞.

Proof. At the beginning we define three operators F , V , Q on the space BC∞ in
the following way:

(Fx)(t) =
(
(Fnx)(t)

)
=

(
fn

(
t, x(t)

))
=

(
fn

(
t, x1(t), x2(t), . . .

))
,

(V x)(t) =
(
(Vnx)(t)

)
=

(∫ t

0

kn(t, τ)gn
(
τ, x1(τ), x2(τ), . . .

)
dτ

)
,

(Qx)(t) =
(
(Qnx)(t)

)
=

(
an(t) + (Fnx)(t) (Vnx)(t)

)
.

We start with showing that the operator F transforms the space BC∞ into itself.
To this end fix the function x = x(t) = (xn(t)) ∈ BC∞. Then, in view of assump-
tions (viii) and (vi), for an arbitrary fixed n ∈ N, we get

|(Fnx)(t)| ≤ |fn(t, x1(t), x2(t), . . .)− fn(t, 0, 0)|+ |fn(t, 0, 0, . . .)|
≤ m(∥x(t)∥l∞) sup

{
|xi(t)| : i ≥ n

}
+ fn(t). (3.2)

Hence, we obtain the inequality

|(Fnx)(t)| ≤ F +m
(
∥x(t)∥l∞) ∥x(t)∥l∞ ,
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which implies the following estimate

∥Fx∥BC∞ ≤ F +m(∥x∥BC∞)∥x∥BC∞ (3.3)

for any x ∈ BC∞. This estimate shows that the function Fx is bounded on R+.
To prove the continuity of the function Fx on the interval R+, let us fix ε > 0.

Then, on the basis of assumption (v) we can find a number δ = δ(ε, ∥x∥l∞) > 0
such that for t, s ∈ R+ with |t− s| ≤ δ the following inequality holds

|fn(t, x1, x2, . . .)− fn(s, x1, x2, . . .)| ≤ ε.

This implies that
∥(Fx)(t)− (Fx)(s)∥l∞ ≤ ε

for all t, s ∈ R+ such that |t−s| ≤ δ. This means that the function Fx is continuous
(even uniformly continuous) on R+. Hence we infer that the operator F transforms
the space BC∞ into itself.

In what follows we show that the operator V acts from the space BC∞ into
itself.

To this end, similarly as above, let as fix a function x = x(t) = (xn(t)) belonging
to the space BC∞. Next, take an arbitrary number t ∈ R+. Then, for a fixed natural
number n, in view of assumptions (iii) and (x), we obtain

∣∣(Vnx)(t)
∣∣ ≤ ∫ t

0

∣∣kn(t, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ ≤

∫ t

0

∣∣kn(t, τ)∣∣Gdτ

= G

∫ t

0

∣∣kn(t, τ)∣∣dτ ≤ GK1. (3.4)

From the above estimate we conclude that the function V x is bounded on the
interval R+.

In order to prove the continuity of the function V x on R+, let us fix ε > 0.
Then, for arbitrarily fixed numbers t1, t2 ∈ R+ such that |t2 − t1| ≤ δ, in virtue of
assumptions (ii), (iv) and (x) (assuming additionally that t1 < t2), we derive the
following estimates∣∣(Vnx)(t2)− (Vnx)(t1)

∣∣
≤
∣∣∣ ∫ t2

0

kn(t2, τ)gn(τ, x1(τ), x2(τ), . . .)dτ−
∫ t2

0

kn(t1, τ)gn(τ, x1(τ), x2(τ), . . .)dτ
∣∣∣

+
∣∣∣ ∫ t2

0

kn(t1, τ)gn(τ, x1(τ), x2(τ), . . .)dτ−
∫ t1

0

kn(t1, τ)gn(τ, x1(τ), x2(τ), . . .)dτ
∣∣∣

≤
∫ t2

0

∣∣kn(t2, τ)− kn(t1, τ)
∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)

∣∣dτ
+

∫ t2

t1

∣∣kn(t1, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ

≤
∫ t2

0

ωk(δ)
∣∣gn(τ, x1(τ), x2(τ), . . .)

∣∣dτ +

∫ t2

t1

K2

∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ, (3.5)

where K2 is a constant from assumption (iv) and ωk(δ) denotes a common modulus
of continuity of the sequence of functions t → kn(t, τ) on the interval R+ (according
to assumption (ii)). Obviously we have that ωk(δ) → 0 as δ → 0.
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Now, keeping in mind estimate (3.5) and assumption (x), we obtain∣∣(Vnx)(t2)− (Vnx)(t1)
∣∣ ≤ Gωk(δ) +K2Gδ. (3.6)

Hence we deduce that the function V x is continuous on the interval R+. Finally,
linking the boundedness of the function V x with its continuity on R+ we conclude
that the operator V transforms the space BC∞ into itself.

Further on, taking into account the fact that the space BC∞ = BC(R+, l∞)
forms a Banach algebra with respect to the coordinatewise multiplication of func-
tions sequences and keeping in mind the definition of the operator Q as well as
assumption (i) we infer that for an arbitrarily fixed function x = x(t) ∈ BC∞ the
function (Qx)(t) =

(
(Qnx)(t)

)
=

(
an(t) + (Fnx)(t) (Vnx)(t)

)
acts from the interval

R+ into the space l∞. Indeed, in view of the fact that
(
(Fnx)(t)

)
∈ l∞ for each

t ∈ R+ and in the light of estimate (3.4) we get∣∣(Qnx)(t)
∣∣ ≤ ∣∣an(t)∣∣+GK1

∣∣(Fnx)(t)
∣∣.

Hence, applying (3.2) we infer that (Qx)(t) =
(
(Qnx)(t)

)
∈ l∞ for any t ∈ R+.

Next, let us observe that the continuity of the function Qx on R+ is an imme-
diate consequence of the fact that both the function Fx and the function V x are
continuous on R+. Similarly we can also derive that the function Qx is bounded on
the interval R+. In fact, in order to justify this assertion it is only sufficient to apply
assumption (i) and the representation of the operator Q given at the beginning of
this proof.
Finally, let us notice that gathering all the above established properties of the func-
tion Qx we deduce that the operator Q transforms the space BC∞ into itself.

Further on, let us note that based on estimates (3.3) and (3.4), for arbitrarily
fixed n ∈ N and t ∈ R+, we get∣∣(Qnx)(t)

∣∣ ≤ ∣∣an(t)∣∣+ ∣∣(Fnx)(t)
∣∣∣∣(Vnx)(t)

∣∣
≤ A+

[
F +m

(
∥x∥BC∞)∥x∥BC∞

]
GK1

≤ A+ F GK1 +GK1m
(
∥x∥BC∞)∥x∥BC∞ .

From the above estimate and assumption (xi) we conclude that there exists a number
r0 > 0 such that the operator Q transforms the ball Br0 into itself.

In what follows we intend to show that the operator Q is continuous on the ball
Br0 . Keeping in mind the representation of the operator Q mentioned previously we
see that it is sufficient to show the continuity of the operators F and V , separately.
To this end let us fix ε > 0 and x ∈ Br0 . Next, take an arbitrary point y ∈ Br0

such that ∥x− y∥BC∞ ≤ ε. Then, for a fixed t ∈ R+, in view of assumption (viii),
we get ∥∥(Fx)(t)− (Fy)(t)

∥∥
l∞

≤ m(r0) sup
{
|xi − yi| : i ≥ n

}
≤ m(r0)∥x− y∥l∞
≤ εm(r0).

This shows that the operator F is continuous on the ball Br0 .
To prove the continuity of the operator V on the ball Br0 let us consider the

function δ = δ(ε) defined in the following way

δ(ε) = sup
{∣∣gn(t, x)− gn(t, y)

∣∣ : x, y ∈ l∞, ∥x− y∥l∞ ≤ ε, t ∈ R+, n ∈ N
}
.
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Then, in view of assumption (ix) we have δ(ε) → 0 as ε → 0. Now, taking x, y ∈ Br0

such that ∥x− y∥BC∞ ≤ ε and t ∈ R+ and fixing n ∈ N we obtain∣∣(Vnx)(t)− (Vny)(t)
∣∣

≤
∫ t

0

∣∣kn(t, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)− gn(τ, y1(τ), y2(τ), . . .)
∣∣dτ

≤
∫ t

0

∣∣kn(t, τ)∣∣dτδ(ε)
≤K1δ(ε).

This implies the estimate

∥V x− V y∥BC∞ ≤ K1δ(ε).

Thus we see that the operator V is continuous on the ball Br0 .
Finally, in the light of the above mentioned statement we conclude that the

operator Q is continuous on Br0 .
Further, let us fix an arbitrary number ε > 0 and choose a number δ = δ(ε, r0) >

0 according to assumption (v). Next, take a nonempty subset X of the ball Br0 .
Assume that x ∈ X. Then, for arbitrarily fixed n ∈ N and t, s ∈ R+ with |t−s| ≤ δ,
in view of assumptions (v) and (vii), we obtain∣∣(Fnx)(t)− (Fnx)(s)

∣∣ = ∣∣fn(t, x1(t), x2(t), . . .)− fn(s, x1(s), x2(s), . . .)
∣∣

≤
∣∣fn(t, x1(t), x2(t), . . .)− fn(s, x1(t), x2(t), . . .)

∣∣
+
∣∣fn(s, x1(t), x2(t), . . .)− fn(s, x1(s), x2(s), . . .)

∣∣
≤ ε+m(r0) sup

{∣∣xi(t)− xi(s)
∣∣ : i ≥ n

}
≤ ε+m(r0) sup

{∣∣xi(t)− xi(s)
∣∣ : i ∈ N

}
≤ ε+m(r0)ω

∞(x, δ).

The above estimate implies the following one

ω∞(Fx, ε) ≤ ε+m(r0)ω
∞(x, δ). (3.7)

Further, similarly as above, let us fix ε > 0 and choose a number δ > 0 ac-
cording to assumption (ii) (we may choose the common number δ with respect to
assumptions (ii) and (v)). Next, fix n ∈ N and t, s ∈ R+ (say, s < t) such that
|t − s| = t − s ≤ δ. Then, repeating the reasoning conducted in order to obtain
estimate (3.6), in view of that estimate, we get∣∣(Vnx)(t)− (Vnx)(s)

∣∣ ≤ Gωk(δ) +K2Gδ,

where K2 is a constant appearing in assumption (iv) and ωk(δ) denotes the above
introduced common modulus of continuity of the function sequence t → kn(t, τ) on
the interval R+ (recall that ωk(δ) → 0 as δ → 0).

Hence, we derive the following estimate

ω∞(V x, ε) ≤ Gωk(δ) +GK2δ. (3.8)
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Further on, keeping in mind the representation of the operator Q, for an arbi-
trary function x ∈ X and for arbitrary t, s ∈ R+, we have∥∥(Qx)(t)− (Qx)(s)

∥∥
l∞

≤
∥∥a(t)− a(s)

∥∥
l∞

+
∥∥(V x)(t)

∥∥
l∞

∥∥(Fx)(t)− (Fx)(s)
∥∥
l∞

+
∥∥(Fx)(s)

∥∥
l∞

∥∥(V x)(t)− (V x)(s)
∥∥
l∞

,

where a(t) =
(
an(t)

)
.

Next, fix ε > 0 and assume that |t − s| ≤ ε. Then, from the above inequality
and estimates (3.7), (3.8), (3.3) and (3.4), we get

ω∞(Qx, ε) ≤ ω∞(a, ε) +GK1ω
∞(Fx, ε)

+
(
F + r0m(r0)

)(
Gωk(ε) +GK2ε

)
≤ ω∞(a, ε) +GK1m(r0)ω

∞(x, ε) +GK1ε

+
(
F + r0m(r0)

)(
Gωk(ε) +GK2ε

)
.

Now, in view of Lemma 3.2 we infer that ω∞(a, ε) → 0 as ε → 0. Next, taking into
account that ωk(ε) → 0 as ε → 0, from the above obtained estimate we deduce the
following inequality

ω∞
0 (QX) ≤ GK1m(r0)ω

∞
0 (X). (3.9)

In what follows we will investigate the behaviour of the operator Q with respect
to the second term µ1

∞ (cf. formula (2.8)) of the measure of noncompactness µ1
b

defined by (2.6). To this end take a nonempty subset X of the ball Br0 and choose
an element x = x(t) ∈ X. Further, fix a natural number n and T > 0. Then, for an
arbitrarily fixed number t ∈ [0, T ], in virtue of the representation of the operator Q
and estimates (3.2) and (3.4), we get

∣∣(Qnx)(t)
∣∣ ≤ |an(t)|+

∣∣fn(t, x1(t), x2(t), . . .)
∣∣ ∫ t

0

∣∣kn(t, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ

≤ |an(t)|+
[
fn(t) +m

(
∥x(t)∥l∞

)
sup

{∣∣xi(t)
∣∣ : i ≥ n

}]
GK1.

Now, taking supremum over x ∈ X, from the above estimate we obtain

sup
x∈X

∣∣(Qnx)(t)
∣∣ ≤ |an(t)|+GK1

[
fn(t) +m(r0) sup

x∈X

{
sup

{∣∣xi(t)
∣∣ : i ≥ n

}}]
.

Hence, in view of assumptions (i) and (vi), we derive the following inequality

lim
n→∞

{
sup
x∈X

∣∣(Qnx)(t)
∣∣} ≤ GK1m(r0)

{
lim
n→∞

{
sup
x∈X

{
sup

{∣∣xi(t)
∣∣ : i ≥ n

}}}}
.

Finally, if we take supremum over t ∈ [0, T ] on both sides of the above inequality
and if we pass with T → ∞, in view of formula (2.8) we have

µ1
∞(QX) ≤ GK1m(r0)µ

1
∞(X). (3.10)

Now, we proceed to the study the behaviour of the operator Q with respect to
the quantity b∞ = b∞(X) defined by (2.9) which creates the last component of the
measure of noncompactness µ1

b (cf. formula (2.6)).
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Thus, take a nonempty subset X of the ball Br0 and an arbitrary number T > 0.
Next, fix numbers t, s such that t, s ≥ T and n ∈ N. Then, for an arbitrarily fixed
function x ∈ X we obtain∣∣(Qnx)(t)−(Qnx)(s)

∣∣
≤
∣∣an(t)− an(s)

∣∣+ ∣∣fn(t, x1(t), x2(t), . . .)

∫ t

0

kn(t, τ)gn(τ, x1(τ), x2(τ), . . .)dτ

−fn(s, x1(s), x2(s), . . .)

∫ s

0

kn(s, τ)gn(τ, x1(τ), x2(τ), . . .)dτ
∣∣

≤
∣∣an(t)− an(s)

∣∣+ ∣∣fn(t, x1(t), x2(t), . . .)

∫ t

0

kn(t, τ)gn(τ, x1(τ), x2(τ), . . .)dτ

−fn(s, x1(s), x2(s), . . .)

∫ t

0

kn(t, τ)gn(τ, x1(τ), x2(τ), . . .)dτ
∣∣

+
∣∣fn(s, x1(s), x2(s), . . .)

∫ t

0

kn(t, τ)gn(τ, x1(τ), x2(τ), . . .)dτ

−fn(s, x1(s), x2(s), . . .)

∫ s

0

kn(s, τ)gn(τ, x1(τ), x2(τ), . . .)dτ
∣∣

≤
∣∣an(t)− an(s)

∣∣+ ∣∣fn(t, x1(t), x2(t), . . .)− fn(s, x1(s), x2(s), . . .)
∣∣

×
∫ t

0

∣∣kn(t, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ

+
∣∣fn(s, x1(s), x2(s), . . .)

∣∣∣∣∫ t

0

kn(t, τ)gn(τ, x1(τ), x2(τ), . . .)dτ

−
∫ s

0

kn(s, τ)gn(τ, x1(τ), x2(τ), . . .)dτ
∣∣

≤
∣∣an(t)− an(s)

∣∣+ [∣∣fn(t, x1(t), x2(t), . . .)− fn(s, x1(t), x2(t), . . .)
∣∣

+
∣∣fn(s, x1(t), x2(t), . . .)− fn(s, x1(s), x2(s), . . .)

∣∣]
×
∫ t

0

G
∣∣kn(t, τ)∣∣dτ +

[
fn(s) +m

(
∥x(s)∥l∞

)
sup

{∣∣xi(s)
∣∣ : i ≥ n

}]
×
{∫ t

0

∣∣kn(t, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ

+

∫ s

0

∣∣kn(s, τ)∣∣∣∣gn(τ, x1(τ), x2(τ), . . .)
∣∣dτ}

≤
∣∣an(t)− an(s)

∣∣+ [
Ωr0(f, T ) +m(r0) sup

{∣∣xi(t)− xi(s)
∣∣ : i ≥ n

}]
GK1

+
[
F + r0m(r0)

]{ ∫ t

0

∣∣kn(t, τ)∣∣Gdτ +

∫ s

0

∣∣kn(s, τ)∣∣Gdτ
}
, (3.11)

where we denoted
Ωr0(f, T )=sup

{∣∣fn(t, x1, x2, . . .)−fn(s, x1, x2, . . .)
∣∣ : t, s ≥ T, x=(xi) ∈ Br0 , n∈N

}
.

Observe that lim
T→∞

Ωr0(f, T ) = 0, in view of assumption (vii).
Further, from estimate (3.11), for t, s ≥ T and for n ∈ N we obtain∣∣(Qnx)(t)− (Qnx)(s)

∣∣ ≤ ∣∣an(t)− an(s)
∣∣
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+

[
Ωr0(f, T ) +m(r0) sup

{∣∣xi(t)− xi(s)
∣∣ : i ≥ n

}]
GK1

+
[
F + r0m(r0)

]
G
{∫ t

0

∣∣kn(t, τ)∣∣dτ +

∫ s

0

∣∣kn(s, τ)∣∣dτ}.
Now, keeping in mind the above estimate, assumptions (i) and (iii) and the above
established facts, in view of formula (2.9) we derive the following inequality

b∞(QX) ≤ GK1m(r0)b∞(X). (3.12)

Finally, linking estimates (3.9), (3.10), (3.12) and taking into account formula (2.6),
we obtain the following inequality for an arbitrary nonempty subset X of the ball
Br0 :

µ1
b(QX) ≤ GK1m(r0)µ

1
b(X).

Hence, combining the fact that the operator Q maps continuously the ball Br0 into
itself, assumption (xi) and Theorem 2.1 we infer that the infinite system of Volterra-
Hammerstein integral equations (3.1) has at least one solution x = x(t) in the space
BC∞ = BC(R+, l∞) which belongs to the ball Br0 and is uniformly continuous on
the interval R+.

Moreover, since the mentioned solution x = x(t) of infinite system (3.1) belongs
to the kernel kerµ1

b we conclude that there exists a limit lim
t→∞

x(t) in the space l∞

i.e., there exists an element g = (gn) ∈ l∞ such that lim
t→∞

x(t) = g. Equivalently
this means that if we write x(t) = (xn(t)) then for any fixed n ∈ N there exists a
proper limit lim

n→∞
xn(t) (= gn) (cf. Remark 2.3). Other words this means that the

solution x = x(t) = (xn(t)) is coordinatewise converging at infinity. The proof is
complete.

4. An example
In this section we provide an example which illustrates the existence result con-
cerning the infinite system of integral equations (3.1) and contained in Theorem
3.1.

Namely, we will consider the infinite system of integral equations having the
form

xn(t) =te−2nt +

(
x2
n(t) + 1

n+ t
+

x2
n+1(t)

2n+ t
+

xn+2(t) + 2

n2 + t

)
×
∫ t

0

e−γ(t+n)τ arctan

(
x1(τ) + xn(τ) + xn+1(τ)

n+ t+ β

)
dτ, (4.1)

where t ∈ R+, n = 1, 2, . . . and β > 0, γ > 0 are some constants. Observe that
infinite system (4.1) is a particular case of system (3.1) if we put

an(t) = te−2nt, (4.2)

fn(t, x1, x2, . . .) =
x2
n + 1

n+ t
+

x2
n+1

2n+ t
+

xn+2 + 2

n2 + t
, (4.3)

kn(t, τ) = e−γ(t+n)τ , (4.4)
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gn(t, x1, x2, . . .) = arctan

(
x1 + xn + xn+1

n+ t+ β

)
(4.5)

for n = 1, 2, . . . and t ∈ R+.
In what follows we are going to show that the infinite system of integral equations

(4.1) has a solution x = x(t) = (xn(t)) in the Banach space BC∞ = BC(R+, l∞)
which is coordinatewise converging at infinity in the sense of Remark 2.3. To this
end we will apply Theorem 3.1 i.e., we show that functions defined by formulas
(4.2)-(4.5) satisfy assumptions (i)-(xi) of Theorem 3.1.

First, let us notice that the function an(t) defined by (4.2) satisfies the Lipschitz
condition with the constant L = 1 + e−1 for n = 1, 2, . . .. We omit elementary
details of the proof.

Hence we infer that the function a(t) = (an(t)) is an element of the space BC∞
and satisfies the Cauchy condition indicated in assumption (i). Moreover, in view
of the inequality

an(t) = te−2nt ≤ 1

2n
e−1

we infer that lim
n→∞

an(t) = 0 for any t ∈ R+. Apart from this we have that

|an(t)| ≤
1

2
e−1

for all t ∈ R+ and n = 1, 2, . . .. Thus the function sequence (an(t)) is equibounded
on R+. Further, we deduce that

A = sup
{
|an(t)| : t ∈ R+, n = 1, 2, . . .} =

1

2
e−1.

Summing up we conclude that assumption (i) is satisfied.
Now, consider the function kn(t, τ) defined by (4.4). Obviously, the function kn

is continuous on the set R2
+ for any n = 1, 2, . . .. It is easily seen that

∂kn
∂t

= −γτe−γ(t+n)τ = −γτe−γnτe−γtτ (4.6)

for n = 1, 2, . . .. It is easy to check that if we consider the function zn(τ) = τe−γnτ

then zn(τ) ≤ 1
γn ≤ 1

γ for any τ ∈ R+ and n = 1, 2, . . .. Hence and in view of (4.6)
we deduce that the partial derivative ∂kn

∂t is bounded i.e.,∣∣∣∂kn(t, τ)
∂t

∣∣∣ ≤ 1

for t, τ ∈ R+ and for n = 1, 2, . . .. Hence it follows that the function t → kn(t, τ)
satisfies the Lipschitz condition on the set R+ uniformly with respect to τ ∈ R+

and n = 1, 2, . . .. Thus the function sequence (kn(t, τ)) satisfies assumption (ii).
Next, for arbitrarily fixed n ∈ N we get∫ t

0

∣∣kn(t, τ)∣∣dτ =

∫ t

0

e−γ(t+n)τdτ =
1

γ(t+ n)
(1− e−γ(t+n)t) ≤ 1

γ(t+ n)
.

Hence we see that
lim
t→∞

∫ t

0

∣∣kn(t, τ)∣∣dτ = 0
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uniformly with respect to t ∈ R+ and n = 1, 2, . . .. Moreover, we have that∫ t

0

∣∣kn(t, τ)∣∣dτ ≤ 1

γ

for t ∈ R+ and n = 1, 2, . . .. Thus, assumption (iii) is satisfied with the constant
K1 = 1

γ .
To verify assumption (iv) let us observe that∣∣kn(t, τ)∣∣ = e−γ(t+n)τ ≤ 1

for t, τ ∈ R+ and n = 1, 2, . . .. Hence we infer that assumption (iv) is satisfied with
the constant K2 = 1.

Further on we show that the function fn = fn(t, x1, x2, . . .) verifies assumption
(v) (n = 1, 2, . . .). To this end fix ε > 0, r > 0 and take an arbitrary element
x = (xi) ∈ l∞ such that ∥x∥l∞ ≤ r. Then, for arbitrary chosen numbers t, s ∈ R+

and n ∈ N we obtain:∣∣fn(t, x1, x2, . . .)− fn(s, x1, x2, . . .)
∣∣

≤
∣∣∣x2

n + 1

n+ t
− x2

n + 1

n+ s

∣∣∣+ ∣∣∣ x2
n+1

2n+ t
−

x2
n+1

2n+ s

∣∣∣+ ∣∣∣xn+2 + 2

n2 + t
− xn+2 + 2

n2 + s

∣∣∣
≤|sx2

n − tx2
n + s− t|

(n+ t)(n+ s)
+ x2

n+1

|t− s|
(2n+ t)(2n+ s)

+
|sxn+2 − txn+2 + 2s− 2t|

(n2 + t)(n2 + s)

≤x2
n|t− s|+ |t− s|
(n+ t)(n+ s)

+ x2
n+1

|t− s|
(2n+ t)(2n+ s)

+
|xn+2||t− s|+ 2|t− s|

(n2 + t)(n2 + s)

≤r2|t− s|+ |t− s|
(1 + t)(1 + s)

+ r2
|t− s|

(2 + t)(2 + s)
+

r|t− s|+ 2|t− s|
(1 + t)(1 + s)

≤(r2 + 1)|t− s|+ r2|t− s|+ (r + 2)|t− s|
=(2r2 + r + 3)|t− s|.

From the above estimate we conclude that assumption (v) is satisfied.
Now, let us observe that

fn(t) =
∣∣fn(t, 0, 0, . . .)∣∣ = 1

n+ t
+

2

n2 + t
.

Hence we infer that lim
n→∞

fn(t) = 0 for any t ∈ R+.
Moreover, we have the following estimate

fn(t) ≤
1

1 + t
+

2

1 + t
≤ 1 + 2 = 3

for any t ∈ R+ and n = 1, 2, . . ..
Hence we conclude that the function sequence (fn) satisfies assumption (vi).

Moreover, we may accept that F = 3, where the constant F is defined in assumption
(xi).

In order to verify assumption (vii) let us fix an arbitrary number r > 0. Take
ε > 0 and x ∈ l∞ such that ∥x∥l∞ ≤ r and choose an arbitrary number T > 0.
Then, for t, s ∈ R+ such that t, s ≥ T and for an arbitrarily fixed natural number
n, we obtain∣∣fn(t, x)− fn(s, x)

∣∣
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≤
∣∣∣x2

n + 1

n+ t
− x2

n + 1

n+ s

∣∣∣+ ∣∣∣ x2
n+1

2n+ t
−

x2
n+1

2n+ s

∣∣∣+ ∣∣∣xn+2 + 2

n2 + t
− xn+2 + 2

n2 + s

∣∣∣
≤|x2

n(s− t) + (s− t)|
(n+ t)(n+ s)

+ x2
n+1

|t− s|
(2n+ t)(2n+ s)

+
|xn+2(s− t) + 2(s− t)|

(n2 + t)(n2 + s)

≤(x2
n + 1)

t+ s

(n+ t)(n+ s)
+ x2

n+1

t+ s

(2n+ t)(2n+ s)
+ (|xn+2|+ 2)

t+ s

(n2 + t)(n2 + s)

≤(r2+1)

[
t

(n+t)(n+s)
+

s

(n+t)(n+s)

]
+r2

[
t

(2n+t)(2n+s)
+

s

(2n+t)(2n+s)

]
+ (r + 2)

[
t

(n2 + t)(n2 + s)
+

s

(n2 + t)(n2 + s)

]
≤(r2 + 1)

( 1

n+ s
+

1

n+ t

)
+ r2

( 1

2n+ s
+

1

2n+ t

)
+ (r + 2)

( 1

n2 + s
+

1

n2 + t

)
≤(r2 + 1)

2

1 + T
+ r2

2

2 + T
+ (r + 2)

2

1 + T

≤(r2 + 1)
2

T + 1
+ r2

2

T + 1
+ (r + 2)

2

T + 1

=(2r2 + r + 3)
2

T + 1
.

From the above obtained estimate we infer that assumption (vii) is satisfied.
In what follows let us fix r > 0 and n ∈ N. Next, take x = (xi), y = (yi) ∈ l∞

such that ∥x∥l∞ ≤ r, ∥y∥l∞ ≤ r . Then we get∣∣fn(t, x1, x2, . . .)− fn(t, y1, y2, . . .)
∣∣

≤
∣∣∣x2

n + 1

n+ t
− y2n + 1

n+ t

∣∣∣+ ∣∣∣ x2
n+1

2n+ t
−

y2n+1

2n+ t

∣∣∣+ ∣∣∣xn+2 + 2

n2 + t
− yn+2 + 2

n2 + t

∣∣∣
≤ 1

n+ t
|x2

n − y2n|+
1

2n+ t
|x2

n+1 − y2n+1|+
1

n+ t
|xn+2 − yn+2|

≤ 1

1 + t
|xn − yn||xn + yn|+

1

2 + t
|xn+1 − yn+1||xn+1 + yn+1|+

1

1 + t
|xn+2 − yn+2|

≤ 1

1 + t
|xn−yn|

(
|xn|+|yn|

)
+

1

1+t
|xn+1−yn+1|

(
|xn+1|+|yn+1|

)
+

1

1+t
|xn+2−yn+2|

≤ 1

1 + t

[
2r|xn − yn|+ 2r|xn+1 − yn+1|+ |xn+2 − yn+2|

]
≤(4r + 1)max

{
|xi − yi| : i = n, n+ 1, n+ 2

}
≤(4r + 1) sup

{
|xi − yi| : i ≥ n

}
.

Thus we see that assumption (viii) is satisfied with the function m having the form
m(r) = 4r + 1.

Now, keeping in mind formula (4.5) we are going to check assumption (ix). To
this end fix t ∈ R+, n ∈ N and take x = (xi), y = (yi) ∈ l∞. Then we get∣∣gn(t, y)− gn(t, x)

∣∣ = ∣∣gn(t, y1, y2, . . .)− gn(t, x1, x2, . . .)
∣∣

=
∣∣∣ arctan(y1 + yn + yn+1

n+ t+ β

)
− arctan

(x1 + xn + xn+1

n+ t+ β

)∣∣∣
≤

∣∣∣y1 + yn + yn+1

n+ t+ β
− x1 + xn + xn+1

n+ t+ β

∣∣∣
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≤ 1

n+ t+ β

(
|y1 − x1|+ |yn − xn|+ |yn+1 − xn+1|

)
≤ 3

n+ t+ β
max

{
|y1 − x1|, |yn − xn|, |yn+1 − xn+1|

}
≤ 3 sup

{
|yn − xn| : n ∈ N

}
= 3∥y − x∥l∞ .

Hence we see that the function g = (gx)(t) satisfies assumption (ix).
Next, let us observe that for arbitrarily fixed t ∈ R+, n ∈ N and x ∈ l∞ we have

|gn(t, x)| = |gn(t, x1, x2, . . .)| =
∣∣∣ arctan(x1 + xn + xn+1

n+ t+ β

)∣∣∣ ≤ π

2
.

Obviously this implies that ∥(gx)(t)∥l∞ ≤ π
2 for any x ∈ l∞ and t ∈ R+. Thus the

operator g is bounded on the set R+ × l∞ and we can accept that G = π
2 , where G

is the constant appearing in assumption (x).
Finally, we are going to verify assumption (xi). To this end let us consider the

inequality from that assumption. Indeed, taking into account all constants A, F ,
G, K1 established above and keeping in mind that the function m = m(r) has the
form m(r) = 4r + 1, we obtain that the mentioned inequality has the form

1

2
e−1 + 3

π

2

1

γ
+

π

2γ
r(4r + 1) ≤ r.

Equivalently, we get the inequality

1

2
γe−1 +

3π

2
+

πr

2
(4r + 1) ≤ γr,

which can be written in the form

2πr2 + (
π

2
− γ)r +

3

2
π +

1

2
e−1γ ≤ 0. (4.7)

It is easy to check that the above inequality has a positive solution for suitable value
of the parameter γ. For example, for γ = 5π the number r0 = 9

8 is a solution of
inequality (4.7).

Observe that if r0 > 0 is a solution of inequality (4.7) (equivalently: r0 > 0 is a
solution of the first inequality from assumption (xi)) then we have that

GK1m(r0) <
1

r0

[
A+ F GK1 +GK1r0m(r0)

]
≤ r0

r0
= 1.

Hence we infer that the second part of assumption (xi) of Theorem 3.1 is also
satisfied.

Thus, in view of Theorem 3.1 we conclude that infinite system of integral equa-
tions (4.1) has a solution x(t) in the Banach space BC∞ which is coordinatewise
converging at infinity.

Remark 4.1. Notice that the constant β appearing in infinite system (4.1) (cf.
formula (4.5)) has no influence on conditions ensuring the solvability of that infinite
system.
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