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Abstract In this work, we are concerned with the modified KdV-sine-Gordon
(mKdV-sG) equation. Breather solutions of the mKdV-sG equation are de-
rived via using simplified Hirota’s bilinear method. Moreover, we construct a
new Lyapunov functional to present nonlinear stability of breather solutions
to the mKdV-sG equation.
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1. Introduction
In this paper, we study nonlinear stablity of breather solutions to the following
modified KdV-sine-Gordon (mKdV-sG) equation

uxt + a(
3

2
u2
xuxx + uxxxx) = b sinu, (1.1)

with a, b are nonlinear parameters. In [16], the mKdV-sG equation was first found
integrable by Konno, Kameyama and Sanuki when studying the nonlinear wave
propagation in an infinite one-dimensional mon-atomic lattice in which the anhar-
monic potential competes with the dislocation potential and which can be solved
by the inverse scattering transform method. Many physically meaningful systems,
such as the modified Korteweg-de Vries (mKdV) equation [1], the Sine-Gordon
(sG) equation [34,35], and the negative order modified Korteweg-de Vries (nmKdV)
equation [2, 10, 29], are associated to mKdV-sG equation through reciprocal trans-
formations. Moreover, those equations admit breather solutions which are known
to describe a kind of wave solutions [11,24,31,42].

In recent years, most of the works concentrated for exploring N-soliton solutions,
multiple complex soliton solutions, N-periodic wave solutions and then studying the
numerical analysis of solition solutions. Such as, the N-soliton solutions were dis-
cussed in [5,17] for the mKdV-sG equation by two kinds of bilinear forms. Infinitely
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many nonlocal symmetries and nonlocal conservation laws for the mKdV-sG equa-
tion were presented by Liang [19]. The complex simplified Hirota’s forms and Lie
symmetry analysis for multiple real and complex soliton solutions and the numeri-
cal evaluations of periodic wave solutions via a numerical method to the mKdV-sG
equation have been studied in [36]. Some recent work on soliton solutions and
some numerical results can be found in [12, 20, 22, 23, 26, 27, 37]. In this paper,
we will study the breather solutions and their nonlinear stability by using simpli-
fied Hirota’s bilinear method and constructing a new Lyapunov functional to the
mKdV-sG equation.

Breather solutions which were found earlier in numerical simulations [6–9, 30]
as long lifetime structures which show up spontaneously. We call breather a time
periodic solution which is localized in space or equivalently which decays to zero
at infinite distance. In a physical setting, breather solutions have been considered
in completely integrable equations such as the sine-Gordon equation [4,32] and the
modified Korteweg-de Vries (mKdV) equation [1, 38]. So far, the first breather-
type solution of the nonlinear Schrödinger equation was found over 40 years ago by
Kuznetsov [18] and Ma [25], followed by the discovery of the Peregrine breather a few
years later [28]. Alejo [1, 3] studied the nonlinear stability of breather solutions to
the mKdV equation and the Gardner equation. Afterwards, Wang et al. considered
the results of the coupled modified Korteweg-de Vries (cmKdV) equation and the
negative order modified Korteweg-de Vries (nmKdV) equation [39, 40]. Based on
the previous studies, the objectives of this work will be on extending our results
in [39] to conduct breather solutions and their nonlinear stability of to the mKdV-sG
equation.

The paper is organized as follows. In Section 2, we get stability tests via com-
puting the generalized Weinstein conditions for the mKdV-sG breather solutions.
According to the conservation laws, we get variational characterization of breather
solutions in Section 3. Section 4 is devoted to the discussions of spectral properties
through the analysis of the spectral stability . In Section 5, we present the proof of
our main Theorem. The conclusions are summarized in Section 6.

2. Generalized Weinstein conditions
With variable transformation

u = 2i ln
f∗

f
, (2.1)

the mKdV-sG equation (1.1) reduce to the following bilinear form

D2
xf · f∗ = 0, (2.2)

(DxDt + aD4
x)f · f =

1

2
b(f2 − f∗), (2.3)

where the D operator [13] is defined by

Dm
t Dn

xa(t, x) · b(t, x)

=
∂m

∂sm
∂n

∂yn
a(t+ s, x+ y)b(t− s, x− y)|s=0,y=0,

m, n = 0, 1, 2, · · · . (2.4)
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and f∗ means the conjugate of f . Set f = F + iG, then f∗ = F − iG, the bilinear
equations (2.2)-(2.3) can be transformed to

D2
x(F · F +G ·G) = 0, (2.5)

(DxDt + aD4
x)(F · F −G ·G) = 0, (2.6)

(DxDt + aD4
x − b)F ·G = 0. (2.7)

By solving the bilinear mKdV-sG equation (2.5)-(2.7), we can get the breather
solutions

G = exp(p1x− (ap31 −
b

p1
)t+ exp(p2x− (ap32 −

b

p2
)t),

F = 1− (p1 − p2)
2

(p1 + p2)2
exp[(p1 + p2)x− (ap31 + ap32 −

b

p1
− b

p2
)t],

where p1 = p+ iq, p2 = p− iq and p, q are real. The transformation between u and
F,G is

u = 4arctan
G

F
.

With some calculations, we can write the breather solutions as

u = 4arctan(|p
q
| ·

cos{qx+ [a(3p2q − q3) + bq
p2+q2 ]t}

cosh{(px− [a(p3 − 3pq2)− bq
p2+q2 ]t+ ln | qp |}

.

Without loss of generality, in this paper, we choose p, q > 0, we can get the
mKdV-sG breather solutions

B = 4

[
arctan

(
p

q
· cos(qy1)

cosh(py2)

)]
, (2.8)

with y1 = x+[a(3p2− q2)+ b
p2+q2 ]t+x1, y2 = x− [a(p2−3q2)− b

p2+q2 ]t+
ln q

p

p +x2.
Note that from the formula B, we have

B(t, x;x1, x2) = B(t− t0, x− x0), (2.9)

and
B(t, x;x1 +

kπ

q
, x2) = (−1)kB(t, x;x1, x2), (2.10)

where t0 = x1−x2

4(p2+q2) , x0 = αx2−βx1

4(p2+q2) , α = a(3p2−q2)+ b
p2+q2 , β = a(3q2−p2)+ b

p2+q2 ,
which reveal the mKdV-sG breather solutions are invariant under space and time
translations and periodic for the first translation parameter.

In [14], Hu et al. presented the first three conservation quantities of the mKdV-
sG equation by further numerical experiments

M1[u] =

∫
R
u2
xdx, (2.11)

M2[u] =

∫
R
(u2

x − 4u2
xx)dx, (2.12)

M3[u] =

∫
R
(u6

x − 20u2
xu

2
xx + 8u2

xxx)dx. (2.13)
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With some calculations, breather solutions (2.8) can be transformed into

Bx = −4psech(py2)
[
sin(qy1) +

p
q cos(qy1) tanh(py2)

1 + p2

q2 cos2(qy1)sech2(py2)

]
, (2.14)

then, after some simplifications, we have

B2
x =16p2sech2(py2)

[
sin(qy1) +

p
q cos(qy1) tanh(py2)

1 + p2

q2 cos2(qy1)sech2(py2)

]2

=16p2q2
[
q2 sin2(qy1) cosh

2(py2) + p2 cos2(qy1) sinh
2(py2)

p2 cos2(qy1) + q2 cosh2(py2)

]
+ 16p2q2

2pq sin(qy1) cos(qy1 sinh(py2) cosh(py2)

p2 cos2(qy1) + q2 cosh2(py2)
. (2.15)

In view of double angle formulas,

Ω :=

∫ x

−∞
B2

x(t, s;x1, x2)ds

=
8p

[
p2 + q2 − pq sin(2qy1) + p2 cos(2qy1) + q2 sinh(2py2) + q2 cosh(2py2)

]
p2 + q2 + q2 cosh(2py2) + p2 cos(2qy1)

.

(2.16)

As x −→ +∞, we have
M1[B] =

∫
R
B2

xdx = 16p. (2.17)

Then, integrating by parts for (1.1) in space, one has

∂tΩ+
a

4
(B4

x − 4B2
xx) = 2b− 2b cosB, (2.18)

by integrating for (2.18) in space, when x −→ +∞, we have

M2[B] =

∫
R
B4

xdx−
∫
R
4B2

xxdx

= −4

a

[∫
R
2b(1− cosB)dx−

∫
R
∂tΩdx

]
= −4

a
[

8bp

p2 + q2
+ 16pβ]. (2.19)

These two results show the explicit dependence of the mass (2.11) and the energy
(2.12) on the scaling parameters p, q. Let ∂pB = ∧pB, ∂qB = ∧qB, we obtain

∂pM1[B] = 8

∫
R
Bx ∧p Bxdx = 16 > 0,

∂qM1[B] = 8

∫
R
Bx ∧q Bxdx = 0,

which leads to the generalized Weinstein condition [41] for any breather solutions
Bp,q of the mKdV-sG equation (1.1).
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3. Variational characterization of breather solutions
In this section, according to the conservation quantities (2.11), (2.12) and (2.13), we
introduce a new Lyapunov function for the mKdV-sG equation (1.1), well defined
in the H3-topology, as follows:

H[u](t) :=M3[u](t)− 4(p2 − q2)M2[u](t) + 8(p2 + q2)2M1[u](t)

=

∫
R
(u6

x − 20u2
xu

2
xx + 8u2

xxx)dx− 4(p2 − q2)

∫
R
(u4

x − 4u2
xx)dx

+ 8(p2 + q2)2
∫
R
u2
xdx, (3.1)

with p and q are scaling parameters. Clearly, H[u] is a real-valued conserved quan-
tity. Moreover, one has the following result.

Proposition 3.1. Let B = u be any mKdV-sG breather solution, then for any
z ∈ H3(R) with sufficiently small H3-norm, we have

H[B + z] = H[B] +
1

2
Q[z] +N [z], (3.2)

where Q[z], N [z] are fixed later. Moreover, | N [z] |≤ K∥z∥3H3(R) for some constant
K.

Proof. By computing H[B + z] directly, we have the following decomposition

H[B + z] = H[B]− 16

∫
R
G[B](t)zdx+

1

2
Q[z] +N [z], (3.3)

where

G[B] =B(6x) − 2(p2 − q2)(2B(4x) + 3B2
xBxx) + (p2 + q2)2Bxx

+
15

8
B4

xBxx +
5

2
B3

xx + 10BxBxxBxxx +
5

2
B2

xB(4x),
(3.4)

Q[z] =4

∫
R
z2xxxdx+ 8(p2 − q2)

∫
R
z2xxdx+ 4(p2 + q2)2

∫
R
z2xdx

− 40

∫
R
BxBxxzxzxxdx− 10

∫
R
B2

xxz
2
xdx− 10

∫
R
B2

xz
2
xxdx

− 12(p2 − q2)

∫
R
B2

xz
2
xdx+

15

2

∫
R
B4

xz
2
xdx,

(3.5)

and

N [z] =20

∫
R
B3

xz
3
xdx− 16(p2 − q2)

∫
R
Bxz

3
xdx+ 15

∫
R
B2

xz
4
xdx

− 4(p2 − q2)

∫
R
z4xdx+ 6

∫
R
Bxz

5
xdx+

∫
R
z6xdx

− 40

∫
R
Bxzxz

2
xxdx− 40

∫
R
Bxxz

2
xzxxdx− 20

∫
R
z2xz

2
xxdx. (3.6)

Note that, from direct estimates for N [z], we have N [z] = O
(
∥z(t)∥3H3(R)

)
, which

means
| N [z] |≤ K∥z∥3H3(R).
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From (1.1) and (2.18), we have

G[B] =
(b sinB −Bxt − 3

2aB
2
xB2x)2x

a
− 4(p2 − q2)

a
(b sinB −Bxt)

+ (p2 + q2)2Bxx +
15

8
B4

xBxx +
5

2
B3

xx + 10BxBxxBxxx +
5

2
B2

xB(4x)

=
1

a
[Bxxxt + b cosBBxx − b sinBB2

x]−
4(p2 − q2)

a
(b sinB −Bxt)

+ (p2 + q2)2Bxx +
15

8
B4

xBxx − 1

2
B3

xx +BxBxxBxxx − 1

2
B2

xB(4x)

=0, (3.7)

this implies Proposition 3.1 is proved.

4. Spectral analysis
Let z ∈ H6(R), B be any breather solution of equation(1.1), with shift parameters
x1, x2. From the definition of Q[z], we introduce the following operator:

L[z](x, t) =− 4z(6x) + 8(p2 − q2)z(4x) − 4(p2 + q2)2zxx + 30B2
xxzxx

+ 20BxxBxxxzx − 30B4
xzxx + 20BxBxxxzxx − 10B2

xz(4x)

+ 12(p2 − q2)(2BxBxxzx +B2
xzxx)−

15

2
B4

xzxx. (4.1)

Clearly, Q[z] :=

∫
R
zL[z]dx. Moreover, let z, ω ∈ H6(R), we have∫

R
ωL[z](x, t)dx

=

∫
R
[4z(3x)ω(3x) + 8(p2 − q2)zxxωxx + 4(p2 + q2)2zxωx]dx

+

∫
R
[30B2

xxzxωx + 30B4
xzxωx − 10B2

xxzxxωxx + 40BxB(3x)zxωx]dx

+

∫
R
[40BxBxxzxωxx + 150B3

xBxxzxω]dx+ 12(p2 − q2)

∫
R
B2

xzxωxdx

+
15

2

∫
R
B4

xzxωxdx =

∫
R
zL[ω](x, t)dx, (4.2)

which leads to L∗ = L in H6(R). Therefore, it is easy to see that D(L∗) can be
identified with D(L) = H6(R).

In the following, we have the following results.

Proposition 4.1. Let ∂x1B = B1, ∂x2B = B2. Set a Wronskian matrix of B1, B2

W [B1, B2](t, x) =:

 B1 B2

(B1)x (B2)x

 (x, t), (4.3)

then we can get∑
x∈R

dimkerW [B1, B2](t, x) = dimkerW [B1, B2](t; y0 − βt− x0) = 1, (4.4)
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for any breather solution of equation(1.1).

Proof. At first, by direct computing yields

detW [B1, B2](t, x)

= B1(B2)x −B2(B1)x (4.5)

= (p sin 2qy2 − q sinh 2py1) ·
4p3q3[p2(1 + cos 2qy1) + q2((1 + cosh 2py2)]

p2 cos2(qy1) + q2 cosh2(py2)
.

Define

g(y2) = gt,p,q,x̃2
= q sinh(2py2)− p sin(2qỹ2), (4.6)

where ỹ2 = y2 + (α− β)t+ x̃2, x̃2 = (x1 − x2 −
ln q

p

p ) ∈ R, α− β = 4(p2 − q2).
In fact, for y2 ∈ R, when | sinh 2py2 |> p

q , g(y2) has no root. Moreover, by a simple
argument, we can find that there exists R0 = R0(p, q) > 0 such as g(y2) > 0 in the
case of y2 > R0 and g(y2) < 0 in the case of y2 < −R0. Combining the condition
of g(y2) is continuous, we get g(y2) has a root y0 = y0(t, p, q, x̃2) ∈ [−R0, R0]. If
y2 ̸= 0, we can deduce that

g
′
(y2) = 2pq (cosh(2py2)− cos(2qỹ2)) . (4.7)

This result means that if y0 ̸= 0, we have∑
x∈R

dimkerW [B1, B2](t, x) = dimkerW [B1, B2](t; y0 − βt− x0) = 1,

since B1 or (B1)x are not zero at the same point. This completes Proposition 4.1.

Proposition 4.2. Let B1 = ∂x1
B, B2 = ∂x2

B, ∂pB = ∧pB, ∂qB = ∧qB. Then
the operator L has unique negative eigenvalue, counting multiplicity, namely −λ2

0.
Moreover, we have

kerL = Span {B1(t, ., x1, x2), B2(t, ., x1, x2)} ,

and
Q[z] ≥ −cp,q∥z∥2H3(R),

where ap,q is a positive constant only depending on p, q, for any breather solution
B of equation(1.1).

Proof. Firstly, by (3.7), we have ∂x1G[B] = ∂x2G[B] = 0, it follows

L[B1](t;x1, x2) = L[B2](t;x1, x2) = 0. (4.8)

Moreover, from (3.7), we also have after derivation with respect to p and q,

L(∧pB) = 4p[2B(4x) + 3B2
xBxx − (p2 + q2)Bxx],

L(∧qB) = −4q[2B(4x) + 3B2
xBxx + (p2 + q2)Bxx].
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In view of (2.17) and (2.19),∫
R
∧pBL(∧pB)dx = −p∂pM2 + 2p(p2 + q2)∂pM1

= 32p(p2 + q2) +
32

a
[
3b(q2 − p2

a(p2 + q2)2
+ 2p(p2 + 3q2)] > 0,

(4.9)

∫
R
∧qBL(∧qB)dx = q∂qM2 + 2q(p2 + q2)∂qM1 = −64

a
[6 +

1

(p2 + q2)2
] < 0.

(4.10)

Then, from the identity of the operator L, it is easy to see L is a compact
perturbation of its constant coefficients operator L0

L0[z](x, t) := z(6x) − 2(p2 − q2)z(4x) + (p2 + q2)2zxx, (4.11)

by the Weyl Theorem on continuous Spectrum. Clearly,

e±px cos(qx), e±px sin(qx), p, q > 0,

are base functions of the null space for L0. Therefore, the kernel of the operator
L|H6(R) is spanned by at most two L2−functions in positive times [0,+∞), among
the above four functions. Which proves kerL = Span {B1(t, ., x1, x2), B2(t, ., x1, x2)} .

Finally, combining the above results and (4.4) by the uniqueness criterium (cf.
[15, 21]), we get the negative eigenvalue of L is unique, namely, −λ2

0. Then, let
B0 :=

p(∧qB)+q(∧pB)
8pq(p2+q2) , we have L[B0] = −Bxx. Additionally,∫

R
B0Bxxdx = −

∫
R
B0L[B0]dx = −Q[B0] =

1

p(p2 + q2)
> 0,

we find that B0 is a negative direction of Q. Now, let B−1 be an eigenfunction to
−λ2

0. Remembering the form Q[z] =

∫
R
zL[z]dx, and Q[B1] = Q[B2] = 0. Thanks

to ∧pB is a positive direction for Q. Moreover, the form Q is bounded below, that
is

Q[z] ≥ −ap,q∥z∥2H3(R).

Lemma 4.1. Let B be any breather solution of equation(1.1), and B1, B2 be the
kernels of the operator L. Assume that there exists η0(p, q), for any z ∈ H3(R),
satisfying ∫

R
B1zdx =

∫
R
B2zdx = 0, (4.12)

one has
Q[z] ≥ η0∥z∥2H3(R) −

1

η0
(

∫
R
Bxzxdx)

2. (4.13)

Proof. From Proposition 4.2, (4.12) and the additional orthogonality condition∫
R
Bxzxdx = 0, we decompose z and B0 in span (B−1, B1, B2), as follows,

z = z̃ +mB−1, B0 = b0 + nB−1 + rB1 + sB2, m, n, r, s ∈ R,
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with∫
R
z̃B−1dx =

∫
R
z̃B1dx =

∫
R
z̃B2dx =

∫
R
b0B−1dx =

∫
R
b0B1dx =

∫
R
b0B2dx = 0.

In addition that ∫
R
B−1B1dx =

∫
R
B−1B2dx = 0,

one has
Q[z] =

∫
R
(L[z̃]−mλ2

0B−1)(z̃ +mB−1)dx = Q[z̃]−m2λ2
0. (4.14)

In view of L[B0] = −Bxx,

0 =

∫
R
Bxzxdx =

∫
R
zL[B0]dx =

∫
R
L[z̃ +mB−1]B0dx

= −
∫
R
(mλ2

0B−1 − L[z̃])(b0 + nB−1 + rB1 + sB2)dx

= L[z̃]b0 −mnλ2
0, (4.15)

and similarly,∫
R
B0Bxxdx = −

∫
R
B0L[B0]dx = −

∫
R
(b0+nB1)(L[b0]−nλ2

0)dx = −Q[b0]+n2λ2
0.

(4.16)
Inserting (4.15) and (4.16) into (4.14) yields

Q[z] = Q[z̃]−
(

∫
R
L[z̃]b0dx)

2∫
R
B0Bxxdx+Q[b0]

. (4.17)

If z̃ = λb0, λ ̸= 0, we have

(

∫
R
L[z̃]b0dx)

2∫
R
B0Bxxdx+Q[b0]

≤ CQ[z̃], 0 < C < 1.

Therefore, for some C1 > 0, we can deduce that

Q[z] ≥ (1− C1)Q[z̃] ≥ 1

2
(1− C1)Q[z̃] + (1− C1)m

2λ2
0

≥ 1

C1
(2∥z̃∥2H3(R) + 2m2∥B−1∥2H3(R)) ≥

1

C1
∥z∥2H3(R), (4.18)

this result show that our Lemma 4.1.

5. Nonlinear stability of mKdV-sG breathers
In this section, our main result can be summarized as the following Theorem.
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Theorem 5.1. Let p, q > 0, u(x, t)|t=0 = u0 ∈ H3(R), if there exists a η0 depend-
ing on p, q such that

(Rt1) ∥u0 −Bp,q(0, 0; 0, 0)∥H3(R) ≤ η, ∀η ∈ (0, η0).

Then there exist x1(t), x2(t) such that the solution u(x, t) of equation (1.1) with
u(x, t)|t=0 = u0 satisfies

(Rt2) sup
t∈R

∥u(t)−Bp,q(x, t;x1(t), x2(t))∥H3(R) ≤ Kη,

with

(Rt3) sup
t∈R

(|x
′

1(t)|+ |x
′

2(t)|) ≤ KK1η,

for some constants K > 0, K1 > 0.

Proof of Theorem 5.1. Considering that u0 ∈ H3(R) satisfies (Rt1) and u ∈
C(R;H3(R)) is the corresponding solution of equation (1.1) with u(0) = u0. By
contradiction, assume that a maximal time of stability T0, namely

T0 := sup
t∈R

{T > 0 | for all t ∈ [0, T0], there exist x̃1(t), x̃2(t) ∈ R such that

sup
t∈[0,T0]

∥u(t)−B(t, x; x̃1(t), x̃2(t))∥H3(R) ≤ K∗η}, (5.1)

is finite, with K∗
1 > 2, η ∈ (0, η0) is fixed in Theorem 5.1. Our main interesting

is to consider positive times, since the negative time case is analogous, we omit
it. Therefore, if we can prove T0 = +∞ such that T0 is contradict with (5.1), we
complete the proof. In fact, for all t ∈ [0, T0], by taking η0 smaller, if Theorem 5.1
is satisfied if only if the following results are satisfied

(Rt3) ∥Z(0)∥H3(R) ≤ K1η,

(Rt3)

∫
R
B1(t;x1(t), x2(t))z(t)dx =

∫
R
B2(t;x1(t), x2(t))z(t)dx = 0,

(Rt3) ∥z(t)∥H3(R) + |x
′

1(t)|+ |x
′

2(t)| ≤ K1K
∗η, with z(t) := u(t)−B(t).

Firstly, it is clear that from (Rt1), we can get (Rt4). In the following, according
to the Implicit Function Theorem. Set

Ji(u(t), x1, x2) :=

∫
R
(u(t, x)−B(t, xi, x1, x2))Bidx, i = 1, 2,

one has

∂xk
Ji(u(t), x1, x2)|(B(t),0,0) = −

∫
R
Bk(t, xi, 0, 0)Bi(t, xi, 0, 0)dx.

Then, let J be the 2× 2 matrix with components Ji,k := (∂xk
Ji)i,k=1,2, we have

det J = −
[∫

R
B2

1dx

∫
R
B2

2dx− (

∫
R
B1B2dx)

2

]
(t; 0, 0).

Since B1 and B2 are not parallel in the same time point, we have det J ̸= 0, which
leads to (Rt5).
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Finally, in view of (2.9),

B(t, x;x1, x2) = B(t− t0(x), x− x0(t)),

it follows

H[B(t, ·;x1(t), x2(t))] = H[B(t− t0(t), · − x0(t); 0, 0)]

= H[B(t− t0(t), ·; 0, 0)]
= H[B(·, ·; 0, 0)](t− t0(t)).

Since ∂tH[B(t, ·;x1(t), x2(t))] = H
′
[B(·, ·; 0, 0)](t− t0(t))× (1− t

′

0(t)) ≡ 0, it follows
that H[B](t) = H[B](0) is constant in time. Combinging (3.1) and (3.2), we have

Q[z](t) ≤ Q[z](0) +K1∥z(t)∥3H3(R) +K1∥z(0)∥3H3(R)

≤ +K1∥z(0)∥2H3(R) +K1∥z(t)∥3H3(R). (5.2)

By Lemma 4.1, we obtain

∥z(t)∥2H3(R) ≤ K1∥z(0)∥2H3(R) +K1∥z(t)∥3H3(R) +K1|
∫
R
Bx(t)zx(t)|2

= K1η
2 +K1(K

∗)3η3 +K1K1|
∫
R
Bx(t)zx(t)|2. (5.3)

After expanding u = B + z in the conservation of mass (2.11), we get

|
∫
R
Bx(t)zx(t)| ≤ K1|

∫
R
Bx(0)zx(0)|+K1∥z(0)∥2H3(R) +K1∥z(t)∥2H3(R)

≤ K1(η + (K∗)2η2), for all t ∈ [0, T0]. (5.4)

Replacing (5.4) into (5.3), we have

∥z(t)∥2H3(R) ≤ K1η
2(1 + (K∗)2η3) ≤ 1

2
(K∗)2η2,

by taking K∗ large enough, which contradicts assumption (5.1).

6. Conclusion
In this paper, we have presented some details of nonlinear stability of breather
solutions for the mKdV-sG equation. Our conclusion is that mKdV-sG breathers
are nonlinear stable at the H3-level of regularity. When waves transmission some
point, it can be translate to breathers. As we explained above, the introduction of
a new Lyapunov functional for which breather solutions are local minimizers at the
essential point. Moreover, this functional controls the perturbation terms and the
instability directions that appear during of the dynamics.
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