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Abstract We demonstrate the existence and uniqueness of solutions to the
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diffusion process relative to a discounted performance criteria.

Keywords Ultraparabolic Hamilton-Jacobi equation, ultradiffusion process,
optimal control.

MSC(2010) 49L12, 35K70, 93E20.

1. Introduction
The classification of partial differential equations as ultraparabolic appears to be
due to Il’in [11], although the problem clearly predates his involvement∗. In terms
of applications, we will simply note that historically an interest in ultraparabolic
equations arose relative to works by Kolmogorov [14, 15] and Uhlenbeck and Orn-
stein [25] in connection with Brownian motion in phase space, Chandrasekhar [2]
with respect to the theory of boundary layers, and by Marshak [22] via linearization
of the kinetic Boltzmann equations. Recent surveys may be found in Akhmetov et
al. [1] and Lanconelli et al. [17]. In general, ultraparabolic equations do not possess
properties that are fundamental to parabolic equations such as a strong maximum
principle, interior a priori estimates, and so forth.

Chronologically, we note that the first theoretical investigations of ultraparabolic
operators were by Piskunov [23] (classical) and Lions [18] (weak), who affected
analysis along temporal characteristics and so were able to derive existence and
uniqueness results through the surjectiveness of the transformation, albeit with the
strict caveat that the speed of propagation vary spatially. Genčev [8] utilized elliptic
regularization on bounded domains, but was unable to provide any distinct interpre-
tation of the temporal derivatives. Il’in [11] employed the method of fundamental
solutions, obtaining classical regularity for the Cauchy problem. Vladimirov and
Drožžinov [26] extended Il’in’s approach by using a convolution of the fundamental
solution in order to obtain weak solutions on unbounded domains, but require the
data to remain constant. Recently, Marcozzi [19] established the well-posedness
and Galerkin approximation of the generalized solution (strong and weak) to the
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linear ultraparbolic terminal value problem using energic techniques; these results
were extended in [20] to unbounded domains, likewise applicable here.

Some more general recent studies include: Tersenov [24], wherein the Cauchy
problem for a quasilinear ultraparabolic equation is considered; Han and Mo [9], who
present generalized asymptotic solutions to a class of nonlinear singularly perturbed
ultraparabolic equations; Kozhanov and Kosheleva [16], who analyze the solvability
of linear inverse problems for ultraparabolic equations with unknown coefficients
depending only on the spatial variables; Khoa et al. [13], who consider a uniqueness
result for an age-dependent reaction-diffusion equation; and Ivasyshen and Pasich-
nyk [12], who obtain the fundamental solution for an ultraparabolic equation with
infinitely increasing coefficients.

In this paper, we demonstrate the existence and uniqueness of regular solutions
to the ultraparabolic Hamilton-Jacobi equation on bounded domains. In particular,
the results are readily extended to higher dimensions in both space and time. The
paper is organized as follows. In section 2, we derive a positivity result which is
decisive for the existence result. In section 3, we consider the existence of solu-
tions to the ultraparabolic Hamilton-Jacobi equation, which utilizes the existence
of the optimizer of the Hamiltonian, the well-posedness of the linear terminal value
ultraparabolic problem, as well as regularity. Section 4 presents the probabilistic
interpretation of the solution to the ultraparabolic Hamilton-Jacobi equation as the
discounted expectation of a controlled ultradiffusion process. This result in turn
leads immediately to the uniqueness of the solution to the associated ultraparabolic
Hamilton-Jacobi equation. A summary of the results is presented in section 5.

2. Positivity Result
We define

V =
◦

W 1
2 (0, X) and H = L2(0, X) ,

in which case “V ⊆ H ⊂ V ∗” is an evolution triple. Let Q = (0, T )×(0,Θ)×(0, X),
for positive finite T , Θ, and X, and O

T,Θ
= (0, T )× (0,Θ), O

Θ,X
= (0,Θ)× (0, X),

and O
T,X

= (0, T )× (0, X). For X = L2(OT,Θ
;V ) and X ∗ = L2(OT,Θ

;V ∗), let

W = W 1
2 (OT,Θ

;V,H) = {u ∈ X : ∇t(u) ∈ X ∗ ×X ∗ } ,

where t = (t, ϑ) and ∇t(u) = (∂u/∂t, ∂u/∂ϑ), which we equip with the norm

∥u∥W = ∥u∥X + ∥∂u/∂t∥X∗ + ∥∂u/∂ϑ∥X∗ .

We consider the ultraparabolic terminal-boundary value problem for u ∈ W
satisfying the evolutionary equation

−∂u

∂t
− ∂(bu)

∂ϑ
+A(t, ϑ)u = f a.e. on Q (2.1a)

subject to the terminal conditions

u(T, ϑ, x) = υ(ϑ, x) a.e. on O
Θ,X

(2.1b)

u(t,Θ, x) = 0 a.e. on O
T,X

(2.1c)
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and boundary conditions

u(t, ϑ, 0) = u(t, ϑ,X) = 0 a.e. on O
T,Θ

, (2.1d)

where
A(t, ϑ)u = − ∂

∂x

(
a2

∂u

∂x

)
+ a1

∂u

∂x
+ a0 u ,

for given

a0 , a1 , a2 ∈ L∞(Q) , (2.2a)
b > 0 ; b ∈ L∞(Q) ; b−1, ∂b/∂ϑ ∈ L∞(Q) , (2.2b)
υ ∈ L2(0,Θ;H), (2.2c)
f ∈ L2(OT,Θ

;V ∗) , (2.2d)

and
a2 ≥ α > 0 , (2.2e)

for some α.
The generalized evolution problem associated with (2.1) is: for given data satis-

fying (2.2), find u ∈ W such that

− ∂

∂t
(u(t, ϑ)|v)H− ∂

∂ϑ
(b(t, ϑ)u(t, ϑ)|v)H+a (t, ϑ;u(t, ϑ), v) = ⟨f(t, ϑ), v⟩V , (2.3a)

for all v ∈ V and almost all (t, ϑ) ∈ O
T,Θ

,

u(T, ϑ, x) = υ(ϑ, x) a.e. on O
Θ,X

(2.3b)

and
u(t,Θ, x) = 0 a.e. on O

T,X
, (2.3c)

where

a (t, ϑ;u, v) =

∫ X

0

a2
∂u

∂x

∂v

∂x
dx+

∫ X

0

a1
∂u

∂x
v dx+

∫ X

0

a0 u v dx ,

for all u, v ∈ V and (t, ϑ) ∈ O
T,Θ

, (u|v)H is the inner product on the Hilbert space
H, and ⟨f, v⟩V is the value of the linear functional f ∈ V ∗ at v ∈ V .

We consider
(A) The mapping v → v− = sup(−v, 0) is Lipschitz continuous from V → V .

The condition (A) is satisfied in the case V =
◦

W 1
2 (0, X) by the Sobolev Embedding

theorem.

Lemma 2.1. Suppose (A) and let u ∈ W , then

2

∫
OT,Θ

[(
−∂u

∂t
, u−

)
+

(
−∂(bu)

∂ϑ
, u−

)]
dO

=

∫ Θ

0

∥u−(T, θ)∥2H dθ −
∫ Θ

0

∥u−(0, θ)∥2H dθ

+

∫ T

0

∥
√
b(τ,Θ)u−(τ,Θ)∥2H dτ −

∫ T

0

∥
√

b(τ, 0)u−(τ, 0)∥2H dτ

and
u− ∈ L2(OT,Θ;V ) ∩ C0

(
OT,Θ ; H

)
.
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Proof. We first show that the mapping u → u− is continuous (actually Lipschitz
continuous) from W (OT,Θ;V ) → L2(OT,Θ;V ) ∩ C0

(
OT,Θ ; H

)
. To this end, if u,

v ∈ W (OT,Θ;V ), we have

|u−(t, ϑ, x)− v−(t, ϑ, x)| ≤ |u(t, ϑ, x)− v(t, ϑ, x)|

in which case
∥u−(t, ϑ)− v−(t, ϑ)∥H ≤ ∥u(t, ϑ)− v(t, ϑ)∥H ,

where ∥ · ∥H = | · |, such that

∥u− − v−∥C0(OT,Θ ;H) ≤ ∥u− v∥C0(OT,Θ ;H) ≤ C∥u− v∥W (OT,Θ;V ) .

Similarly,

∥u−(t, ϑ)− v−(t, ϑ)∥L2(OT,Θ;V ) ≤ C ∥u(t, ϑ)− v(t, ϑ)∥L2(OT,Θ;V ) ,

from which the continuity of the mapping follows.
Let uj be a sequence of functions in C1

(
OT,Θ ; V

)
, then by Green’s Theorem

applied to (2.3)

2

∫
OT,Θ

[(
−∂uj

∂t
, u−

j

)
+

(
−∂(buj)

∂ϑ
, u−

j

)]
dO

=

∫ Θ

0

∥u−
j (T, θ)∥

2
H dθ −

∫ Θ

0

∥u−
j (0, θ)∥

2
H dθ

+

∫ T

0

∥
√

b(τ,Θ)u−
j (τ,Θ)∥2H dτ −

∫ T

0

∥
√
b(τ, 0)u−

j (τ, 0)∥
2
H dτ ,

in which case the result follows by proceeding to the limit and by the continuity
above.

For f ∈ L2(OT,Θ;V
∗), we say that f is non-negative (i.e. f ≥ 0) if

f ≥ 0 ⇔
∫
OT,Θ

(f, v) dO ≥ 0 , ∀v ∈ L2(OT,Θ;V ) ∋ v ≥ 0 . (2.4)

For a solution of (2.3), we have the following:

Theorem 2.1. Positivity. Let f ∈ L2(OT,Θ;V
∗) and u ∈ L2(0,Θ;H). We assume

(A), f ≥ 0, and u ≥ 0, then u− = 0.

Proof. From the weak form (2.3), it follows that∫
OT,Θ

[(
−∂u

∂t
, v

)
+

(
−∂(bu)

∂ϑ
, v

)
+ a(t, ϑ;u, v)

]
dO =

∫
OT,Θ

(f, v) dO ,

for all v ∈ L2(OT,Θ;V ). Setting v = u− in the above and using the Lemma 2.1, we
have that∫

OT,Θ

a(t, ϑ;u−, u−) dO +

∫
OT,Θ

(f, v) dO

+

∫ Θ

0

∥u−(0, θ)∥2H dθ −
∫ Θ

0

∥u−(T, θ)∥2H dθ
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+

∫ T

0

∥
√

b(τ, 0)u−(τ, 0)∥2H dτ −
∫ T

0

∥
√
b(τ,Θ)u−(τ,Θ)∥2H dτ = 0 .

Since u−(T, ϑ) = 0 if u ≥ 0, then u−(0,Θ) = 0, and from (2.4) we have∫
OT,Θ

(f, u) dO ≥ 0 ,

we deduce that ∫
OT,Θ

a(t, ϑ;u−, u−) dO ≤ 0 ,

in which case u− = 0.

3. Hamilton-Jacobi Equation
We demonstrate the existence of a solution to the ultraparabolic Hamilton-Jacobi
equation. To begin, we define the Hamiltonian and show that it may be optimized.
To this end, let V ⊂ R compact, and f(t, ϑ, x, ν), g(t, ϑ, x, ν), c(t, ϑ, x, ν), and
Ψ(t, ϑ, x, ν) map Q× V → R. Moreover, we suppose that

f , g , c , Ψ are uniformly continuous with respect to ν (3.1a)

and for fixed ν ∈ V,

f(·, ν) , g(·, ν) , c(·, ν) , Ψ(·, ν) ∈ C1(Q) . (3.1b)

Let
L(t, ϑ, x, u, p, q ; ν) = Ψ + c u+ f p+ g q , (3.2)

for (u, p, q) ∈ R3. Given (3.1), we note that L attains its maximum for fixed t, ϑ,
x, u, p, and q. We define the Hamiltonian such that

H(t, ϑ, x, u, p, q) = max
ν∈V

L(t, ϑ, x, u, p, q ; ν) . (3.3)

On account of (3.1), we note that H is measurable,

|H(t, ϑ, x, u, p, q)| ≤ C (h(t, ϑ, x) + |u|+ |p|+ |q|) , (3.4a)

where h(t, ϑ, x) ∈ L(Q) and

|H(t, ϑ, x, u1, p1, q1)−H(t, ϑ, x, u2, p2, q2)| (3.4b)
≤C (|u1 − u2|+ |p1 − p2|+ |q1 − q2|) .

Lemma 3.1. We suppose (3.1); there exists an optimizer of the Hamiltonian, which
is measurably dependent on the data.

Proof. We set z = (t, ϑ, x, u, p, q). Given (3.1), the function L is continuous with
respect to z. We let

D = { (z ; ν) | L = H } ,
in which case D is closed and, in particular, σ-compact, i.e. D = D1 ∪ D2 ∪ · · · ,
where D1, D2, . . . are compact. Let

Dz = {v | (z ; v) ∈ D } ,
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and
∆ = { z | Dz ̸= ∅ } .

We have that ∆ = Q × R3, from (3.3). It follows then from the theorem for
the existence of measurable sections of multivalued mappings that there exists a
measurable mapping ν = ν(z), such that

(z; v(z)) ∈ D ,

for a.e. z ∈ D (e.g. [3], Theorem 1.14, [6], Appendix B, Lemma B).
In addition to (3.1), we take

a2(t, ϑ, x) ∈ C2
(
[0, T ]× R2

)
(3.5)

such that
a2 ≥ α > 0 , (3.6)

for given α, and
b > 0 . (3.7)

sufficiently large. Let u(x, ϑ) be such that

u ∈ W 1,2,p(OΘ,X) ∩ Lp
(
(0,Θ);W 1,p

0 (0, X)
)
, (3.8)

for p > 3/2, where

W 1,2,p(OΘ,X) =

{
u ∈ Lp(OΘ,X) | ∂u

∂ϑ
,
∂u

∂x
,
∂2u

∂x2
∈ Lp(OΘ,X)

}
.

Let
W1,2,p(Q) =

{
u ∈ Lp(Q) | ∂u

∂t
,
∂u

∂ϑ
,
∂u

∂x
,
∂2u

∂x2
∈ Lp(Q)

}
.

We seek a solution u ∈ W1,2,p(Q), for p sufficiently large, of the Hamilton-Jacobi
equation†

−∂u

∂t
− b

∂u

∂ϑ
− a2

∂2u

∂x2
−H(t, ϑ, x, u, ∂u/∂ϑ, ∂u/∂x) = 0 in Q (3.9a)

subject to the terminal conditions

u(T, ϑ, x) = u(ϑ, x) in OΘ,X (3.9b)

and
u(t,Θ, x) = 0 in OT,X (3.9c)

and boundary conditions

u(t, ϑ, 0) = u(t, ϑ,X) = 0 in OT,Θ . (3.9d)

Noting the terminal conditions (3.9b) and (3.9c), we remark that the variables t
and ϑ are temporal in nature, whereas by (3.9d), the variable x is spatial.

†Significantly, the variational approach to ultraparabolic operators offers sufficient resolution
of the spatial derivatives as to provide for constructive approximations (cf. [17]), which contrasts
with the weaker viscosity interpretation, where additional regularity is required in order to obtain
a constructive approximation of the solution (cf. [7]).
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Theorem 3.1. Existence. Suppose (3.1), (3.5)-(3.8); then a solution u of (3.9)
exists with

u ∈ W 1,2,p(Q) . (3.10)

Proof. We consider a sequence of functions u0, u1,... defined as follows: let
u0 ∈ W 1,2,p(Q) satisfy

− ∂u0

∂t
− b

∂u0

∂ϑ
+A(t, ϑ)u0 = 0 a.e. in Q , (3.11a)

u0(T, ϑ, x) = u(ϑ, x) a.e. in OΘ,X , (3.11b)
u0(t,Θ, x) = 0 a.e. in OT,X , (3.11c)
u0(t, ϑ, 0) = u(t, ϑ,X) = 0 a.e. in OT,Θ , (3.11d)

where
A(t, ϑ)u = −a2

∂2u

∂x2
.

Having defined un ∈ W 1,2,p(Q), we denote by νn(x, ϑ, t) a measurable function with
values in V, such that

H(t, ϑ, x, un, ∂un/∂ϑ, ∂un/∂x) = L(t, ϑ, x, un, ∂un/∂ϑ, ∂un/∂x, νn) . (3.12)

We then define un+1 such that

− ∂un+1

∂t
− b

∂un+1

∂ϑ
+A(t, ϑ)un+1

=Ψ(x, ϑ, t, νn) + f(t, ϑ, x, νn)
∂un+1

∂ϑ
+ g(t, ϑ, x, νn)

∂un+1

∂x

+ c(t, ϑ, x, νn)un+1 a.e. in Q, (3.13a)
un+1(T, ϑ, x) = u(ϑ, x) a.e. in OΘ,X , (3.13b)
un+1(t,Θ, x) = 0 a.e. in OT,X , (3.13c)
un+1(t, ϑ, 0) = un+1(t, ϑ,X) = 0 a.e. in OT,Θ . (3.13d)

We note that (3.11) and (3.13) are well-posed (cf. [19] for the p=2 case, and [20],
Appendix A for p ̸= 2), in which case the sequence {un} contained in W 1,2,p(Q) is
uniquely defined such that

∥un+1∥W 1,2,p(Q) ≤ C , (3.14)

as f , g, c and Ψ are bounded (independent of n).
In addition, we have the estimate

− ∂un

∂t
− b

∂un

∂ϑ
+A(t, ϑ)un

=Ψ(t, ϑ, x, νn−1) + f(t, ϑ, x, νn−1)
∂un

∂ϑ
+ g(t, ϑ, x, νn−1)

∂un

∂x
+ c(t, ϑ, x, νn−1)un

≤Ψ(t, ϑ, x, νn) + f(t, ϑ, x, νn)
∂un

∂ϑ
+ g(t, ϑ, x, νn)

∂un

∂x
+ c(t, ϑ, x, νn)un

=H(t, ϑ, x, u, ∂un/∂ϑ, ∂un/∂x, νn)
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on account of (3.12), in which case, from (3.13),

− ∂

∂t

(
un+1 − un

)
− ∂

∂ϑ

(
bun+1 − bun

)
+A(t, ϑ)

(
un+1 − un

)
≥f(t, ϑ, x, νn)

∂
(
un+1 − un

)
∂ϑ

+ g(t, ϑ, x, νn)
∂
(
un+1 − un

)
∂x

+ c(t, ϑ, x, νn)
(
un+1 − un

)
a.e. in Q ,

as well as (
un+1 − un

)
(T, ϑ, x) = 0 a.e. in OΘ,X ,(

un+1 − un
)
(t,Θ, x) = 0) a.e. in OΘ,X ,(

un+1 − un
)
(t, ϑ, 0) = un(t, ϑ,X) = 0 a.e. in OT,Θ .

From the positivity result Theorem 2.1, we obtain

−
(
un+1 − un

)
≤ 0 .

Since f and u are bounded, and taking into account (3.14), it follows that

un ↑ u and un ⇀ u in W 1,2,p(Q) (3.15a)

and moreover
un → u in W 1,0,p(Q) , (3.15b)

through compactness‡.
For ν ∈ V, we have

− ∂un

∂t
− ∂ bun

∂ϑ
+A(t, ϑ)un −Ψ(t, ϑ, x, ν)

− f(t, ϑ, x, ν)
∂un

∂ϑ
− g(t, ϑ, x, ν)

∂un

∂x
− c(t, ϑ, x, ν)un

≥− ∂un

∂t
− ∂ bun

∂ϑ
+A(t, ϑ)un −Ψ(x, ϑ, t, νn)

− f(t, ϑ, x, νn)
∂un

∂ϑ
− g(t, ϑ, x, νn)

∂un

∂x
− c(t, ϑ, x, νn)un

=− ∂

∂t

(
un − un+1

)
− ∂

∂ϑ

(
bun − bun−1

)
+A(t, ϑ)

(
un − un+1

)
− f(t, ϑ, x, νn)

∂
(
un − un+1

)
∂ϑ

− g(t, ϑ, x, νn)
∂
(
un − un+1

)
∂x

− c(t, ϑ, x, νn)
(
un − un+1

)
a.e. in Q , (3.16)

such that the right hand side converges weakly to 0 in Lp(Q), by virtue of (3.15a).
Proceeding to the weak limit in (3.16), we obtain

− ∂u

∂t
− ∂ bu

∂ϑ
+A(t, ϑ)u−Ψ(t, ϑ, x, ν)

− f(t, ϑ, x, ν)
∂u

∂ϑ
− g(t, ϑ, x, ν)

∂u

∂x
− c(t, ϑ, x, ν)u ≥ 0

‡The notation un ↑ u means un is monotonically increasing and convergent to u.
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or

−∂u

∂t
− ∂ bu

∂ϑ
+A(t, ϑ)u ≥ H(t, ϑ, x, u, ∂u/∂ϑ, ∂u/∂x, ν) a.e. in Q , (3.17)

for all ν ∈ V.
Conversely, we have

− ∂u

∂t
− ∂ bu

∂ϑ
+A(t, ϑ)u−H(t, ϑ, x, u, ∂u/∂ϑ, ∂u/∂x)

≤− ∂u

∂t
− ∂ bu

∂ϑ
+A(t, ϑ)u−Ψ(t, ϑ, x, ν)

− f(t, ϑ, x, ν)
∂u

∂ϑ
− g(t, ϑ, x, ν)

∂u

∂x
− c(t, ϑ, x, ν)u

=− ∂

∂t

(
u− un+1

)
− ∂

∂ϑ

(
bu− bun+1

)
+A(t, ϑ)

(
u− un+1

)
− f(t, ϑ, x, ν)

∂
(
u− un+1

)
∂ϑ

− g(t, ϑ, x, ν)
∂
(
u− un+1

)
∂x

− c(t, ϑ, x, ν)
(
u− un+1

)
+Ψ(t, ϑ, x, νn)−Ψ(t, ϑ, x, ν) (3.18)

such that the right hand side of (3.18) converges to 0 weakly in Lp(Q). We have
then

−∂u

∂t
− ∂ bu

∂ϑ
+A(t, ϑ)u ≤ H(t, ϑ, x, u, ∂u/∂ϑ, ∂u/∂x) a.e. in Q ,

which together with (3.17), shows that u is a solution of the Hamilton-Jacobi equa-
tion.

4. Probabilistic Interpretation
The ultradiffusion§ process is defined; we demonstrate that there exists an optimal
strategy which maximizes a given expected discounted performance criteria. In
turn, this optimized expectation is characterized as the unique generalized solution
to the ultraparabolic Hamilton-Jacobi equation. We remark that due to the nature
of the ultradiffusion, we are able to admit target sets into the analysis.

A strategy is a measurable mapping t, ϑ, x → ν(t, ϑ, x) from [0, T ]×OΘ,X → V.
For (ϑ, x) /∈ OΘ,X , we define ν(t, ϑ, x) in an arbitrary manner. We write ν(t) =
ν(t, ϑ, x) for brevity. Let (Ω,Ft,Fs

t ) denote the canonical space, X(t, ω) = ω(t), for
ω(t) ∈ Ω, and P ≡ P tϑx the unique measure on (Ω,Ft) such that for s > t,

dΘ(s) = [b+ f(s,Θ(s), X(s), ν(s))] ds,

dX(s) = σ(s,Θ(s), X(s)) dw(s)

§Consistency is the key idea in utilizing the ultra prefix. That is, the expectation of a
non-degenerate diffusion process is associated with a non-degenerate diffusion (parabolic) ini-
tial/boundary value problem, whereas that for an ultradiffusion process is associated with an
ultradiffusion (ultraparabolic) initial/boundary value problem. Note that ultradiffusion opera-
tors are not degenerate parabolic (cf. [4, 5]) and as such, “ultradiffusion” appears to be a more
appropriate description than “degenerate” diffusion. The description is likewise consistent with
the ultradiffusion usage employed in hierarchical systems (cf. [9]), as ultradiffusion processes are
locally isomorphic to a parameterized diffusion process (cf. [16]).
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for σ(t, ϑ, x) :=
√
2 a2 , where (Θ(t), X(t)) = (ϑ, x) and w(s) is a Wiener process.

For a given strategy v, we write

fν(s) = f(s,Θ(s), X(s), ν(s)),

gν(s) = g(s,Θ(s), X(s), ν(s)),

cν(s) = c(s,Θ(s), X(s), ν(s)),

Ψν(s) = Ψ(s,Θ(s), X(s), ν(s))

and
σ(s) = σ(s,Θ(s), X(s))

for s ≥ t. On (Ω,Ft), we define for s ≤ T the martingale

M(s) = exp

[
−
∫ s

t

σ−1(λ) gν(λ) dw(λ)−
1

2

∫ s

t

[σ−1(λ) gν(λ)]
2 dλ

]
,

with respect to Fs
t and the measure P tϑx, as well as the measure Qtθx

ν , given by
the Girsanov transformation P tϑx → Qtθx

ν , such that

dQtθx
ν (ω) = MT (ω) dP

tϑx(ω) ,

on Ft, for ω ∈ Ω. Endowing (Ω,Ft) with the measure Qx,θ,t
v , the process (Θ(t), X(t))

is a solution of

dΘ(s) = (b+ fν(s)) ds, (4.1a)
dX(s) = gν(s) ds+ σ(s) dw̃(s), (4.1b)
Θ(t) = ϑ , (4.1c)
X(t) = x , (4.1d)

for s > t, where w̃(s) is a standardized Wiener process and a Fs
t martingale. We

denote by τ = τtϑx the exit time from OΘ,X of the process (Θ(t), X(t)). For every
strategy ν(t, ϑ, x), we define the performance index such that

J tϑx(T ; ν) =EQtϑx
v

{∫ T∧τ

t

Ψν(s) exp

(
−
∫ s

t

cν(λ) dλ

)
ds

+ u(Θ(T ), X(T )) exp

(
−
∫ T

t

cν(λ) dλ

)
χT≤τ

}
, (4.2)

which is a measure of the expected discounted system performance. The optimiza-
tion problem is to maximize the performance index over all controls ν ∈ V.

Relative to the ultradiffusion process (4.1),we may characterize (4.2) in terms
of the solution to the ultraparabolic Hamilton-Jacobi equation (3.9), thereby estab-
lishing the existence of an optimal control strategy.

Theorem 4.1. Uniqueness. We suppose (3.1), (3.5)-(3.8), then there exists a
unique solution u ∈ W 1,2,p(Q) to (3.9), such that

u(t, ϑ, x) = max
ν(t,ϑ,x)∈V

J tϑx(T ; ν) = J tϑx(T ; ν̂) , (4.3)

for some optimal strategy ν̂.
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Proof. We put

z(t) = exp

{
−
∫ T

t

cν(s, ϑ(s), x(s)) ds

}
then

dz

dt
= cν(t, ϑ(t), x(t)) z

such that
z(T ) = 1 .

Let u be any solution of (3.9). Applying the generalized Ito’s formula to the func-
tional

Φ(t, ϑ, x, z) = u(t, ϑ, x) z

relative to (4.1), we obtain

u(T ∧ τ,Θ(T ∧ τ), X(T ∧ τ)) exp

(
−
∫ T∧τ

t

cν(s) ds

)
− u(t,Θ(t), X(t))

=

∫ T∧τ

t

(
∂u

∂t
+ b

∂u

∂ϑ
+ a2

∂2u

∂x2
+ fν

∂u

∂ϑ
+ gν

∂u

∂x
+ cνu

)
(s,Θ(s), X(s))

exp

(
−
∫ T∧τ

s

cν(λ) dλ

)
ds+

∫ T∧τ

t

σ
∂u

∂x
exp

(
−
∫ T∧τ

s

cν(λ) dλ

)
dw̃(s)

for all t ∈ [0, T ]. Upon taking the expectation, it follows that

u(t, ϑ, x)

=EQtθx
ν

{∫ T∧τ

t

(
−∂u

∂t
− b

∂u

∂ϑ
− a2

∂2u

∂x2

− fν(s)
∂u

∂ϑ
− gν(s)

∂u

∂x
− cν(s)u

)
(s,Θ(s), X(s)) exp

(
−
∫ T∧τ

s

cν(λ) dλ

)
ds

}

+ EQtθx
ν

{
u(T ∧ τ,Θ(T ∧ τ), X(T ∧ τ)) exp

(
−
∫ T∧τ

t

cν(s) ds

)}
. (4.4)

However, since u is a solution to (2.9), we also have

−∂u

∂t
− b

∂u

∂ϑ
− a2

∂2u

∂x2
= H(t, ϑ, x, u, ∂u/∂ϑ, ∂u/∂x)

= Ψν̂ + fν̂
∂u

∂ϑ
+ gν̂

∂u

∂x
+ cν̂u , (4.5)

from (3.3) and Lemma 3.1, for some optimal strategy ν̂ ∈ V. Taking ϑ = Θ(s) and
x = X(s) in (4.5) and substituting the result into (4.4) with ν = ν̂, we obtain (4.3).
Since any solution of (3.9) has the form (4.3), uniqueness follows.

Remark 3.1. Removing the positivity constraint on velocity. In (4.1a), we require
at least b+f(s) ≥ 2ϵ > 0. For any function f , we may define f±(s) = max(±f(s), 0),
then f(s) = f+(s)− f−(s) and

dΘ+(s) = [ϵ+ f+(s)] ds
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dΘ−(s) = [ϵ+ f−(s)] ds

where now Θ(s) = Θ+(s)−Θ−(s). In practice, letting ϵ = 0 suffices on account of
regularity.

A process (Θ, v) for the control problem (4.1) consists of a control function
ν ∈ V and a temporal state trajectory Θ(t), for all t ∈ [0, T ], which is a solution
a.e. of the stochastic differential equation (4.1a). The process (Θ, v) is said to be
feasible if the trajectory Θ satisfies the endpoint contraints Θ(t) ∈ C(t) ⊆ [0,Θ]
and Θ(T ) ∈ C(T ) ⊆ [0,Θ]. Let F(ϑ, t) denote the set of all feasible processes¶. In
particular, with the inclusion of target sets, we may restate Proposition 2 as follows:

Corollary 3.1. We suppose (3.1), (3.5)-(3.8); if there exists an optimal control
ν̂ ∈ F(ϑ, t), then there exists a unique solution u ∈ W 1,2,p(Q) to (3.9) such that

u(t, ϑ, x) = max
ν∈F(ϑ,t)

J tϑx(T ; ν) = J tϑx(T ; ν̂) . (4.6)

Remark 3.2. Control activation. With respect to (4.1), it is possible to activate
the control at a time t ≤ τ < T by introducing the target

Θ(τ) = 0 ,

in which case Θ(t) = 0 for all t < τ on account of the positivity of the velocity.
Alternately, we may allow the control to be active only when Θ(t) stays within a
certain bound, for example, the target may be

Θ(T ) ≤ Θ ,

for some Θ > 0, in which case the control remains active as long as Θ(t) stays below
the prescribed bound.

Remark 3.3. Unifying notation. Given that the control of ultradiffusion processes
generalize both deterministic and stochastic optimal control, we may interpret (3.6)
as a general optimal control problem:‖

J tϑx(T ; ν) = max!

dΘ(s) = (b+ fν(s)) ds

dX(s) = gν(s) ds+ σ(s) dw̃(s)

(Θ(t), X(t)) = (ϑ, x) ∈ OΘ,X

h
(1)
i (ti,Θ(ti)) ≤ 0

h
(2)
j (tj ,Θ(tj)) = 0

ν(s) ∈ V

for all s ∈ (t, T ), ti ∈ [t, T ], h(1)
i : [t, T ]× [0,∞) → R (i = 1, 2, . . . , I), and tj ∈ [t, T ],

h
(2)
j : [t, T ]× [0,∞) → R (j = 1, 2, . . . , J).

¶We may apply other inter-temporal constraints as well.
‖The maximum problem is maxu F (u) = α with the shorthand notation F (u) = max!.
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5. Conclusion
From a deterministic viewpoint, we have demonstrated the existence and unique-
ness of regular solutions to ultraparabolic Hamilton-Jacobi equations. As this was
accomplished via a probabilistic interpretation of solutions via a stochastic optimal
control problem, from a stochastic point of view then, we have likewise demonstrated
the existence of an optimal control strategy which maximizes the expectation of a
discounted performance criteria relative to a defined controlled ultradiffusion pro-
cess. Moreover, we have obtain the interesting consequence of allowing target sets
to exist within the stochastic control framework.
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