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A MODIFIED LESLIE-GOWER FRACTIONAL
ORDER PREY-PREDATOR INTERACTION

MODEL INCORPORATING THE EFFECT OF
FEAR ON PREY
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Abstract In this article, a Leslie-Gower type predator prey model with fear
effect has been proposed and studied in the framework of fractional calculus in
Caputo sense. The well-posedness of the system has been verified analytically.
The states of stability of the possible non-negative equilibrium points have
been derived. It is observed that both the fear level and memory bound of
the interacting species take crucial part in determining the states of stability
of the system dynamics around the co-existence equilibrium point. The fear
level makes the system stable around the positive equilibrium point via two
consecutive Hopf bifurcations. The higher memory of the interacting species
leads to stabilization of the ecological model system whether fading memory
has destabilization role in the system dynamics. The analytical representations
of the bifurcation scenarios have been rigorously analyzed. Also, it has been
observed that the corresponding integer order model system may experience
saddle-node bifurcation depending upon the change of suitable parameter.
All our observations have been captured in numerical simulation portion and
detailed explanations of the outcomes of the numerical simulation have been
represented.
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1. Introduction
In last few decades, many researchers [10, 11, 26, 33, 41, 53, 58, 59, 61] have captured
and explored the predator-prey interactions in many ways to explain various ubiq-
uitous phenomenons of the prey-predator dynamics in the field of ecology. It is
observed that the pattern of predation of prey by the predators is an important
factor that regulates the system dynamics. In mathematical ecology, this factor is
signified through a function which is know as functional response. Several mathe-
matical models have rigorously analysed by considering different type of functional
responses and thus revealing many important dynamical properties of the associ-

†The corresponding author. Email: msajd@qu.edu.sa (M. Sajid)
1Department of Mathematics, Indian Institute of Engineering Science and
Technology, Shibpur, Howrah-711103, India

2Department of Mechanical Engineering, College of Engineering, Qassim Uni-
versity, Buraydah, Al Qassim, Saudi Arabia

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220011


A modified Leslie-Gower fractional. . . 199

ated predator prey system [1,14,27–29,62]. Holling type functional responses are the
most typical and mostly considered predation function. Among all the Holling type
functional responses, the type II functional response has been widely used due to its
usefulness in predator prey kinetics [54]. The functional response is basically a sig-
moidal function of prey density, which confronts that initially the predator density
will increase upon the increase of prey species. But, after crossing a certain thresh-
old the predator density will remain constant no matter how much prey species are
available for predation. Another important factor in predator-prey dynamics is the
mutual interference among prey and predators. Leslie [34] and Gower [35] were first
in this context to formulate mathematical model by assuming that the reduction in
predator species is inversely proportional to per-capita availability of its preferred
food. Assuming that the environmental carrying capacity of predators is propor-
tional to available density of prey species they represent the predator dynamics by
a mathematical equation. But, when predators cannot find sufficient prey for their
predation then it may become threat for predator extinction. This situation can be
overcome by adding an extra term in the denominator; which is biologically known
as additional food. The types of mathematical models formulated on the above as-
sumptions are known as models based on Leslie-Gower scheme and also it is known
as modified Leslie-Gower models. Here, it is to be noted that the predators follow a
logistic type growth and when the carrying capacity of predators are represented by
the sum of proportion of available prey density and additional food for predators;
then the predators are usually considered as generalist predators. Researchers have
explored several aspects of the dynamical behaviour of ecological systems using
Leslie-Gower scheme [2,15,19,20,24,42,44].

The dominant view in researching the dynamics of predator-prey interaction is
that predators can only affect prey populations by direct predation. However, both
field experiments and theoretical studies indicate that the mere threat of predation
has the potential to impact prey species’ growth, survival, and fecundity [48,60]. In
these cases, prey species display anti-predator responses in the form of behavioural,
morphological, or psychological changes [16–18, 36, 37]. For example, scared prey
reduces their foraging behaviour and use mechanisms such as starvation to avoid
predation [16, 17]. These prey strategies have a major effect on their ability to
produce offspring as well as their adult survival capability. According to studies,
the psychological state of juvenile prey can be influenced by predatory threats, and
the resulting change has negative consequences for their adult endurance (for ex-
ample, birds respond to predatory sounds by fleeing their nest in search of a more
secure location out of fear, but can return to their old haunts if the threat dimin-
ishes). Adult perseverance can benefit from these types of resistance mechanisms
for avoiding predation risk, though the main proliferation is reduced as a long-term
expense [16]. As a result of the possibility of predation, some prey chooses a new
living space every now and then, leaving their previous one, which could have an
adverse effect on the prey’s lifetime genital performance. The bad choice of environ-
ment selection, i.e., the troublesome characteristic of the new territory, affects not
only the generation, but also the endurance of the adults [16]. In a field experiment
conducted by Zanette et al. [66] in 2011, it was discovered that the fear of predators
caused a 40% decrease in fundamental proliferation of song sparrows. This drop is a
result of anti-predator activity, which has an impact on both the birth and survival
rates of progeny.

On the other hand, individual experiences and memories have a role in shaping
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the dynamics of a system, particularly when some additional influences are preva-
lent. Because of several convoluted results, biological organisms have memory that
is linked to their anatomy or psychology [21,22,43,49–51]. As a result, mathematical
models of predator-prey systems should provide a substitute for recording the re-
membrance effect. Integer order calculus have been used in mathematical models to
describe and understand the dynamics of many biological systems. Many ecological
processes, on the other hand, have the memory effect. Differential fractional order
equations have more benefits to the modelling of these processes than differential
equations of integer order as fractional order refers to grasp the whole time status
of a dynamic process, and derivatives of integer order can only affiliate a particular
alternation or feature at a certain stage of that process. The applicability and prac-
tical importance of fractional derivatives in many different areas of mathematics
and science have previously been proven [3, 4]. Numerous researchers have tracked
down the adequacy of fractional derivatives in biological and progressive process,
including the adaptability to organize derivatives, management of the past memory
of species obtained from their life cycle, co-genital properties etc. [5, 6, 9, 25, 38].
Two species interaction model with group defence tactics was recently studied by
Alidousti and Ghafari [7] with the utilization of the fractional calculus. It is found
that the system’s fractional order is crucial in decreasing irregular oscillations of the
system. Amirian [8] investigated the dynamical qualities of a multi-animals group
system with shared helpful hunters utilizing fractional calculus, and discovered that
the fractional order system is more steady than the integer order counterpart.

We can find several research articles in literature that have explored the impact
of predator incited fear on determining different aspects of stability of equilibrium
states, emergence of bifurcation scenarios, limit cycle oscillations and other dynam-
ical properties related to the systems [46, 55, 57, 63–65, 67]. But, notably, impact
of fear on prey species induced from generalist type predators are less explored.
Moreover, the influence of memory bound on such kind of predator-prey dynam-
ics has not been yet analyzed rigorously. In this regard, we attempt to study a
fractional order predator-prey model system with Leslie-Gower scheme to explore
the combined memory effect of the species and fear factor on the dynamics of our
proposed system. Our main target is to answer the following questions:

i) What is the role of predator induced fear in the fractional framework system
dynamics when predators suffer from favourite food?

ii) What is the role of memory of interacting species of the proposed Leslie-Gower
system in the system dynamics?

This article has been organized into several sections. Section 2 deals with the
process of forming the proposed mathematical model while Section 3 explores some
basic mathematical preliminaries of fractional calculus that are useful in this regard.
Section 4 and Section 5 respectively reveal the analysis of well-posedness and sta-
bility analysis of the system. Section 6 represents the analysis of Hopf-bifurcation
while Section 7 investigates the findings of this article through proper numerical
simulations. Finally, the article ends with conclusion section.

2. Formulation of mathematical model
In this article, we have constructed a two species prey-predator framework whose
population densities are denoted by x(t) and y(t) at any time t respectively. We have
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considered some assumptions while constructing the proposed system as discussed
below one by one:

(i) The prey population grows in logistic fashion with birth rate r due to the non-
appearance of predator. The densities of prey species vanishes in two ways: (a)
due to intraspecific competition (the parameter m) and (b) due to the natural
mortality (the parameter d). So, the above assumptions mathematically can
be expressed by the underlying differential equation:

dx

dt
= (r − d)x−mx2. (2.1)

(ii) In this step, we have considered the predator exerted fear function to the basic
reproduction of the prey population [66] by multiplying it to the growth rate
of the prey species. This fear function Φ(k, y) was first proposed by X. Wang
et al [63] and then many researchers D. Barman et al. [12], and N. Mondal et
al [41] have used it in their research articles. However, the differential equation
(2.1) reduces to in the form:

dx

dt
= rΦ(k, y)x− dx−mx2, (2.2)

where

Φ(k, y) =
1

1 + ky
. (2.3)

Here, k means the fear factor and it is assumed that the fear function “Φ(k, y)”
satisfies the following properties:
(a) Φ(0, y) = 1, i.e., if no such fear exists (k = 0), then the growth rate of

prey population remains same as earlier.
(b) Φ(k, 0) = 1, i.e., if there is no predator population, the prey population

does not experience any effect on growth rate due to fear.
(c) Φ(k, y) = 0 as k → ∞, i.e., the production rate of prey population de-

creases with respect to the increasing level of predator induced fear.
(d) Φ(k, y) = 0 as y → ∞, i.e., in the presence of huge number of predators

the prey population sufficiently reduces their reproduction.

(e) ∂Φ(k, y)

∂k
< 0, i.e., when the fear level is increased, then the growth rate

of prey reduced.

(f) ∂Φ(k, y)

∂k
< 0, i.e., when the predator population density is increased, then

the production rate of prey population reduced.
(iii) In prey-predator ecological modelling, functional response plays an important

role in determining the system dynamics. Many researchers [23, 40, 56] have
taken Beddington-DeAngelis, Michaelis–Menten or Holling Type-II scheme
functional response for this cause. However, for our suitability we have con-
templated a Holling Type-II scheme

(
cx

a+ x

)
, where predators consumes the

prey individuals at a rate c.
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(iv) According to Berryman [13], the dynamical behaviour among the predators
and prey population density will be the most prevalent factor in mathematical
biology due to its world-wide importance and existence. Leslie [39] shows the
famous Leslie prey-predator model as bellow:

dx

dt
= (r2 − b1x)x− P (x)y,

dy

dt
=
(
r3 − a2

y

x

)
y.

(2.4)

Here, at any time t the intrinsic growth rates of the prey and predator pop-
ulations are represented by r2 and r3 respectively and b1 is the intra-species
competition rate among prey species x(t) itself. The predator species de-
voured the prey species according to the functional response p(x) and x

a2
is the carrying capacity. Here, a2 denotes the amount of the food quantity
that is provided by prey species which get converted to predator’s birth rate.
The expression y

x
refers to the Leslie-Gower term, which describes the loss

of predator species due to the rarity (per capita y

x
) of their preferred food.

The most significant aspect in the Leslie model is that the predator’s carrying
capacity is related to the quantity of prey. The Lotka-Volterra model does
not specify upper bounds on the rates of growth in the prey x(t) and predator
y(t) populations, respectively. Under the following circumstances, these top
limits may be approached by: (a) for predators when the proportion of prey
per predator is high; (b) for prey when the frequency of predators is low and
the number of prey population seems to be low as well. We anticipate that the
predator’s growth will be of the modified Leslie-Gower type. Daher and Aziz-
Alaoui [2] looked into this matter. In the event of extreme scarcity, predator
y(t) may move to other populations, but its development will be constrained
by the fact that its preferred prey x(t) is scarce. They proposed adding a
constant amount b > 0 (say) to the denominator of the second equation of the
system (2.4) to address this kind of issue. Now, the system of equations (2.4)
reduce to the modified Leslie-Gower and Holling-II type predator-prey system(
p(x) =

cx

a+ x

)
:


dx

dt
= (r2 − b1x)x− cxy

a+ x
,

dy

dt
=

(
r3 − a2

y

b+ x

)
y.

(2.5)

With the help of the expression (2.2) and (2.3), we re-modify the system of
equations (2.5) to the following form:


dx

dt
=

rx

1 + ky
−mx2 − dx− cxy

a+ x
, x(0) > 0

dy

dt
= y

(
r1 −

fy

b+ x

)
, y(0) > 0.

(2.6)
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Here, each of the parameters are always non-negative and the term fy

b+ x
is

the modified Leslie–Gower term, which represents a decrease in the number of
the predator population due to the deficiency of its most important food.

(v) The model system (2.6) is unable to capture the influence of memory on popu-
lations due to their life cycle experiences. An ongoing ecological system, some
anti-predator behaviours of prey can’t be same; they would be dependent on
the time bound memory of both the populations and the consequences would
be analyzed accordingly. However, the above model system (2.6) have been
modified into a system of fractional order differential equations in Caputo
sense as bellow: 

C
t0D

α
t x =

r̃x

1 + k̃y
− m̃x2 − d̃x− c̃xy

ã+ x
,

C
t0D

α
t y = y

(
r̃1 −

f̃y

b̃+ x

)
.

(2.7)

where C
t0D

α
t means fractional order derivative in Caputo sense of order α, where

α lies in 0 to 1 and t0 is the non-negative initial time. Again, we see that the
time dimension of left side of the system (2.7) is (time)−α [22] but the time
dimension of right side is (time)−1. So, both dimensions are not balanced and
let us convert it to the corresponding balanced system with same dimension
as follows: 

C
t0D

α
t x =

r̃αx

1 + k̃y
− m̃αx2 − d̃αx− c̃αxy

ã+ x
,

C
t0D

α
t y = y

(
r̃1

α − f̃αy

b̃+ x

)
.

(2.8)

Now, for our suitability, let us express the system (2.8) in a simplified manner
as below and the model parameters are stated in the Table 1:

C
t0D

α
t x =

rx

1 + ky
−mx2 − dx− cxy

a+ x
, x(0) > 0

C
t0D

α
t y = y

(
r1 −

fy

b+ x

)
, y(0) > 0.

(2.9)

Table 1. Meaning of model parameters.

Parameters in Caputo Sense is same as Meaning of Parameters
r̃α r Production rate of prey population
k̃ k Predator-led level of fear
m̃α m Intra-specific competition among prey
c̃α c Rate of predatory consumption
ã a Half saturation constant
f̃α f Prey provides the amount of food quantity
b̃ b Half-saturation constant of prey populations
r̃1

α r1 Birth rate of predator species
d̃α d Death rate of prey population
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3. Mathematical preliminaries of the above model
system

Here, we have discussed some definitions and lemmas, and theorems about fractional
order derivative (FOD) in Caputo sense purpose.

Definition 3.1. Caputo derivative: [47] The FOD of order α for any continuous
function s(t) ∈ Cn

(
[t0,+∞),R

)
can be stated as bellow

C
t0D

α
t s(t) =

1

Γ(n− α)

∫ t

t0

sn(l)

(t− l)α−n+1
dl,

where Γ(n − α) means the gamma function and n is positive integer and α lies in
(n− 1) < α < n with t ≥ t0. For example, n = 1 we have α ∈ (0, 1) which presents
the mathematical form of Caputo derivative as bellow:

C
t0D

α
t s(t) =

1

Γ(1− α)

∫ t

t0

s′(l)

(t− l)α
dl,

where α is the order of the FOD.

Lemma 3.1 ( [45]). Let, α ∈ (0, 1] and the continuous function s(t) ∈ C[a1, a2]
along with C

t0D
α
t s(t) be continuous in [a1, a2]. Now, for any t ∈ (a1, a2),

(I) C
t0D

α
t s(t) ≥ 0; this demonstrates s(t) is a non-decreasing function for all

t ∈ [a1, a2] and
(II) C

t0D
α
t s(t) ≤ 0; this demonstrates s(t) is a non-increasing function for all

t ∈ [a1, a2].

Theorem 3.1 ( [31]). Let, s(t) be n times continuously derivable function and the
FOD in Caputo sense of s(t), i.e., C

t0D
α
t s(t) is piece wise continuous on [t0,∞)

where α > 0 and α belongs to open interval n − 1 to n and n ∈ N. Therefore, the
Laplace transformation of the above defined Caputo derivative becomes

L
{
C
t0D

α
t s(t)

}
= lαF (l)−

n−1∑
i=0

lα−i−1si(t0),

where F (l) = L{s(t)}, the convergence of Laplace transform will be satisfied if the
real part R(l) of the improper integral is positive, where l is the imaginary number.

Theorem 3.2 ( [30]). For any B ∈ Cn×n,

L
{
td−1Ec1,c2 (Btc1)

}
=

lc1−c2

lc1 −B
,

for every c1, c2 > 0 and R(l) > ||B||
1

c1 , where R(l) is the real part of imaginary
number l, and Ec1,c2 stands for Mittag-Leffler function [49].

Definition 3.2 ( [32]). We have introduced the dynamics of fractional order model
system in Caputo sense as:

C
t0D

α
t s(t) = ψ(t, s), (3.1)
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where s(t0) are strictly greater zero. The steady states of the above system can be
calculated from the equation ψ(t, s) = 0. So, s∗ will be the steady states of (3.1) if
and only if ψ(t, s∗) = 0.

Theorem 3.3. Taking the dynamical system in fractional order in the following
way
C
t0D

α
t s(t) = ψ(S), where S(t0) =

(
s1t0 , s

2
t0 , s

3
t0 , ...s

n
t0

)
, sit0 > 0, for i = 1, 2, ...n,

(3.2)

with α ∈ (0, 1], s(t) =
(
s1(t), s2(t)...sn(t)

)
and ψ(S) : [t0,∞) → Rn×n. Each

equilibrium points of the dynamical system (3.2) will be LAS (locally asymptoti-

cally stable) if each eigenvalues λ of the variational matrix J(S) = ∂(ψ1, ψ2, ...ψn)

∂(s1, s2...sn)

calculated at the corresponding equilibrium points satisfies |arg(λi)| >
απ

2
.

Lemma 3.2 ( [47]). Stated the dynamical system of a fractional order in Caputo
sense as bellow

C
t0D

α
t s(t) = ψ(t,S), t0 > 0, (3.3)

where α ∈ (0, 1], with initial conditions S(t0) = St0 , ψ(S) : [t0,∞)×σ → Rn×n, σ ⊂
Rn, if ψ(t,S) follows the local Lipschitz condition with respect to S ∈ Rn, i.e.,

||ψ(t,S1)− ψ(t,S2)|| ≤ Ω ||S1 − S2||,

then there is a unique solution on [t0,∞)× σ of the system (3.3) and we have

||S1(p1, p2, .., pn)−S2(q1, q2, ..., qn)|| ≤
n∑

i=1

|pi−qi|, for i = 1, 2, .., n, and pi, qi ∈ R.

4. Well-posedness
4.1. Non-negativity
Theorem 4.1. There are always non-negative solution of proposed system (2.9)
initiating from the point (xt0 , yt0).

Proof. Suppose, the initial values of the solution of proposed system (2.9) is
X(t0) =

(
x(t0), y(t0)

)
∈ σ+ =

{
(x, y) ∈ {σ+ : where x(t) and y(t) both are

positive real numbers }
}

. Now, we have observed that ∃ a constant t1 satisfying
t0 ≤ t < t1 such that

x > 0, when t0 ≤ t < t1, x(t1) = 0, and x(t+1 ) < 0.

Clearly, from the system (2.9), we get
C
t0D

α
t x(t)|x(t1)=0 = 0.

Thus, by lemma (3.1), we can write x(t+1 ) = 0, which contradicts x(t+1 ) < 0. So,
x(t) ≥ 0, ∀ t ∈ [t0,∞). In the same way, we can prove that y(t) ≥ 0, for all
t ∈ [t0,∞). Therefore, all solutions of (2.9) are always non-negative initiating from
(xt0 , yt0).
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4.2. Boundedness
Theorem 4.2. Every solutions of the system (2.9) are always bounded in the region
D initiating from point (xt0 , yt0).

Proof. Let G(t) be the function by adding the densities of prey x(t) and predator
y(t). Therefore, we have

G = x(t) + y(t).

Applying Caputo derivative on G(t), we have

C
t0D

α
t G(t) =

rx

1 + ky
−mx2 − dx− cxy

a+ x
+ r1y −

fy2

b+ x
.

Now, for any real Λ ∈ (−∞,∞), we must have

C
t0D

α
t G(t) + ΛG(t) =

rx

1 + ky
−mx2 − dx− cxy

a+ x
+ r1y −

fy2

b+ x
+ Λ(x+ y)

i.e., C
t0D

α
t G(t) + ΛG(t) ≤

(
−mx2 + (r − d+ Λ)x− fy2 + (r1 + Λ)y

)
.

Therefore, the maximum value of
(
− mx2 + (r − d + Λ)x − fy2 + (r1 + Λ)y

)
is

(r − d+ Λ)2

4m
+

(r1 + Λ)2

4f
. So,

C
t0D

α
t G(t) + ΛG(t) ≤ (r − d+ Λ)2

4m
+

(r1 + Λ)2

4f
. (4.1)

Now, using Theorem (3.1) and taking Laplace transform on both sides of (4.1), we
get

lαF (l)− lα−1G(0)+dF (l)≤ (r−d+Λ)2

4m
+
(r1+Λ)2

4f

1

s
, where F (l)=L{G(t)}

[lα+1 + dl]F (l) ≤ lαG(0) +W, where W =
(r − d+ Λ)2

4m
+

(r1 + Λ)2

4f

F (l) ≤ G(0)
lα−1

lα + d
+

W

l(lα + d)
. (4.2)

Again, applying both sides L−1 of the expression (4.2)

G(t) ≤ G(0)L−1

{
lα−1

lα + d

}
+WL−1

{
lα−(α+1)

lα + d

}
. (4.3)

Now, using Theorem 3.2, the equation (4.3) reduces in the following form

G(t) ≤ G(0) Eα,1 {−dtα}+WtαEα,α+1 {−dtα} . (4.4)

From Mittag-Leffler function, we can write

Eα,1 {−dtα} = (−dtα)Eα,α+1 {−dtα}+
1

Γ(1)
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tαEα,α+1 {−dtα} = −1

d
[Eα,1 {−dtα} − 1] . (4.5)

Therefore, using the relation (4.5), the inequality (4.4) reduces to the form

G(t) ≤
{
G(0)− W

d

}
Eα,1 {−dtα}+

W

d
. (4.6)

For, Eα,1 tends to 0 as t tends to +∞. So,

G(t) ≤ W

d
=

(r − d+ Λ)2

4m
+

(r1 + Λ)2

4f
.

Hence, each solutions of the system (2.9) are always bounded in the region

D =

{
(x(t), y(t)) ∈ σ+| 0 < (x(t) + y(t)) ≤ (r − d+ Λ)2

4m
+

(r1 + Λ)2

4f
+ δ, δ > 0

}
.

4.3. Existence and uniqueness
Theorem 4.3. There exists always unique solution in σ+ of the system (2.9) by
taking the initial value (xt0 , yt0) ∈ σ+, ∀ t ≥ t0.

Proof. Let us assume the interval t0 ≤ t ≤ t1, where t1 < +∞ and the region
σ+ =

{
(x, y) ∈ R2

+| max {|x|, |y|} ≤ N
}
. Now, again consider the mapping T̃ (X) =(

T̃1(X), T̃2(X)
)t

, where X = (x, y)t and

T̃1(X) =
rx

1 + ky
−mx2 − dx− cxy

a+ x
,

T̃2(X) = r1y −
fy2

b+ x
.

Now, for X, X̄ ∈ σ+, we get

||T̃ (X)− T̃ (X̄)||
= |T̃1(X)− T̃1(X̄)|+ |T̃2(X)− T̃2(X̄)|

=

∣∣∣∣ rx

1 + ky
−mx2 − dx− cxy

a+ x
− rx̄

1 + kȳ
+mx̄2 + dx̄+

cx̄ȳ

a+ x̄

∣∣∣∣
+

∣∣∣∣r1y − fy2

b+ x
− r1ȳ +

fȳ2

b+ x̄

∣∣∣∣
=

∣∣∣∣∣∣
(
r(x−x̄)+rk(xȳ−x̄y)

)
(1+ky)(1+kȳ)

−m(x̄+x)(x−x̄)−d(x−x̄)+ ac(x̄ȳ−xy)−cxx̄(y−ȳ)
(a+x)(a+x̄)

∣∣∣∣∣∣
+

∣∣∣∣r1(y − ȳ)−
(fy2(b+ x̄)− fȳ2(b+ x)

(b+ x)(b+ x̄)

) ∣∣∣∣
≤
∣∣r(x− x̄) + rk{ȳ(x− x̄)− x̄(y − ȳ)} −m(x̄+ x)(x− x̄)− d(x− x̄)

− ac{y(x− x̄) + x̄(y − ȳ)} − cxx̄(y − ȳ)
∣∣



208 N. Mondal, D. Barman, J. Roy, S. Alam & M. Sajid

+
∣∣r1(y − ȳ)− fb(y + ȳ)(y − ȳ) + fȳ2(x− x̄)− fx̄(y + ȳ)(y − ȳ)

∣∣
≤ [r + rkN + 2mN + d+ acN +N2]|x− x̄|
+ [rkN + acN + cN2 + r1 + 2fN + 2fN2]|y − ȳ|

= K1|x− x̄|+K2|y − ȳ|
≤ K||X − X̄||

where K = max{K1,K2} with K1 = [r + rkN + 2mN + d + acN + N2] and
K2 = [rkN + acN + cN2 + r1 + 2fN + 2fN2]. So, the local Lipschitz condition
holds and hence the system (2.9) possesses unique solution.

5. Stability analysis of equilibria
5.1. Equilibria and their existence criteria
The proposed system (2.9) has four possible steady states, they are

(I) The trivial equilibrium point Es0(0, 0),

(II) Es1

(
r − d

m
, 0

)
, i.e., axial or predator free steady state exists under the con-

dition r > d, i.e., Es1 exists if the birth rate of prey species is strictly greater
than its death rate.

(III) The another axial point Es2

(
0,
r1b

f

)
always exists without any parametric

restrictions.
(IV) The interior equilibrium pint Es∗(x

∗, y∗) whose first component can be found
from the following equation:

x∗ =

(
fy∗

r1
− b

)
(5.1)

and second component can be obtained from the equation (5.2):

δ11(y
∗)3 + δ12(y

∗)2 + δ13(y
∗) + δ14 = 0, (5.2)

where

δ11 =
mkf2

r21
,

δ12 = ck +
dkf

r1
− 3bmkf

r1
,

δ13 = c+ adk +mkb2 +
df

r1
+
amf

r1
+
mf2

r21
+
amfk

r1
− fr

r1
− 2bmf

r1
− abmk − bdk,

δ14 = ad+ br +mb2 − ar − abm− bd.

Since the equation (5.2) is of degree 3, so it has at least one real solution. Here, δ11
is strictly greater than zero. The equation (5.2) will have a positive solution and
the existence conditions of interior steady state can be stated as follows:
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(a) If δ12 < 0, i.e., if r1c + df < 3bmf , then the equation (5.2) has positive root

say, y∗ = β1 and from (5.1) we have x∗ =

(
fβ1
r1

− b

)
. So it exists if β1 >

br1
f

.

(b) Similarly, if δ13 < 0, i.e., if (cr1+adkr1+mb2kr1+df +amf +mf2+akmf) <
(fr + 2bmf + abmkr1 + bdkr1), then the (5.2) has positive root y∗ = β2 > 0

(say) and from (5.1) we get x∗ =

(
fβ2
r1

− b

)
. It exists if β2 >

br1
f

.

(c) Again similarly, if δ14 < 0, i.e., if (ad+ br +mb2) < (ar + abm+ bd), then the

(5.2) has positive root say y∗ = β3 > 0 and from (5.1) we have x∗ =

(
fβ3
r1

− b

)
.

Now, if β3 >
br1
f

, then x∗ is strictly greater than zero.

5.2. Stability Analysis
In this portion, we have investigated the local stability conditions of each equi-
librium points in the following theorems one by one. For this purpose, we have
calculated the variational matrix as follows:

Jv(x, y) =


r

1 + ky
− 2mx− d− acy

(a+ x)2
− kx

(1 + ky)2
− cx

a+ x
fy2

(b+ x)2
r1 −

2fy

b+ x

 .

Theorem 5.1. There is no parametric restriction of the trivial point Es0(0, 0) and
it will be always unstable.

Proof. The variational matrix of the system (2.9) at Es0(0, 0) is

J0(Es0(0, 0)) =

 r − d 0

0 r1

 .

Clearly, the eigenvalues of the variational matrix J0(Es0) are λ1 = r−d and λ2 = r1.
When r ≥ d and λ2 = r1 > 0, then, λ1 is non−negative real number and λ2 is
positive number which implies that

|amp(λi)| or |arg(λi)| = 0 <
απ

2
for i = 1, 2.

Therefore, Es0(0, 0) is always unstable. If r < d, then λ1 must be negative real
number.

|arg(λ1)| = π >
απ

2
and |arg(λ2)| = 0 <

απ

2
.

Similarly, Es0(0, 0) will be saddle point and it is unstable.

Theorem 5.2. The system (2.9) displays the unstable scenario around the predator

free equilibrium point Es1

(
r − d

m
, 0

)
without any parametric condition.
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Proof. The characteristic equation corresponding the Jacobian matrix at Es1(
r−d
m

, 0)

is

{λ+ (r − d)}{λ− r1} = 0.

This shows λ1 = −(r − d) and λ2 = r1. Already it was known that r > d from
the existence criteria of predator free equilibrium point and obviously, λ1 must be
negative real number and λ2 > 0. Then

|arg(λ1)| = π >
απ

2
and |arg(λ2)| = 0 <

απ

2
.

Thus, the equilibrium point Es1

(
r − d

m
, 0

)
will be saddle point and it is always

unstable.

Theorem 5.3. The another prey free equilibrium point Es2

(
0,
br1
f

)
of the system

(2.9) will be asymptotically stable if rf

f + bkr1
< d +

bcr1
af

and otherwise the axial
equilibrium point will be unstable.

Proof. The characteristic equation of the above Jacobian matrix of the system
(2.9) at Es2

(
0,
br1
f

)
is

{
λ−

(
rf

f + bkr1
− bcr1

af
− d

)}{
λ+ r1

}
= 0.

The eigenvalues are λ1 =
rf

f + bkr1
−d− bcr1

af
and λ2 = −r1. Here, r1 > 0 and when

rf

f + bkr1
< d+

bcr1
af

, then the two eigenvalues are negative. Thus,

|arg(λi)| = π >
απ

2
for i = 1, 2.

Theorem 3.3 is satisfied by the two eigenvalues and the above said condition. We
conclude that the equilibrium point Es2

(
0,
br1
f

)
becomes asymptotically stable

otherwise it is unstable. This is the complete proof of this theorem.

Theorem 5.4. The system (2.9) exhibits stable scenario around the interior steady
state Es∗(x

∗, y∗) if the following conditions hold:

(i) e13 ≤ 0 and

(ii) e13 > 0, e213 − 4e14 < 0 and e15 > e13 tan
(απ

2

)
, otherwise the above axial

equilibrium point is unstable.

Proof. The Jacobian matrix corresponding to the interior steady state Es∗(x
∗, y∗)

is

J(Es∗(x
∗, y∗)) =

 e11 e12

e21 e22

 ,
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where

e11 =
r

1 + ky∗
− 2mx ∗ −d− acy∗

(a+ x∗)2
,

e12 = − kx∗

(1 + ky∗)2
− cx∗

(a+ x∗)
, e21 =

fy∗2

(b+ x∗)2
,

e22 = r1 −
2fy∗

b+ x∗
.

The characteristic equation of the above variational matrix corresponding to the
interior point Es∗ is{

λ2 − λ(e11 + e22) + e11e22 − e12e21 = 0,

or λ2 − λe13 + e14 = 0.
(5.3)

where e13 = e11 + e22, e14 = e11e22 − e12e21. The roots are

λ1,2 =
e13 ±

√
e213 − 4e14
2

. (5.4)

Here, we consider two cases:
CASE I: When e13 ≤ 0, in this case we consider the three subcases as bellow:
Subcase I(a): e13 = 0.
Now if e13 = 0, then we have λ1,2 = ±i√e14, i.e., both eigenvalues are complex
conjugate. Therefore,

|arg(λi)| =
π

2
>
απ

2
for i = 1, 2,

and this two eigenvalues satisfies the properties of Theorem 3.3. Near this interior
equilibrium point the system (2.9) shows stable scenario.
Subcase I(b): e13 < 0 and (e213 − 4e14) ≥ 0.
We noticed that the two eigenvalues are negative after some algebric calculation.
Hence,

|arg(λi)| = π >
απ

2
for i = 1, 2.

This condition is satisfied using the Theorem 3.3 and the system (2.9) displays the
stable scenario.
Subcase I(c): e13 < 0 and (e213 − 4e14) < 0.
In this portion, we observe that the Jacobian matrix at Es∗(x

∗, y∗) must have a
pair of complex conjugate eigenvalues with negative real part. So,

|arg(λi)| >
απ

2
for i = 1, 2.

Similarly, using Theorem 3.3 it can be concluded that the system (2.9) displays the
stable scenario near the interior equilibrium point Es∗(x

∗, y∗).
CASE II: e13 > 0 and (e213 − 4e14) < 0 and e15 > e13 tan

(απ
2

)
where, e15 =

√
4e14 − e13. Here, we take a pair of imaginary conjugate eigenvalues that satisfy

the following relation

Imaginary part of (λ1) = −Imaginary part of (λ2) =
1

2

(√
4e14 − e213

)
> 0
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and Real part of (λ1) = −Real part of (λ2) =
e13
2
.

Therefore,

Imaginary part of (λ1) > Real part of(λ1) tan
(απ

2

)
and

− Imaginary part of (λ2) > Real part of(λ2) tan
(απ

2

)
.

This shows
απ

2
< arg(λ1) <

π

2
and − π

2
< arg(λ2) < −απ

2
.

Combining these two results, we have

| arg(λi)| >
απ

2
.

So, we must conclude that the system (2.9) exhibits the stable scenario near this
interior equilibrium point Es∗. Hence the theorem is proven.

Theorem 5.5. Near the interior equilibrium point Es∗ the system (2.9) displays
unstable scenario if the following conditions hold:
(a) e13 > 0 and e213 − 4e14 ≥ 0,

(b) e13 > 0, e213 − 4e14 < 0 and e15 < e13 tan
(απ

2

)
.

Proof. Here, we consider two vital cases:
CASE-I: e13 > 0 and e213 − 4e14 ≥ 0. So, both the eigenvalues must be positive.

|arg(λi)| = 0 <
απ

2
for i = 1, 2.

With help of the Theorem 3.3, the proposed system (2.9) shows the unstable scenario
near the interior steady state Es∗.
CASE-II: e13 > 0 and e213 − 4e14 < 0 and e15 < e13 tan

(απ
2

)
. In this case,

we found a pair of imaginary conjugate eigenvalues λ1 = λ̄2,λ2 = λ̄1 such that
Imaginary part of λ1=- Imaginary part of λ2=1

2
e15 > 0. So we have

| arg(λi)| = tan−1

(
e15
e13

)
<
απ

2
for i = 1, 2.

Now, using the Theorem 3.3, we have concluded that the model system (2.9) is
unstable close to the interior equilibrium Es∗ .

Hence, the theorem is completed.

6. Bifurcation analysis
6.1. For integer-order system
6.1.1. Trans-critical bifurcation analysis

Now, let us talk about what happens when rf

f + bkr1
= d+

bcr1
af

? This is a question

that arises from Theorem 5.3. Now, for this condition rf

f + bkr1
= d +

bcr1
af

, we
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could not say anything about the dynamical behavior near the axial steady state
Es2

(
0,
br1
f

)
because one eigenvalue of J

(
Es2

)
at Es2 is zero. Using Sotomayors

theorem [52] we can state the following theorem about the dynamical behavior
around the axial steady state Es2.

Theorem 6.1. The integer order model system (2.9) undergoes a Trans-critical bi-

furcation w.r.t. predator induced fear level k at k= kTB =
f

br1

[
afr − adf − bcr1

adf + bcr1

]
.

Proof. Let, H =

h1

h2

 =


rx

1 + ky
−mx2 − dx− cxy

a+ x

y

(
r1 −

fy

b+ x

)
 .

Now, for rf

f + bkr1
= d +

bcr1
af

, i.e., at k= kTB =
f

br1

[
afr − adf − bcr1

adf + bcr1

]
, the

variational matrix J(Es2) reduces to the form

J(Es2) =

0
r21
f

0 −r1

 .

Let B=

 b1

b2

 and A=

 a1

a2

 be the eigenvectors of J(Es2, k
TB) and JT (Es2, k

TB)

w.r.t. the zero eigenvalue respectively. After several algebraic calculations, we get

B =

 1

0

 and A =

 1
r1
f

 . The integer order system (2.9) undergoes a Trans-

critical bifurcation under the following conditions that obtained from Sotomayor’s
theorem [52]:

(i) ATHk

(
Es2, k

TB
)
= 0,

(ii) AT
[
DHk

(
Es2, k

TB
)
B
]
̸= 0,

(iii) AT
[
D2Hk

(
Es2, k

TB
)
(B B)

]
̸= 0.

Now, let us check the above restrictions one by one.
Therefore,

(i) ATHk

(
Es2, k

TB
)

=

(
1

r1
f

)[
rx

1 + ky
−mx2 − dx− cxy

a+ x
y

(
r1 −

fy

b+ x

)] ∣∣∣∣∣
(Es2,kTB)

=

[
rx

1 + ky
−mx2 − dx− cxy

a+ x
+

(
r1y −

fy2

b+ x

)
r1
f

] ∣∣∣∣∣
(Es2,kTB)

= 0.

(ii) AT
[
DHk

(
Es2, k

TB
)
B
]
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=

[
a1b1

∂2h1
∂x∂k

+ a1b2
∂2h1
∂y∂k

+ a2b1
∂2h2
∂x∂k

+ a2b2
∂2h2
∂y∂k

] ∣∣∣∣∣
(Es2,kTB)

=− bfrr1
(f + bkr1)2

̸= 0.

Finally, we obtain

(iii) AT
[
D2Hk

(
Es2, k

TB
)
(B B)

] ∣∣∣∣∣
(Es2,kTB)

=

[
b21
∂2h2
∂x2

+ b1
∂2h2
∂x∂y

+ b1
∂2h2
∂y∂x

+
∂2h2
∂y2

] ∣∣∣∣∣
(Es2,kTB)

=
1

bf

[
4fr1 − 2f2 − 2r21

]
= − 2

bf
(r1 − f)

2 ̸= 0.

Hence, all the restrictions of Sotomayor’s theorem [52] are verified. So, the proof of
this theorem is complete.

6.1.2. Hopf-bifurcation analysis

Theorem 6.2. The necessary and sufficient conditions for the occurrence of Hopf-
bifurcation around the co-existence steady state Es∗(x

∗, y∗) w.r.t. the predator in-
duced fear parameter k is that, there exist a critical point at k = k∗ for which
e11(k

∗) + e22(k
∗) = 0.

Proof. For performing Hopf-bifurcation analysis, the variational matrix around
the co-existence steady state Es∗(x

∗, y∗) need to have a pair of complex conjugate
eigenvalues whose real part changes sign under the variation of the parameter k and
crosses the imaginary axis with non-zero speed. Equation (5.3) exhibits that it has a
pair of purely complex eigenvalues if trace of J (Es∗(x

∗, y∗))=e11(k∗) + e22(k
∗) = 0

and ∆det = (e11e22 − e12e21) > 0.
Therefore, for co-existence of Hopf point equation (5.3) turns into the following

form

λ2 +∆det(k) = 0.

Thus, the both complex eigenvalues are λ1,2 = ±iωk where ωk =
√
∆det(k). Now,

we shall show that the transversality condition for which the eigenvalues just cross
the imaginary axis with non-zero speed. For this issue, we have taken k ∈ (k −
ϵ1, k + ϵ2) and λ1,2 = ζ1(k)± iζ2(k), where ζ1(k) =

1

2
[e11(k) + e22(k)] and ζ2(k) =√

∆2
det(k)−

(e11(k) + e22(k))
2

4
. Again

d

df
[ζ1(k)]k=k∗ =

1

2

d

dk

[
r

1 + ky∗
− 2mx∗ − d− acy∗

(a+ x∗)2
+ r1 −

2fy∗

b+ x∗

]
k=k∗

=− ry∗

2 (1 + k∗y∗)
2 ̸= 0.

Hence, completes the proof.
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6.2. For fractional order system
6.2.1. Hopf-bifurcation analysis

In fractional order system we have examined the conditions of Hopf-bifurcation
analytically for the occurrence of the same. In reality, if oscillation occurs period-
ically and the density of both the species prey and predator dies out or vanishes
or begin to fluctuate, then Hopf-bifurcation may occur. The system (2.9) shows
Hopf-bifurcation close to the interior steady state E∗

s . The given system goes to
Hopf-bifurcation w.r.t. the parameters k (fear factor) and α (fractional order). We
have defined the fractional order system as:

C
t0D

α
t x(t) = A (τ, x(t)) , where x ∈ R2 and 0 < α < 1. (6.1)

Let the system undergoes to Hopf-bifurcation near the co-existence point E∗
s w.r.t.

the parameter τ at τ = τ∗ if

(i) the variational matrix at the co-existence point E∗
s of (6.1) has a pair of

imaginary conjugate eigenvalues λ1,2 = hj ± iwj reduces to purely imaginary
at τ = τ∗,

(ii) ℧1,2(α, τ
∗) = 0 and

(iii) ∂℧1,2

∂τ
|τ=τ∗ ̸= 0,

where ℧i(α, τ) =
απ

2
− mini=1,2 | arg(λi(τ))|. From previous portion, it has been

investigated that α of FOD shows a vital role and it is controlled the stability of
the dynamics of this model. Then, the model system (6.1) may undergoes Hopf-
bifurcation w.r.t. the model parameter α which has been presented as bellow:

(i) at the co-existence point E∗
s , a pair of imaginary conjugate eigenvalues corre-

sponding the variational matrix of (6.1) are λ1,2 = αj ± iwj become to purely
complex number at α = α∗,

(ii) Ψ1,2(α
∗) = 0 and

(iii) ∂Ψ1,2

∂τ
|α=α∗ ̸= 0,

where Ψi(α) =
απ

2
−mini=1,2 | arg(λi(α))|. In the following theorem, we define the

restriction of Hopf-bifurcation of the above said model (2.9).

Theorem 6.3. Around the co-existence point Es∗(x
∗, y∗) the model system (2.9)

undergoes Hopf-bifurcation at α = α∗ = tan−1

(
e15
e13

)
, where 4e14 > e213, e13 ̸= 0.

Proof. Now, from (5.4) we get

λ1,2 = γ1 ± γ2, γ1 =
e13
2

> 0 & γ2 =
e15
2
.

Ψ1,2(α) =
απ

2
− min

i=1,2
| arg(λi)|,

Ψ1,2(α
∗) =

α∗π

2
− tan−1

(
γ2
γ1

)
= tan−1

(
γ2
γ1

)
− tan−1

(
γ2
γ1

)
= 0.
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Hence, we have

∂Ψ1,2

∂α

∣∣∣∣∣
α=α∗

=
π

2
̸= 0.

So, every conditions of Hopf-bifurcation are satisfied. Here, the system undergoes
to Hopf-bifurcation w.r.t. the parameters k and α. Analytically, it is not possible
to find out the critical values of another parameters such as fear level (k) and
(f). Numerically, we have observed that some important crucial parameters of this
model plays a innovative role where the system (2.9) undergoes to Hopf-bifurcation
and trans-critical bifurcation.

7. Numerical simulations and discussions
In this section, we will validate our analytical findings numerically. In this regard,
MATLAB, Mathematica and Matcont are the key software used for this purpose.
To know the system dynamics, we will use the set of parameter values as reported in
Table 2 throughout this article. Taking this set of parameter values, we have formu-

Table 2. Parameter set

Parameters Values Sources
r 0.3 Assumed
k 0.1 Assumed
m 0.01 Assumed
c 0.1 Assumed
r1 0.05 Assumed
a 1 Assumed
d1 0.01 Assumed
f 0.04 Assumed
b 1 Assumed

lated all the fixed points as trivial equilibrium point E0(0, 0), prey free equilibrium
point E1(0, 1.25), predator free equilibrium point E2(29, 0) and the co-existence
equilibrium point E∗(4.40447, 6.75559). Now, it is necessary to check the stability
of our proposed system around these fixed points. For this sake, we have computed
all eigenvalues of the Community matrix corresponding to the fixed points to de-
termine the stability scenario near each of these equilibrium points. The nature of
each equilibrium point is described in Table 3 as follows:

Table 3. Nature of each equilibrium point

Equilibrium point Eigenvalues Nature
E0(0, 0) λ1 = 0.05, λ2 = 0.29 unstable
E1(0, 1.25) λ1 = −0.29, λ2 = 0.05 unstable
E2(29, 0) λ1 = −0.05, λ2 = 0.131667 unstable

E∗(4.40447, 6.75559) λ1,2 = 0.00390866± 0.0467694i unstable

Note: If there are more than one picture in any figure, then we will call the 1st
picture in 1st row 1st column as Fig.a, 2nd picture in 1st row 2nd column as Fig.b,
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3rd picture in 2nd row 1st column as Fig.c, 4th picture in 2nd row 2nd column as
Fig.d. This process will be continued for all figures.
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Figure 1. Presentation of different dynamical behaviour of the model system for α = 1 by considering
different value of fear level k. The system dynamics exhibits stable scenario for k = 0.01 which has been
plotted by blue lines; for k = 0.3 it shows unstable scenario through periodic oscillation (see red curve)
while for k = 0.5 it illustrates stable scenario by washing out the periodic oscillations.
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Figure 2. Occurrence of multiple Hopf-bifurcation w.r.t fear level k in [0, 1] for α = 1. The first Hopf
point occurs for k = k∗ = 0.069 while the second Hopf point occurs for k = k∗ = 0.458709.

Now, we will investigate the dynamical behaviour of our proposed system with
respect to some crucial parameters one by one. In this context, first we will vary the
level of fear. For k = 0.01, the system shows stable scenario around the interior point
E∗(12.24, 16.55) as the eigenvalues of the Jacobian matrix at this point are λ1,2 =
−0.0284204±0.0728853i and the corresponding phase portrait is shown in Fig.1 by
blue line; for k = 0.3 the system shows unstable scenario (see Fig.1 red curve) around
the interior point E∗(1.62321, 3.27902) as the eigenvalues of the Jacobian matrix
at this point are λ1,2 = 0.005558± 0.0279414i; interestingly for further increase of
fear level, i.e., for k = 0.5 the system shows stable scenario (see Fig.1 black curve)
near E∗(0.764902, 2.20613) as the eigenvalues are λ1,2 = −0.00173738±0.0194793i.
However, it is observed that at low level of fear the system shows stable scenario,
for moderate value of fear the system shows unstable scenario by producing limit
cycle oscillation and for high level of fear the system shows stable scenario by
removing the limit cycle oscillation. Therefore, our proposed system undergoes
two Hopf-bifurcations as shown in Fig.2. The bifurcation diagrams are shown in
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Figure 3. Plot of bifurcation diagram w.r.t k in [0, 1] for α = 1. The model system shows stable
scenario for k < k∗ = 0.069, but for k ∈ [0.069, 0.458] it shows oscillatory scenario. Interestingly for
further increase in fear level k the system becomes stable.

Fig.3 which clarifies that the system remains stable until it crosses the threshold
parametric limit k = k∗ = 0.069 and after crossing this threshold parametric limit
it enters into an unstable zone and it becomes stable again when it crosses the
threshold parametric limit k = k∗ = 0.458709. For further increase of fear level
the system remains stable but the prey population goes to extinction (see Fig.3a).
In addition, we have computed the 1st Lyapunov coefficient (l1) to determine the
direction and stability of Hopf-bifurcation. It is observed that at k = k∗ = 0.069 the
1st Lyapunov coefficient (l1) is −0.0004008163 which indicates that the bifurcation
is super-critical and the bifurcating periodic solution is stable as negativity of 1st
Lyapunov coefficient (l1) implies the occurrence of super-critical Hopf-bifurcation
along with orbitally stable bifurcating limit cycle and the period of the bifurcating
limit cycle increases with the increase of fear level k as shown in Fig.4. Now, at the
second Hopf point k = 0.458709 the 1st Lyapunov coefficient (l1) is −0.005273313
which consequently indicates the occurrence of super-critical Hopf-bifurcation with
stable bifurcating limit cycle and the period increases with the increase of fear level
up to the threshold value k = k∗ = 0.458709 (see Fig.4). Moreover, at this Hopf
point the limit cycle bifurcates and a limit point cycle (LPC) occurs. To confirm
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Figure 4. Relation between period of the bifurcating limit cycle with fear level k for α = 1. It is noticed
that period of the bifurcating limit cycle increases with the increase of fear level.

the stability of bifurcating limit cycle we have drawn the modulus of all Floquet
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multipliers with fear parameter k and it is observed that modulus of one Floquet
multiplier is always one (due to rotation) and other one is less the 1, as shown in
Fig.5(a) (for first Hopf point) and Fig.5(b) (for second Hopf point) which reveals
that the bifurcating limit cycles are stable.

Figure 5. Exhibits stability of limit cycle oscillation for different values of k based on the properties of
Floquet multipliers for α = 1. Here, modulus of one Floquet multiplier is one and other one is less than
one and hence the limit cycle oscillation is stable.

Figure 6. Transcritical bifurcation diagram w.r.t k for the integer order model system.

Moreover, it is illustrated that a Transcritical bifurcation occurs around the prey
free equilibrium point E1(0, 1.25) for k = k∗ = 0.977778 as shown in Fig.6. Now,
we have considered the oscillatory phenomenon of the model system by choosing
k = 0.3 to observe the influence of fractional order α in the system dynamics keeping
other parameters fixed as of (2). Here, we have investigated that the proposed
system demonstrates unstable scenario by producing limit cycle oscillation for α =
0.99, α = 0.96, α = 0.94 as shown in Fig. 7(a), (b), (c) respectively. Interestingly, for
further decrease in the value of α = 0.92 we have noticed that the system dynamics
becomes stable by removing the periodic oscillation. So, we can conclude that
fractional order α has stabilizing effect in the system dynamics irrespective of the
value of fear parameter k and the model system experiences Hopf bifurcation w.r.t.
this fractional order α. To visualize the role of α we have plotted Hopf-bifurcation
diagram w.r.t. α in the range α ∈ [0.8, 1]. Fig.8(a) reveals the fact that there is a
enough difference between max (prey population density) and min (prey population
density) which consequently creates the unstable situation for prey species in the
range α ∈ [0.8, 1] and the same is true for predator species also. Interestingly, a
slight decrements in α, i.e., for α ∈ (0, 0.8) it is observed that both the population
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Figure 7. Phase portrait diagram under different values of α for predator induced fear k = 0.3. It is
examined that reduction in α makes the model system stable.
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Figure 8. Bifurcation diagram w.r.t α by taking k = 0.3 and remaining other parameters same as
above. It is examined that for the threshold value of fractional order α > α∗ = 0.945 the model system
exhibits unstable scenario by making sufficiently large difference between maximum and minimum of
both the population density while slight decrements in α makes the system dynamics stable by making
maximum and minimum of both the population density same.

density do not fluctuate, i.e., maximum of population density and minimum of
population density coincides with each other and produces a stable scenario for the
model system. Here, it may be concluded that reduction in α makes the system
stable and the reason may be interpreted as follows:

Since fractional order differential equation catches all the past performance of
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species and hence prey species may adapt different defensive strategy in response
to predator attack which consequently increases their population density. Again,
we have plotted mean density of both the population under the variation of α by
fixing k = 0.3. It is examined that the density of prey and predator population
increases in the range 0 < α ≤ 0.4 and 0 < α ≤ 0.55. But, surprisingly, when α
crosses 0.4 (for prey) and 0.55 (for predator) then both the population mean den-
sity begins to decrease and eventually fluctuates when α just crosses the threshold
parametric limit α = α∗ = 0.945. Now, we will focus on f to know the role of the
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Figure 9. Plot of change in mean population biomass of both the species under the variation of model
parameter α considering k = 0.3. It is observed that both prey and predator population start to oscillate
when α just crosses the threshold parametric limit α = α∗ = 0.945. For 0 < α ≤ 0.4 mean density
of prey species persistently increases and then in the range 0.4 < α ≤ 0.65 it decreases while predator
population biomass continuously increases in the range 0 < α ≤ 0.55.

parameter f in the system dynamics. For this, first we have taken f = 0.04 and
investigated that around the interior co-existence steady state E∗(4.40447, 6.75559)
the system exhibits unstable scenario by producing limit cycle as shown in Fig.10
since the eigenvalues at this points are λ1,2 = 0.00390866 ± 0.0467694i. Inter-
estingly, when we increase the value of f , i.e., for f = 0.07 the limit cycle not
appears and the model system displays stable scenario near the co-existence point
E∗(9.20729, 7.29092) (see Fig.10B) as the eigenvalues obtained at this point are
λ1,2 = −0.0388211 ± 0.0556468i. Moreover, for lower value of the system shows
stable scenario and the system undergoes multiple Hopf-bifurcations as shown in
Fig. 11. The bifurcation diagram w.r.t f are displayed in Fig.12. It clarifies that
the proposed model exhibits stable scenario in the interval f ∈ [0, 0.022787) and
becomes unstable by occurring a Hopf bifurcation at f = f∗ = 0.022787 and re-
mains unstable in the interval f ∈ [0.022787, 0.04211]. For, f > 0.04211 the system
shows stable scenario. Moreover, we have calculated 1st Lyapunov coefficient (l1)
at both the Hopf points. At f = f∗ = 0.022787, the 1st Lyapunov coefficient
becomes l1 = −0.009616536 which specify the occurrence of super-critical Hopf-
bifurcation with stable bifurcating limit cycle. At the second Hopf point which
occurs at f = f∗ = 0.04211 the 1st lyapunov coefficient l1 becomes −0.000521551



222 N. Mondal, D. Barman, J. Roy, S. Alam & M. Sajid

0 5 10 15 20 25
0

2

4

6

8

10

12

Prey (x)

P
re

d
a
to

r 
(y

)

A

0 5 10 15 20 25
0

2

4

6

8

10

Prey (x)

P
re

d
a
to

r 
(y

)

B

Figure 10. Phase portraits plot of the system for α = 1. Fig.A exhibits the limit cycle oscillation for
f = 0.04; Fig.B displays the disappearance of limit cycle oscillation for f = 0.07

Figure 11. Occurrence of multiple Hopf-bifurcation w.r.t f for the integer order model system.

which implies that a super-critical Hopf bifurcation occurs with orbitally stable limit
cycle. In addition, to confirm the stability of produced limit cycles we have plotted
diagrams of Floquet multipliers vs f (see Fig.13) at those hopf points and observed
that modulus of one multiplier is always one (due to rotation) and the value of
the other modulus lies below the quantity 1 which consequently guarantee’s the
stability of limit cycle.

Figure 12. Bifurcation diagram w.r.t f for the integer order model system.



A modified Leslie-Gower fractional. . . 223

0.025 0.03 0.035 0.04 0.045
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

M
od

[A
ll]

for first Hopf-point
for second Hopf-point

Figure 13. Stability of limit cycle oscillation w.r.t f for the integer order model system.
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Figure 14. Phase portrait diagram under different values of α for f = 0.04 keeping other parameter
same as above. We have examined that reduction in α makes the model system stable.

Now, to check the impact of the system dynamics under the variation of frac-
tional order α we have considered the unstable scenario by choosing f = 0.04 and
observed different dynamical nature for different values of α. For α = 0.99 and
α = 0.97 the model system exhibits limit cycle oscillation (see Fig.14(a)and (b)).
But, slight reduction in α, i.e., for α = 0.95 it displays stable behavior (see 14(c)) by
eliminating periodic oscillation and this phenomena continues for further reduction
in α (see Fig.14(d)). So, we can conclude that the model system undergoes a Hopf-
bifurcation w.r.t. this fractional order α and this scenario has been portrayed in
Fig.15. From Fig.15, it is noticed that the system remains stable for α < α∗ ≤ 0.95
and becomes unstable behavior by producing periodic oscillation whenever α just
crosses the threshold parametric limit α = α∗ = 0.95. Again, we have checked
the amount of mean density under the variation of α in α ∈ (0, 1] which has been
portrayed in Fig.16. From Fig.16, it is clear that, for 0 < α ≤ 0.4 prey population
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Figure 15. Bifurcation diagram w.r.t α for f = 0.04 in α ∈ [0, 1]. It reveals the fact that for α ∈ [0.95, 1]
the model system exhibits unstable scenario by producing periodic oscillation of both the population
density (existence of maximum and minimum population density), however, slight reduction in α makes
the system free from periodic oscillation and hence displays stable scenario.
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Figure 16. Plot of change in mean population biomass of both the species under the variation of model
parameter α for f = 0.04. It is observed that both prey and predator population start to oscillate
when α just crosses the threshold parametric value α = α∗ = 0.95. For 0 < α ≤ 0.4 mean density of
prey species persistently increases and then in the range 0.4 < α ≤ 0.65 it decreases while predator
population biomass continuously increases in the range 0 < α ≤ 0.55.
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Figure 17. Phase portraits plot of the system for α = 1. The system dynamics exhibits stable scenario
for b = 0.5 as shown in Fig.a; but for b = 0.9 it shows unstable scenario by producing periodic oscillation
as displayed in Fig.b.
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Figure 18. Bifurcation diagram w.r.t b in [0, 1] for the integer order model system. It is examined
that the model system shows locally asymptotically stable scenario until b exceeds the threshold value
b = b∗ = 0.707356; whenever b just crosses this threshold parametric limit b = b∗ = 0.707356 then the
system dynamics changes its qualitative scenario from stable to unstable and it continues for further
increase in b.
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Figure 19. Stability of limit cycle oscillation through the plot of Floquet multipliers for the integer
order counterpart system. Here, it is observed that out of two Floquet multipliers one is always 1 and
the other one is less than 1 which consequently reveals that the limit cycle oscillations are stable.
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Figure 20. Saddle-node bifurcation for b = 2.13 for the integer order counterpart system.

mean biomass increase ; for 0.4 < α ≤ 0.65 it decreases and at last for α > 0.95
it begins to oscillate. However, predator population mean biomass continuously
increases in the range α ∈ (0, 0.55] and decreases slightly until α just crosses the
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Figure 21. Phase portrait diagram under different values of α for b = 1.5 keeping other parameters
same as above. It is examined that reduction in α makes the model system stable for b = 1.5.
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Figure 22. Bifurcation diagram w.r.t α for b = 1.5 in α ∈ [0, 1]. It reveals the fact that for α ∈ [0.86, 1]
the model system exhibits unstable scenario by producing periodic oscillation of both the population
density (existence of maximum and minimum population density), however, slight reduction in α makes
the system free from periodic oscillation and hence displays stable scenario.

threshold parametric limit α = α∗ = 0.95. So, it can be easily concluded that frac-
tional order α has a deep impact not only on the stability of the system dynamics
but also on mean population biomass. Now, we are interested to know the system
dynamics with the variation of the parameter b. For b = 0.5 the system becomes
stable and the corresponding phase portrait is given in Fig.17a and for b = 0.9 the
model system demonstrates unstable scenario near the interior coexistence steady
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Figure 23. Plot of change in mean population biomass of both the species under the variation of model
parameter α considering b = 1.5. It is observed that both prey and predator population start to oscillate
when α just crosses the threshold parametric limit α = α∗ = 0.86. For 0 < α ≤ 0.4 mean density of prey
species persistently increases and then in the range 0.4 < α ≤ 0.6 it decreases while predator population
biomass continuously increases in the range 0 < α ≤ 0.55.

state E∗
1 (6.82258, 4.55807) by producing limit cycle as shown in Fig.17b since the

eigenvalues at this point are obtained as λ1,2 = 0.0274764±0.0246072i. The bifurca-
tion diagrams are displayed in Fig.18 which tells that the system becomes unstable
from its locally asymptotically stable situation when it just crosses the threshold
parametric limit b = b∗ = 0.707356. Further, we have formulated the 1st Lya-
punov coefficient as l1 = −0.0006112797 which indicates that the Hopf-bifurcation
is super-critical with orbitally stable limit cycle. Moreover, the stability of limit cy-
cle is confirmed from Fig.19 as the modulus of Floquet multipliers becomes ≤ 1. In
addition, a limit point (LP) bifurcation is detected by MATCONT at b = 2.138399
with nonzero normal form coefficient −0.01026175 which indicates that a orbitally
stable limit cycle may bifurcate around the point E∗(1.232014, 4.213015). The bi-
furcation diagram is shown in Fig.20 and a neutral saddle point (0.320041, 2.896456)
occurs for b = 1.997124. Again, to check the impact of the fractional order α we
have considered the periodic oscillation situation of the model system by taking
b = 1.9 . We have observed that continuous reduction in α forces the system to
exhibit stable behavior. The system shows unstable behavior for α = 0.99, 0.95, 0.9
as shown in Fig.21(a),(b),(c) respectively. But, for α = 0.86 the system exhibits
stable behavior by washing out the periodic oscillation as displayed in Fig.21(d). So,
it is obvious that the model system undergoes Hopf-bifurcation w.r.t. α which has
been reflected in Fig.22. From Fig.22, it is noticed that the system remains stable
for α < α∗ ≤ 0.86 and becomes unstable behavior by producing periodic oscillation
whenever α just crosses the threshold parametric limit α = α∗ = 0.86. At last, we
have plotted the mean density diagram to predict the role of α in population density
as displayed in Fig.23. It is examined that both prey and predator population start
to oscillate when α just crosses the threshold parametric limit α = α∗ = 0.86. For
0 < α ≤ 0.4 mean density of prey species persistently increases and then in the
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range 0.4 < α ≤ 0.6 it decreases while predator population biomass continuously
increases in the range 0 < α ≤ 0.55.

8. Conclusion
In this article, a modified Leslie-Gower predator-prey scheme with predator induced
fear in fractional sense has been proposed. The well-posedness of the proposed
system has been studied rigorously. It is observed when the system reaches to both
predator and prey free equilibrium steady state then it always displays unstable
scenario near the fixed point. Biologically, the system can never be stable at the
zero equilibrium state. The system possesses one predator free equilibrium state
and under the feasibility condition of existence of the equilibrium state it always
exhibits unstable scenario. For the logistic type growth term of the predator species,
the system may reach to one prey free equilibrium state. Depending upon the
parametric constraints it may either exhibits stable scenario or unstable scenario.
It is investigated that the model system experiences trans-critical bifurcation if we
vary the fear parameter k as the bifurcation parameter. The system may exhibit
stable co-existence or oscillatory scenario which critically depends on both fear
parameter k and the memory of the individuals (α) gained from their life cycle. It is
observed that when the individual has less memory, then the fear level (k) stabilizes
the predator-prey system via two consecutive Hopf-bifurcation. It has been shown
numerically by calculating the 1st Lyapunov coefficient at the bifurcation points
that the first occurrence of Hopf-bifurcation is super critical and the produced limit
cycle shows stable scenario and for enhancement in the fear level the period of the
limit cycle increases; the second Hopf-bifurcation occurs for further development of
fear level and this time through saddle-node bifurcation of limit cycle (LPC occurs
at the second Hopf point) a stable steady state occurs. Memory of species may
play vital role in states of stability of the regarding system. It is observed, that
the order α (measures memory of the species) of the fractional order system is
inversely proportional in case of stabilizing the system. That is, decreasing value of
α stabilizes the system whether incremental α fosters destabilization of the system.
As the lower value of α refers to strong memory of the interacting species; then it
may be concluded that when the intervening species of our model system are able
to memorize the past then it leads to stable co-existence of the species. On the
other hand, fading memory may be a possible reason for periodic co-existence of
the species (all the facts have been numerically checked). This study uncovers some
useful results on impact of forgetting process of interacting species when a particular
species is driven by indirect effect. It is to be noted that, we consider homogeneous
distribution of species; in case of in homogeneity in spatial distribution, the process
of memorizing the previous facts may have different outcomes on the evolution of
the species. This gap may be covered in future studies.
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