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DYNAMICS OF TWO PREDATOR-PREY
MODELS WITH POWER LAW RELATION

Jiandong Zhao1,† and Tonghua Zhang2

Abstract In this paper, we propose a predator-prey model with power law
relation based on the model in [Hatton et al, The predator-prey power law:
Biomass scaling across terrestrial and aquatic biomes, Science 349(2015),
aac6284], and analyze the global dynamics of both models. We obtain that
Hatton’s model is persistent for power less than 1, and there exists a separa-
trix near the origin such that solutions of the model above it are driven to the
origin and the ones below it are far away from origin for power greater than 1.
However, our model is persistent for all power and has the same singularity as
that of Hatton’s model at the origin for power greater than 1, which indicate
that the prey and predator will coexist or extinct eventually. Furthermore, in
our model, the prey will be stable at its carrying capacity and the predator
will be extinct for power less than 1, and the prey will be stable at its carrying
capacity or both the prey and predator will be extinct for power greater than
1.

Keywords Predator-prey model, power law, equilibrium, stability, Hopf bi-
furcation.
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1. Introduction
Since Lotka-Voterra predator-prey model was proposed to study the problems in
chemical reactions and fishes with predator-prey relation [24,35], the predator-prey
models are always the focus in mathematical biology. Generally, the predator-prey
model can be given by ordinary differential equations ( [7], Chapter 5)

dX

dt
= F (X,Y ),

dY

dt
= G(X,Y ),

(1.1)

where X and Y are biomass, and F (X,Y ) and G(X,Y ) are the growth rates of
the prey and predator species at time t, respectively. Many classical predator-prey
models are special cases of (1.1), for example, Kolmogorov predator-prey model
and Lotka-Volterra predator-prey model. However, it makes model (1.1) difficult
to study since there are few techniques. Therefore, according to biological mean-
ing, model (1.1) can be written into different forms, such as, predator functional
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responses models [11, 15, 17, 26, 30, 34, 42] and ratio-dependent functional responses
models [2, 4, 12, 18, 20, 21, 36–38, 40]. Reference [5] gave a detailed introduction
to predator functional responses and ratio-dependent functional responses in the
predator-prey models.

Recently, predator-prey models were studied to describe herd [1, 8–10, 32] and
spatiotemporal [33, 39, 43] behaviors, and influence of stochastic perturbation [19,
22,25,28,29,41]. The responses of these models are functions of predator and prey
with exponent, and we call them exponential functional response. The models with
exponential functional response have singularities at the origin, which can not be
discussed with the method of linearization. However, the singularities of the origin
deserve to be discussed by developing various methods. The model with exponent
response was also considered in [23].

All of the above literatures assumed that the intrinsic growth rate of prey is
dX
dt = rX, i.e., the intrinsic growth rate of prey is in proportion to its biomass, where
r is the intrinsic average growth rate of prey. In fact, the linear intrinsic growth
only provides advantage in analysis of the models. Obviously, it has shortcoming
in describing real population problems.

In 2015, the empirical findings of Hatton et al [14] showed that biomass of prey
and predator have power law relation near the steady state. They proposed a
predator-prey model 

dX

dt
= rXk −XY,

dY

dt
= gXY −mY,

(1.2)

where X and Y are biomass of prey and predator at time t, respectively, r is the
intrinsic growth rate of prey, g is the growth efficiency of predator in converting
prey into offspring of predator, m is the mortality rate of predator, and r > 0,
g > 0, m > 0, k > 0. Furthermore, their empirical findings also showed that the
exponent k is near 3

4 for most predator and prey relation in terrestrial and aquatic
biomes, whereas the exponent k is close to 1 or k > 1 for some piscivore and fish
relation. A generalization of model (1.2) can be written as

dX

dt
= P (X)−Q(X,Y ),

dY

dt
= gQ(X,Y )−mH(Y ),

(1.3)

where P (X) is the prey production, Q(X,Y ) is the prey consumption by predator,
H(Y ) is the predator death. If prey production is assumed to be P (X) = rXk,
and model (1.3) has a positive equilibrium, then the prey and the predator have
power law relation near the steady state. Based on model (1.2), a pest control
predator-prey model is proposed in [31].

The growth of prey rXk in model (1.2) is an exponential function with exponent
k. The expressional forms of the right side in model (1.2) are similar to those of the
exponential functional response models. Therefore, model (1.2) also has the similar
singularities at the origin, which is one of our goal in this paper.

The Lotka-Volterra predator-prey model is the case of model (1.2) for k = 1,
which is usually regarded as unrealistic model for the unbounded prey in the absence
of predator and structural stability although it explain a real fishing problem in the
Adriatic perfectly. Accordingly, model (1.2) has the same problem, i.e., the prey
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in absence of the predator will be infinity, which is a contradiction to the limited
environmental resource in the sense of biology. Although more than two thousands
of data sets for the predator and prey relation support the results in [14], model (1.2)
is too simple to be realistic for describing real relation of predator and prey. The
other one problem is that the conclusion of [14] shows that the growth of community
is density-dependent, but model (1.2) is not the density-dependent growth in the
expressional forms. It will be more suitable to consider a density-dependent growth
in proposing a mathematical model. Another shortcoming of model (1.2) is that
both the predator and the prey in model (1.2) will be unbounded for k > 1. This
contradicts to the density-dependent growth and limited environmental resources.

Motivated by the above, in this paper, we intend to adapt model (1.2) to obtain
a more biological meaningful model. Therefore, considering the logistic density
dependence of the prey, we propose a predator-prey model with power law relation
as follows 

dX

dt
= rXk

(
1− X

K

)
−XY,

dY

dt
= gXY −mY,

(1.4)

where K is the carrying capacity of the prey in an environment and model (1.4)
has the density-dependent growth.

Apparently, interspecies competition is linear and intraspecies competition is
nonlinear and asymmetric in model (1.4). These characteristics are similar to those
of Gilpin-Ayala competition model proposed in [3, 13],


dX1

dt
= r1X1

[
1−

(
X1

K1

)θ1

− a12
X2

K2

]
,

dX2

dt
= r2X2

[
1−

(
X2

K2

)θ2

− a21
X1

K1

]
,

(1.5)

where Xi and ri are the density and the intrinsic growth rate of the ith species,
respectively; Ki is the carrying capacity of the ith species in the absence of the jth
species, aij is the reduction of the growth rate of the ith species by the jthe species,
θi is the asymmetry growth of the ith species, i, j = 1, 2. Model (1.5) is Lotka-
Volterra competition model when θ1 = θ2 = 1. In fact, Gilpin and Ayala [3,13] gave
eleven competition models, among which model (1.5) was regarded as the best one
for fitting to the experimental data and received much attention since then. The
above mentioned papers [1,8–10,23,32,33,39,43] studied nonlinear models with the
nonlinear interspecies competition and linear intraspecies competition.

In Section 3, we will show that model (1.4) has power law relation near the
steady state, and it is persistent for all k > 0. Therefore, any solution of model
(1.4) is bounded, and model (1.4) is more suitable for describing the predator and
prey relation in an ecological environment.

We also analyze the global behaviors of models (1.2) and (1.4) in this paper.
Our main results are illustrated by some simulations of examples in Section 4. In
Section 5, our conclusions and some discussions are given.
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2. Dynamics of model (1.2)
In this section, we analyze model (1.2) in R2

+ = {(X,Y )|X ≥ 0, Y ≥ 0}. It is
easy to get that model (1.2) has a boundary equilibrium E0 = (0, 0) and a positive
equilibrium E∗ = (X∗, Y ∗), where

X∗ =
m

g
, Y ∗ = r

(
m

g

)k−1

.

Apparently, Y ∗ = gr
m (X∗)k, showing the existence of a power law relation for the

positive equilibrium. The Jacobi matrix of model (1.2) is

J =

 rkXk−1 − Y −X

gY gX −m

 .

2.1. Stability of boundary equilibrium
Model (1.2) without predator is

dX

dt
= rXk. (2.1)

X = 0 is a solution of (2.1). Solution of equation (2.1) with initial value X(t0) =
X0 ̸= 0 is

X1−k = (1− k)r(t− t0) +X1−k
0

for k ̸= 1, and
X = X0e

r(t−t0)

for k = 1. Therefore, we know that X → +∞ as t → +∞ for 0 < k ≤ 1, and
X → +∞ as

t →
[

1

r(k − 1)Xk−1
0

+ t0

]−
for k > 1. For k > 1, this means that the population of prey diverges in finite time,
which does not seem true in the sense of biology.

On the other hand, model (1.2) without prey is

dY

dt
= −mY, (2.2)

so the solution of equation (2.2) with initial value Y (t0) = Y0 is Y = Y0e
−m(t−t0),

accordingly Y → 0 as t → +∞.
Furthermore, we can prove the following result regarding the stability of E0.

Theorem 2.1. If 0 < k ≤ 1, then E0 is a saddle. If k > 1, then there exists a
separatrix, and solutions of (1.2) above it are driven to E0 and the ones below it
are far away from E0.

Proof. If k = 1, then the eigenvalues of Jacobi matrix at E0 are r > 0 and
−m < 0. Accordingly, E0 is a saddle.

If 0 < k < 1, the Jacobi matrix at E0 is not determined. The above discussions
show that solutions of (1.2) with initial on x-axis are always on x-axis and tend
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to infinity as t → +∞, and solutions of (1.2) with initial on y-axis are always on
y-axis and tend to origin as t → +∞. By the method of [8], for X ≪ 1 and Y ≪ 1,
model (1.2) can be approximated by

dX

dt
= rXk,

dY

dt
= −mY.

(2.3)

The solution of (2.3) with initial value (X(t0), Y (t0)) = (X0, Y0) is

Y = Y0e
− m

(1−k)r (X
1−k−X1−k

0 ).

If
Y0 = e−

m
(1−k)r

X1−k
0 ,

then the solution of (2.3) with initial value (X0, Y0) is along the curve

Y = e−
m

(1−k)r
X1−k

.

Thus, all solutions of (1.2) with positive initial value (X0, Y0) near the origin will
be very close to the above curve. Accordingly, E0 is a saddle.

If k > 1, for X ≪ 1 and Y ≪ 1, model (1.2) may be approximated by
dX

dt
= rXk −XY,

dY

dt
= −mY.

(2.4)

The first equation of (2.4) can be rewritten as

X−k dX

dt
= r −X1−kY.

Let Z = X1−k, then the above equation is

dZ

dt
= (1− k)r − (1− k)ZY.

Substituting the solution Y = Y0e
−m(t−t0) of the second equation of (2.4) with

initial value Y (t0) = Y0, we get

dZ

dt
+ (1− k)Y0e

−m(t−t0)Z = (1− k)r,

which is a linear differential equation, and its solution with initial value Z(t0) = Z0

is

Z = e
(k−1)Y0

∫ t
t0

e−m(s−t0)ds

[
(1− k)r

∫ t

t0

e
−(k−1)Y0

∫ w
t0

e−m(s−t0)ds
dw + Z0

]
= e−

k−1
m Y

[
(k − 1)r

m

∫ − k−1
m Y

− k−1
m Y0

e−u

u
du+ Z0e

k−1
m Y0

]

= e−
k−1
m Y

[
(k − 1)r

m
Ei

(
k − 1

m
Y

)
− (k − 1)r

m
Ei

(
k − 1

m
Y0

)
+ Z0e

k−1
m Y0

]
,
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where

Ei(s) = − lim
ε→0+

(∫ −ε

−s

e−t

t
dt+

∫ ∞

ε

e−t

t
dt

)
is the Cauchy principle value of the exponential integral for s > 0 [6]. So

X1−k = e−
k−1
m Y

[
(k − 1)r

m
Ei

(
k − 1

m
Y

)
− (k − 1)r

m
Ei

(
k − 1

m
Y0

)
+X1−k

0 e
k−1
m Y0

]
is a solution of (2.4) with initial value (X(t0), Y (t0)) = (X0, Y0). If

Xk−1
0 =

me
k−1
m Y0

(k − 1)rEi(k−1
m Y0)

,

then the solution of (2.4) with initial value (X0, Y0) is driven to E0 along the curve

Xk−1 =
me

k−1
m Y

(k − 1)rEi(k−1
m Y )

,

which is a separatix. Solutions of (2.4) above the separatrix are driven to E0 and
the ones below it are far away from E0. Therefore, for X ≪ 1 and Y ≪ 1, the
solutions of model (1.2) near E0 have the same property. This completes our proof.

Remark 2.1. The singularity of E0 is showed in Figure 3 in Section 4. It is clear
that the first quadrant is divided by a separatrix Γ into two parts D1 and D2. The
solutions above the separatrix Γ are driven to E0 and the ones below it are far away
from E0.

2.2. Stability of positive equilibrium
The Jacobi matrix at E∗ is

J∗ =

 r(mg )
k−1(k − 1) −m

g

gr(mg )
k−1 0

 ,

and its characteristic polynomial is

f(λ) = λ2 − a(k − 1)λ+ am,

where a = r(mg )
k−1 > 0. f(λ) has two roots a(k−1)±

√
a2(k−1)2−4am

2 . Then, there
are three cases to discuss:

Case 1. For 0 < k < 1, if a2(k − 1)2 − 4am ≥ 0, i.e., a ≥ 4m
(k−1)2 , the two roots of

f(λ) both are negative numbers, and E∗ is a stable node. If a2(k−1)2−4am <
0, i.e., a < 4m

(k−1)2 , the two roots of f(λ) both are imaginary numbers with
negative real parts, and E∗ is a stable focus.

Case 2. For k = 1, model (1.2) is the Lotka-Volterra predator-prey model. E∗ is
a center ( [27], P79–81).
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Case 3. For k > 1, if a ≥ 4m
(k−1)2 , then the two roots of f(λ) both are positive

numbers, and E∗ is an unstable node. If a < 4m
(k−1)2 , then the two roots

of f(λ) both are imaginary numbers with positive real parts, and E∗ is an
unstable focus.

The above discussions lead to the following results.

Theorem 2.2. For 0 < k < 1, if a ≥ 4m
(k−1)2 , then E∗ is a local stable node; if

a < 4m
(k−1)2 , then E∗ is a local stable focus. For k = 1, E∗ is a center. For k > 1,

if a ≥ 4m
(k−1)2 , then E∗ is an unstable node; if a < 4m

(k−1)2 , then E∗ is an unstable
focus.

By Bendixson-Dulac criterion, it is easy to show that there is no periodic solution
in the first quadrant.

Theorem 2.3. For k ̸= 1, model (1.2) has no periodic solution in the first quadrant.

Proof. Using Dulac function in ( [16], P162). Let

h(X,Y ) = X−1Y −1, H1(X,Y ) = rXk −XY, H2(X,Y ) = gXY −mY,

then

∆ =
∂[H1(X,Y )h(X,Y )]

∂X
+

∂[H2(X,Y )h(X,Y )]

∂Y
= r(k − 1)Xk−2Y −1.

Thus, ∆ > 0 for k > 1, and ∆ < 0 for 0 < k < 1 in intR2
+. The Bendixson-Dulac

criterion completes our proof.
By Theorems 2.1, 2.2 and 2.3 , we have the global dynamics of model (1.2).

Theorem 2.4. For 0 < k < 1, E0 is a saddle, and if a ≥ 4m
(k−1)2 , then E∗ is a

globally asymptotically stable node; if a < 4m
(k−1)2 , then E∗ is a globally asymptot-

ically stable focus. For k = 1, E0 is a saddle, and E∗ is a center. For k > 1, if
a ≥ 4m

(k−1)2 , then E∗ is an unstable node; if a < 4m
(k−1)2 , then E∗ is an unstable focus;

furthermore, there exists a separatrix, and solutions of (1.2) above it are driven to
E0 and the ones below it are far away from E0.

Remark 2.2. Theorem 2.4 means that the predator and the prey in model (1.2)
coexist for 0 < k ≤ 1, and will be extinct or diverged for k > 1. Therefore, model
(1.2) is permanent for 0 < k ≤ 1 and not persistent for k > 1.

3. Dynamics of model (1.4)
In this section, we analyze model (1.4) in R2

+. It is easy to check that model (1.4)
has two boundary equilibria E0 = (0, 0), EK = (K, 0) and a positive equilibrium
E∗ = (X∗, Y∗), where

X∗ =
m

g
, Y∗ = r

(
m

g

)k−1 (
1− m

gK

)
.

Y∗ = gr
m (1 − m

gK )X∗
k shows that there is a power law relation for E∗. Y∗ > 0 if

and only if K > m
g . Therefore, we get the condition for the existence of positive

equilibrium of model (1.4).
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Theorem 3.1. If K > m
g , then model (1.4) has a positive equilibrium E∗.

Model (1.4) without predator is

dX

dt
= rXk

(
1− X

K

)
. (3.1)

It is easy to know that equation (3.1) has two equilibria 0 and K, and any positive
solution of equation (3.1) tends to K as t → +∞. Model (1.4) without prey is (2.2).
Next, we discuss the boundedness of model (1.4).

Theorem 3.2. Any solution of model (1.4) with positive initial value is positive
and bounded for all k > 0.

Proof. It is obvious that any solution of model (1.4) with positive initial value
is positive. From the first equation of model (1.4), we get that for all X > 0 and
Y > 0

dX

dt
≤ rXk

(
1− X

K

)
.

The above discussion shows that X = K is a solution of equation (3.1) which is
globally attractive. It follows the differential inequality theorem that there exists a
T1 > t0 for any ε > 0 and some t0 such that for t > T1

X < K + ε.

Let Z = gX + Y , then

dZ

dt
= g

dX

dt
+

dY

dt
= g

[
rXk

(
1− X

K

)
−XY

]
+ gXY −mY

= grXk

(
1− X

K

)
+ gmX −m(gX + Y ) ≤ g

(
rXk +mX

)
−mZ.

Thus, for t > T1
dZ

dt
+mZ ≤ g

[
r(K + ε)k +m(K + ε)

]
.

We have
lim sup
t→+∞

Z ≤ g

m

[
r(K + ε)k +m(K + ε)

]
,

i.e.
lim sup
t→+∞

(gX + Y ) ≤ g

m

[
r(K + ε)k +m(K + ε)

]
.

This completes our proof.

3.1. Stability of boundary equilibria
By a similar proof of Theorem 2.1, it is easy to get the following result.

Theorem 3.3. If 0 < k ≤ 1, then E0 is a saddle. If k > 1, then there exists a
separatrix, and solutions of (1.2) above it are driven to E0 and the ones below it
are far away from E0.

Remark 3.1. The singularity of E0 will be showed by Figures 2 and 5 in Section
4. It is clear that the solutions above the separatrix are driven to E0 and the ones
below it are far away from E0.
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The Jacobi matrix of model (1.4) is

J =

 rkXk−1 − r(k+1)
K Xk − Y −X

gY gX −m

 .

The Jacobi matrix at EK is

JK =

−rKk−1 −K

0 gK −m

 ,

and its two eigenvalues are −rKk−1 and gK −m.

Theorem 3.4. For all k > 0, if K ≤ m
g , then EK is a local stable node; if K > m

g ,
then EK is a saddle.

Proof. If K < m
g and K > m

g , then the results follow the two eigenvalues of
Jacobi matrix at EK directly. If K = m

g , then it is easy to know that EK is a local
stable node by the analysis of the vector fields of (1.4). This completes our proof.

3.2. Stability of positive equilibrium
The Jacobi matrix at the positive equilibrium E∗ is

J∗ =

 r(mg )
k−1(k − 1− mk

Kg ) −
m
g

gr(mg )
k−1(1− m

gK ) 0

 ,

and its characteristic polynomial is

f(λ) = λ2 − abλ+ amc,

where a = r(mg )
k−1 > 0, b = k − 1 − mk

Kg > −1 and c = 1 − m
gK > 0. f(λ) has two

roots ab±
√
a2b2−4amc

2 .
For −1 < b < 0, if ab2 ≥ 4mc, then both roots of f(λ) are negative numbers,

and E∗ is a local stable node; if ab2 < 4mc, then both roots of f(λ) are imaginary
numbers with negative real parts, and E∗ is a local stable focus.

For b = 0, then both roots of f(λ) are the pure imaginary numbers ±2
√
amc.

Let λ = α(b)± iβ(b) be the two roots, then α(0) = 0, β(0) = r(Kk )
k g
K (k − 1)k > 0,

and d(Reλ)
db |b=0 = r

2 (
K
k )

k−1(k−1)k−1 > 0 for k > 1. Therefore, the Hopf bifurcation
occurs from E∗ when b passes through 0 for k > 1.

For b > 0, if ab2 ≥ 4mc, then both roots of f(λ) are positive numbers, and E∗ is
a local unstable node; if ab2 < 4mc, then both roots of f(λ) are imaginary numbers
with positive real parts, and E∗ is a local unstable focus.

For 0 < k ≤ 1, there must be b < 0. For k > 1, b can be negative, 0 or positive.
Therefore, from the above discussions, we get the following results.

Theorem 3.5. For 0 < k ≤ 1, E∗ is local stable. Furthermore, if ab2 ≥ 4mc, then
E∗ is a local stable node; if ab2 < 4mc, then E∗ is a local stable focus.
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Theorem 3.6. For k > 1,

(i) if b < 0, then E∗ is a local stable node when ab2 ≥ 4mc, and E∗ is a local
stable focus when ab2 < 4mc.

(ii) if b = 0, then Hopf bifurcation occurs from E∗ for model (1.4).

(iii) if b > 0, then E∗ is a local unstable node when ab2 ≥ 4mc, and E∗ is a local
unstable focus when ab2 < 4mc.

By Bendixson-Dulac criterion, we determine the fact that there is no periodic
solution in the first quadrant for model (1.4) when 0 < k ≤ 1.

Theorem 3.7. For 0 < k ≤ 1, model (1.4) has no periodic solution in the first
quadrant.

Proof. Let

h1(X,Y ) = XαY β , H3(X,Y ) = rXk

(
1− X

K

)
−XY, H4(X,Y ) = gXY −mY,

then

∆ =
∂[H3(X,Y )h1(X,Y )]

∂X
+

∂[H4(X,Y )h1(X,Y )]

∂Y

=r

[
(α+ k)Xα+k−1 − α+ k + 1

K
Xα+k

]
Y β − (α+ 1)XαY β+1

+ (β + 1)
(
gXα+1 −mXαY β

)
.

Let α = −k and β = −1, then ∆ < 0 for 0 < k ≤ 1 in the first quadrant. This
indicates that there is no periodic solution in the first quadrant for 0 < k ≤ 1. The
Bendixson-Dulac criterion completes our proof.

3.3. Global dynamics
By Theorems 3.1, 3.3, 3.4, 3.5 and 3.7, we get the global dynamics of model (1.4)
for 0 < k ≤ 1.

Theorem 3.8. For 0 < k ≤ 1, boundary equilibrium E0 is a saddle. If K ≤ m
g ,

then there is no positive equilibrium, and boundary equilibrium EK is a globally
asymptotically stable node. If K > m

g , then there is a unique positive equilibrium
E∗, which is globally asymptotically stable, and boundary equilibrium EK is a saddle.

Remark 3.2. Theorem 3.8 means that the prey survives and will be stable at its
carrying capacity whereas the predator will extinct for K ≤ m

g , and the predator
and prey coexist for K > m

g . It is apparent that model (1.4) is permanent for
0 < k < 1 and K > m

g .

For k > 1, from Theorem 3.1, we know that model (1.4) has no positive equi-
librium, which means that there is no periodic solution of model (1.4) in the first
quadrant, and boundary equilibrium EK is a stable node for K ≤ m

g . Moreover,
from Theorems 3.3 and 3.4, we know that the positive solutions of model (1.4) are
bounded and have singularity at E0. So, we get the following result from the above
analysis.
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Theorem 3.9. For k > 1, if K ≤ m
g , then model (1.4) has no positive equilibrium

and boundary equilibrium EK is a stable node. Moreover, there exists a separatrix,
and solutions of (1.4) above it are driven to E0 and the ones below it are driven to
EK .

Remark 3.3. In the conditions of Theorem 3.9, the prey survives and will be stable
at its carrying capacity whereas the predator will be extinct, or the predator and
prey are both extinct.

Similarly, we have the following result from Theorems 3.1, 3.4, 3.6 and 3.7.

Theorem 3.10. For k > 1, there exists a separatrix, and solutions of (1.4) above
it are driven to E0 and the ones below it are far away from E0. If K > m

g , then
boundary equilibrium EK is a saddle, and there is a unique positive equilibrium
E∗, which is local stable for b < 0 and unstable for b > 0, and from which Hopf
bifurcation occurs for b = 0.

4. Simulations
In this section, we give some examples to illustrate our main results by numerical
simulations.

First, we consider model (1.2) satisfying Theorem 2.4. Figure 1 shows the dy-
namical behavior of (1.2) for k = 0.75. The positive equilibrium (2, 0.8 × 2−0.25)
is a globally asymptotically stable focus and the origin is a saddle in Figure 1. In
Figure 3, the dynamical behavior of (1.2) for k = 1.5 is given. It is clear that there
exists a separatrix, which comes from the origin and solutions of (1.2) with initial
value on it are driven to the origin along it, and solutions of (1.2) above it are
driven to the origin and the ones below it are far away from the origin in Figure 3.
Furthermore, the positive equilibrium in Figure 3(a) is an unstable node, and the
positive equilibrium in Figure 3(b) is an unstable focus.

Then, we consider model (1.4) satisfying Theorems 3.8 and 3.10. The dynamical
behavior of (1.4) for k = 0.75 is showed in Figure 4. The boundary equilibrium
(0.8, 0) is a globally asymptotically stable node, and the origin is a saddle in Figure
4(a). The positive equilibrium (2, 0.5 × 2−0.25) is a globally asymptotically stable
focus, and the boundary equilibria (0, 0) and origin are saddles in Figure 4(b).
Figures 2 and 5 give the dynamical behavior of (1.4) for k = 1.5, in which there
exists a separatrix, which comes from the origin and solutions of (1.4) with initial
value on it are driven to the origin along it, and solutions of (1.4) above it are driven
to the origin and the ones below it are far away from the origin. Furthermore, the
boundary equilibrium (2, 0) is a saddle and the positive equilibrium ( 12 ,

2.1
8 ×

√
2)

is an unstable focus in Figure 2, there is no positive equilibrium and the boundary
equilibrium (0.6, 0) is a stable node in Figure 5(a), and the boundary equilibrium
(4, 0) is a saddle and the positive equilibrium ( 136 , 19

8 ×
√

13
6 ) is a stable focus in

Figure 5(b).

5. Conclusions and discussions
In this section, we give our main conclusions and discussions.
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Figure 1. Dynamical behavior of (1.2) for k =
0.75, r = 0.8, g = 0.5, m = 1.
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Figure 2. Dynamical behavior of (1.4) with
k = 1.5, r = 0.7, K = 2, g = 0.1, m = 0.05.
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(a) r = 1.5, g = 0.05, m = 0.1.
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(b) r = 1, g = 0.05, m = 0.1.

Figure 3. Dynamical behavior of (1.2) for k = 1.5. There exists a separatrix, which comes from the
origin. Solutions of (1.2) with initial value on it are driven to the origin along it, and solutions of (1.2)
above it are driven to the origin and the ones below it are far away from the origin.
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(a) r = 4, K = 0.8, g = 2, m = 4.
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Figure 4. Dynamical behavior of (1.4) for k = 0.75.
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(a) r = 0.8, K = 0.6, g = 0.0045, m = 0.45.
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(b) r = 4, K = 4, g = 0.8, m = 1.3.

Figure 5. Dynamical behavior of (1.4) for k = 1.5. There exists a separatrix, which comes from the
origin. Solutions of (1.4) with initial value on it are driven to the origin along it, and solutions of (1.4)
above it are driven to the origin and the ones below it are far away from the origin.

By the qualitative theory of ordinary differential equation, we easily get the
stability of positive equilibrium and prove that there is no periodic solution in the
first quadrant for model (1.2). However, boundary equilibrium E0 has singularity
and its stability can not be analyzed by the linearization method, because the
linearization matrix of model (1.2) at E0 does not exist for 0 < k < 1 and has 0
as one of its eigenvalues for k > 1. Using the approximate method, we get that E0

is a saddle for 0 < k < 1, and there exists a separatrix such that solutions of (1.2)
above it are driven to E0 and the ones below it are far away from E0 for k > 1. The
results show that the predator and prey coexist for 0 < k < 1, and will be extinct
or diverged for k > 1. The dynamics of model (1.2) is well known for k = 1, which
is the Lotka-Volterra predator-prey model. From our analysis, it is easy to know
that model (1.2) is persistent for 0 < k ≤ 1 and unbounded for k > 1.

Model (1.4) has the same singularity as that of model (1.2) at the origin for
k > 1. Since model (1.4) is bounded for all k > 0, the singularity at the origin
implies that three cases could occur: the prey will survive whereas the predator
will be extinct, the predator and prey will be extinct or coexist ultimately. We
give sufficient conditions for the stability of boundary equilibrium EK and positive
equilibrium E∗, which show that the prey survives only and predator and prey
coexist respectively. The dynamics of model (1.4) is more complicated for k > 1,
because Hopf bifurcation occurs at E∗ besides the singularity at the origin.

For 0 < k ≤ 1, the prey and predator in model (1.2) coexist stably, and the prey
survives and the predator will be extinct in model (1.4) besides they coexist. For
k > 1, model (1.2) is not persistent and model (1.4) is bounded. Model (1.2) has
two situations: both the prey and predator will be extinct or unbounded. Model
(1.4) has three situations: both the prey and predator will be extinct, the prey
survives and the predator will be extinct, or the prey and predator coexist stably.

From our results, it is clear that both the prey and predator in model (1.2) will
be extinct in certain conditions for k > 1. But, the data results of [14] showed that
the predator-prey relation of some fishes coexist stably for k > 1. This contradiction
means that capture ability of the predator in model (1.2) is too strong. Because the
higher capture ability of predator will decrease the amounts of the prey, accordingly
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decrease itself. In order to eliminate the contradiction, we use Y σ(σ < 1) to replace
Y in the consumption function XY in the right sides of model (1.2), which means
that capture ability of the predator is decreased for large amount of predator. This
modification may result in stable coexist. Otherwise, we use the functional responses
to replace the consumption function, and may get stable coexistence.

From our discussion, it is clear that model (1.4) is the density-dependent and
bouneded for all k > 0. So, model (1.4) is an improvement of model (1.2). However,
model (1.4) is not persistent for k > 1, because both the prey and predator will
be extinct in certain conditions. Therefore, in order to get that model (1.4) is
persistent, we modify the consumption function of model (1.4) by the same manners
as these of above discussions for model (1.2).

Furthermore, there are some interesting problems that deserve to be discussed
further for model (1.4). For example, there is a heteroclinic cycle in Figure 2, which
consists of two boundary equilibria, (0, 0) and (2, 0), and two connecting heteroclinic
orbits, the separatrix and the x-axis between the two boundary equilibria. So, model
(1.4) must exist a heteroclinic cycle for k > 1. However, the conditions for existence
of a heteroclinic cycle still need further study.
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