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EXPLICIT SOLUTIONS FOR THE
CONFORMABLE REGULARIZED LONG

WAVE BURGER’S EQUATION

Shahid Ali1 and Ahmad Javid1,†

Abstract In this paper, a dynamical analysis of the conformable regularized
long-wave burgers equation is carried out with help of improved tan

(ϕ(η)
2

)
-

expansion method. Fractional complex transform converts a nonlinear frac-
tional differential equation in an ordinary differential form which resulted into
a number of exact solutions like exponential function solutions, hyperbolic
function solutions, trigonometric function solutions and rational function solu-
tions. The constarint conditions are also given for each solution. The physical
profiles of proposed solutions are portrayed by 3D and 2D graphs as well as
the influence of fractional parameter is also studied for some solutions. Our
proposed results showed that improved tan

(ϕ(η)
2

)
-expansion method is reliable

method to solve the nonlinear equation in mathematical physics.
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1. Introduction
The study of various nonlinear partial differential equations helps investigators to
recognize composite natural wonders and non linear fractional differential equation
has been elaborated by their many requisition in different regions of applied math-
ematics, physics, fluid mechanics and plasma physics [1,2,19,20,26]. We focus here
on the conformable regularized long wave burgers equation.

The benifits of the conformable derivatives allow the essential situations to apply
these methods to fractional nonlinear partial derivatives in spite of many constraints.
In this study, we investigate the conformable regularized long wave burgers equation
[10], which is given as

Dα
t u(x, t) + pux + quux + suxxt = 0, t > 0, 0 < α ≤ 1.

Where p, q and s are arbitrary constants. Dα
t u(x, t) is the conformable derriva-

tive. The integer order structure emerge in the paper [10] to explain shallow water
waves spread in a waterway space. Many significant assets covering presence, in-
dividuality, and finiteness of the solutions of many problems linked to regularized
long wave burgers equation are described in this paper. Zhao and Xuan [35] verify
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the presence of solutions of regularized long wave burgers equation. The monotone
and vibrating kink type waves are explained by Zhou and Liu [36]. Kaya gives
many accurate solutions to some intensive initial value problems for the regularized
long wave burgers equation by assistance of adomian decomposition method [11].
Many hyperbolic and trignometric analytic solutions are found by using expansion
methods [30].

For the last few years, many analytic methods had been invented and imple-
mented for finding exact solutions [3,4,12,21–25]. Hirota analyzed different collision
of soliton solution of KdV equation [8]. Ablowitz and Clarkson explained solitons
in non linear evolution equation and inverse scattering transform [5]. Zhou im-
plemented homogenous balance method to find exact solutions of nonlinear equa-
tions in mathematical physics [32]. Feng implemented first integral method to
analyze Burgers-KdV equation [7]. Wazwaz implemented tanh method for finding
exact wave solutions of nonlinear equations [33]. Korteweg-deVries Burgers (KdVB)
equation has been discussed by Saeed et al. in [27] and analyzed using tangent hy-
perbolic method to see ion acoustic waves in relativistic plasma. Shah et al [28]
studied electrons, positrons and hot ions in three-component relativistic system
with G′

G method. Manafian and Lakestani applied tan
(ϕ(η)

2

)
-expansion method

on Biswas-Milovic equation for Kerr law nonlinearity and investigated optical soli-
ton solutions for the Gerdjikov-Ivanov model [16, 17]. There are many requisition
of the tan

(ϕ(η)
2

)
-expansion method . Manafian and Zinati [18] implemented the

tan
(ϕ(η)

2

)
-expansion method for exponential function, hyperbolic function, trigno-

metric and rational function solutions of some nonlinear fractional physical models
as time fractional Burgers equation, time fractional biological population model,
space-time fractional Fokas equation, space time fractional Whitham-Broer-Kaup
equation and time fractional Cahn-Hilliard equation. Ugurlu et al. [31] analyzed ex-
act solutions like trignometric functions, exponential function, hyperbolic function
of potiential Korteweg- De Vries equation and (3 + 1) dimensional surface water
wave equation with tan

(ϕ(η)
2

)
-expansion method. Khan et al [31] implemented this

method on (2+1) dimensional kadomtsev-petviashvili-benjamin-bona-mahony wave
equation for exact solutions. Bekir et al. [13] applied this method for analytic solu-
tions of (2 + 1)dimensional Zoomeron , the Duffing and the symmetric-regularized
long wave (SRLW) equation. Rezazadeh et al. [29] applied new auxiliary equation
approach for fractional resonant Schrodinger equation. Rezazadeh et al. [14] in-
vestigated solitons of (2 + 1) dimensional Burgers- Huxley equation using different
techniques. Rezazadeh et al. discussed the dynamical behaviour of exact solutions
for a (2 + 1) dimensional bogoyavlenskii coupled system [15]. Rezazadeh et al. [34]
found numerical solutions of time fractional zakharov-kuznetsov equation by trans-
form decomposition method. Rezazadeh et al. found solitary wave solutions for
conformable klein-gorden equation with quantic nonlinearity [9].
The conformable derrivative was explained in [6]. This operator is easy , logical and
effective explanation of fractional derrivative for order γ ∈ (0, 1]. The conformable
derrivative of order γ ∈ (0, 1] is explained by given definition [6]:

Dγ
t f(t) = lim

σ→0

f(t+ σt1−γ)− f(t)

σ
, f : (0,∞) → R.

Many charecterization of cd are given in [5, 7, 32]
(a) Dγ

t t
ζ = ζtζ−γ , ∀γ ∈ R,

(b) Dγ
t (fg) = ftD

γg + gtD
γf,
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(c) Dγ
t (fog) = t1−γg′(t)f ′(t),

(d) Dγ
t (

f

g
) =

gtD
γf − ftD

γg

g2
.

These derrivatives are easy to apply. Recently, there are many researchers which
used conformable form for fractional calculations [23,24].

In this study, we analyzed new travelling wave solutions of conformable reg-
ularized long wave burgers equation. We used tan

(ϕ(η)
2

)
-expansion method with

fractional complex transform. All the solutions are putting into back given equation
and verified true.

2. Description of improved tan
(ϕ(η)

2

)
-expansion Me-

thod
This segment contains short explanation of improved tan

(ϕ(η)
2

)
-expansion Method.

Step 1.1: Let having nonlinear partial differential equation:

L(p, px, pxx, ..., D
α
t p, ...) = 0, (2.1)

Eq. (2.1) decreases to an ODE

Q(p(η), µp′(η), µ2p′′(η), ...,−µvp′(η), ...) = 0. (2.2)

Using the transform p(x, t) = p(η), η = µ(x − vtα

α ), where µ, v are arbitrary
constants.

Step 1.2: Assume that the Eq. (2.2) has a solution:

p(η) = V (ϕ) =

L∑
w=0

Nw

[
a+ tan

(
ϕ(η)

2

)]w
+

L∑
w=1

Cw

[
a+ tan

(
ϕ(η)

2

)]−w

, (2.3)

where NL ̸= 0, CL ̸= 0, and ϕ = ϕ(η) assure the given ordinary differential equation:

ϕ′(η) = m sin(ϕ(η)) + n cos(ϕ(η)) + r. (2.4)

Coming suitable solutions of equation Eq. (2.4) will given as:

Family 1.11: If σ = m2 + n2 − r2 < 0 and n− r ̸= 0, then

ϕ(η) = 2 tan−1

[
m

n− r
−

√
−σ

n− r
tan

(√
−σ

2
η̂

)]
. (2.5)

Family 1.12: If σ = m2 + n2 − r2 > 0 and n− r ̸= 0, then

ϕ(η) = 2 tan−1

[
m

n− r
+

√
σ

n− r
tanh

(√
σ

2
η̂

)]
. (2.6)

Family 1.13: If σ = m2 + n2 − r2 > 0, n ̸= 0 and r = 0, then

ϕ(η) = 2 tan−1

[
m

n
+

√
n2 +m2

n
tanh

(√
n2 +m2

2
η̂

)]
. (2.7)
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Family 1.14: If σ = m2 + n2 − r2 < 0, r ̸= 0 and n = 0, then

ϕ(η) = 2 tan−1

[
− m

n
+

√
r2 −m2

r
tan

(√
r2 −m2

2
η̂

)]
. (2.8)

Family 1.15: If σ = m2 + n2 − r2 > 0, n− r ̸= 0 and m = 0, then

ϕ(η) = 2 tan−1

[√
n+ r

n− r
tanh

(√
n2 − r2

2
η̂

)]
. (2.9)

Family 1.16: If m = 0 and r = 0, then

ϕ(η) = tan−1

[
e2nη̂ − 1

e2nη̂ + 1
,

2enη̂

e2nη̂ + 1

]
. (2.10)

Family 1.17: If n = 0 and r = 0, then

ϕ(η) = tan−1

[
2emη̂

e2mη̂ + 1
,
e2mη̂ − 1

emη̂ + 1

]
. (2.11)

Family 1.18: If m2 + n2 = r2, then

ϕ(η) = −2 tan−1

[
(n+ r)(mη̂ + 2)

m2η̂

]
. (2.12)

Family 1.19: If m = n = r = km, then

ϕ(η) = 2 tan−1
[
ekmη̂ − 1

]
. (2.13)

Family 2.00: If m = r = km and n = −km, then

ϕ(η) = −2 tan−1

[
ekmη̂

−1 + ekmη̂

]
. (2.14)

Family 2.11: If r = m, then

ϕ(η) = −2 tan−1

[
(m+ n)enη̂ − 1

(m− n)enη̂ − 1

]
. (2.15)

Family 2.12: If m = r, then

ϕ(η) = 2 tan−1

[
(n+ r)enη̂ + 1

(n− r)enη̂ − 1

]
. (2.16)

Family 2.13: If r = −m, then

ϕ(η) = 2 tan−1

[
enη̂ + n− x

enη̂ − n−m

]
. (2.17)

Family 2.14: If n = −r, then

ϕ(η) = −2 tan−1

[
memη̂

remη̂ − 1

]
. (2.18)
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Family 2.15: If n = 0 and m = r, then

ϕ(η) = −2 tan−1

[
rη̂ + 2

rη̂

]
. (2.19)

Family 2.16: If m = 0 and n = r, then

ϕ(η) = 2 tan−1
[
rη̂
]
. (2.20)

Family 2.17: If m = 0 and n = −r, then

ϕ(η) = −2 tan−1

[
1

rη̂

]
. (2.21)

Family 2.18: If m = 0 and n = 0, then

ϕ(η) = rη̂. (2.22)

Family 2.19: If n = r , then

ϕ(η) = 2 tan−1

[
emη̂ − r

m

]
, (2.23)

where η̂ = η+S, Nw(w = 0, 1, 2, ..., L), Cw(w = 1, 2, ..., L), m, n and r are constants
to be estimated. For finding L , we compare highest order derivative with highest
order nonlinear term.
Step 1.3: Replacing Eq. (2.3) into Eq. (2.2) with value of L from step 2. Clarifying

same powers of tan

(
ϕ(η)
2

)
, cot

(
ϕ(η)
2

)
and gathering coefficients. Taking each

coefficient to zero, system of equations is ottained.
Step 1.4: Equations attained in step 3 are simplified to estimate constants N0, N1,
N2, . . . , NM , C1, C2, . . . , CM , v, µ. Then these values are putting in Eq. (2.3) to
get solutions.

3. Exact solutions along tan
(ϕ(η)

2

)
expansion method

Here, we implement improved tan
(ϕ(η)

2

)
expansion method to find travelling wave

solutions of the time fractional regularized long wave-burgers equation, which is
given as

Dα
t u(x, t) + pux + quux + suxxt = 0,

α is a parameter explaining the fractional time derivative and 0 < α ≤ 1.
To obtain travelling wave solution , by using the transform u(x, t) = p(η), η =

µ(x− vtα

α ) and integrating once, above equation converted in given below nonlinear
ordinary differential equation:

− vp(η) + pp(η) +
q

2
p(η)2 − svµ2p(η)′′ = 0, (3.1)

Here p, v, q and s are arbitrary constants. compare highest order linear term with
nonlinear highest order degree, get L = 2. And solution for a = 0 of Eq. (3.1)
develop

p(η) =N0 +N1

[
tan

(
ϕ(η)

2

)]
+N2

[
tan

(
ϕ(η)

2

)]
+ C1

[
tan

(
ϕ(η)

2

)]−1
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+ C2

[
tan

(
ϕ(η)

2

)]−2

. (3.2)

Putting Eq. (3.2) by Eq. (2.4) into Eq. (3.1) and collecting values of same power
of tan

(ϕ(η)
2

)
, Comparing each coefficient of each polynomial to zero, system of

equations is attained as given below:(
tan

(ϕ(η)
2

))4

:
1

2
qN2

2 + 3 svµ2N2nr −
3

2
svµ2N2n

2 − 3

2
svµ2N2r

2 = 0,(
tan

(ϕ(η)
2

))3

:qN1N2 + svµ2N1nr + 5 svµ2N2mn− 5 svµ2N2mr

− 1

2
svµ2N1n

2 − 1

2
svµ2N1r

2 = 0,(
tan

(ϕ(η)
2

))2

:qN0N2 +
1

2
qN1

2 + pN2 − vN2 +
3

2
svµ2N1mn− 3

2
svµ2N1mr

− 4 svµ2N2m
2 + 2 svµ2N2n

2 − 2 svµ2N2r
2 = 0,(

tan
(ϕ(η)

2

))1

:qN0N1 + qN2C1 − vN1 + pN1 − 3 svµ2N2mn− 3 svµ2N2mr

− 1

2
svµ2N1r

2 − svµ2N1m
2 +

1

2
svµ2N1n

2 = 0,(
tan

(ϕ(η)
2

))0

:
1

2
qN0

2+qN1C1+qN2N2−
1

2
svµ2N2n

2− 1

2
svµ2N2r

2− 1

2
svµ2C2n

2

− 1

2
svµ2C2r

2 − vA0+pN0−svµ2N2nr+
1

2
svµ2C1mn

− 1

2
svµ2C1mr + svµ2C2nr −

1

2
svµ2N1mn− 1

2
svµ2N1mr = 0,(

cot
(ϕ(η)

2

))1

:qN1C2 + qN0C1 − vC1 + pC1 + 3 svµ2C2mn− 3 svµ2C2mr

− svµ2C1m
2 +

1

2
svµ2C1n

2 − 1

2
svµ2C1r

2 = 0,(
cot
(ϕ(η)

2

))2

:qN0C2 +
1

2
qC1

2 + pC2 − vC2 −
3

2
svµ2C1mn− 3

2
svµ2C1mr

− 4svµ2C2m
2 + 2svµ2C2n

2 − 2 svµ2C2r
2 = 0,(

cot
(ϕ(η)

2

))3

:qC1C2 − svµ2C1nr − 5 svµ2C2mn− 5 svµ2C2mr − 1

2
svµ2C1n

2

− 1

2
svµ2C1r

2 = 0,(
cot
(ϕ(η)

2

))4

:
1

2
qC2

2 − 3 svµ2C2nr −
3

2
svµ2C2n

2 − 3

2
svµ2C2r

2 = 0.

Where m, n and r are constants. Using Eq. (3.2) and the value of constants given
in set 1.1, families 1.11, 1.12, 1.15, 1.16 and 1.18 can be written as:
Set 3.1:

m = m, n = n, r = r, µ = µ, C1 = 0, C2 = 0,
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v =
p

m2µ2s+ µ2n2s− µ2r2s+ 1
, N0 = −3

pµ2s
(
n2 − r2

)
(m2µ2s+ µ2n2s− µ2r2s+ 1) q

,

N1 = −6
mµ2sp (n− r)

(m2µ2s+ µ2n2s− µ2r2s+ 1) q
, N2 = 3

spµ2
(
n2 − 2nr + r2

)
(m2µ2s+ µ2n2s− µ2r2s+ 1) q

,

where m, n and r are random constants. Using Eq. (3.2) and value of constants
given in Set 3.1, families 1.11, 1.12, 1.15, 1.16 and 1.18 can be written as:

p1(η) =3

(√
−m2 − n2 + r2 tan

(
1
2

√
−m2 − n2 + r2 (η + S)

)
−m

)2
pµ2s

(m2µ2s+ µ2n2s− µ2r2s+ 1) q
, (3.3)

p2(η) =3

(√
m2 + n2 − r2 tan

(
1
2

√
m2 + n2 − r2 (η + S)

)
+m

)2
pµ2s

(m2µ2s+ µ2n2s− µ2r2s+ 1) q
(3.4)

p3(η) =− 3
pµ2s

(
n2 − r2

)
(µ2n2s− µ2r2s+ 1) q

+ 3
pµ2s

(
n2 − 2nr + r2

)
(n+ r)

(
tanh

(
1
2

√
n2 − r2 (η + S)

))2
(n− r) (µ2n2s− µ2r2s+ 1) q

, (3.5)

p4(η) =− 3
pµ2sn2

(µ2n2s+ 1) q

+ 3
pµ2sn2

(µ2n2s+1) q

(
tan

(
1

2
arctan

(
e2n(η+S)−1

e2n(η+S)+1
, 2

en(η+S)

e2n(η+S)+1

)))2

, (3.6)

p5(η) =− 3
pµ2s

(
n2 − r2

)
(m2µ2s+ µ2n2s− µ2r2s+ 1) q

− 6
mµ2sp (m (η + S) + 2)

(η + S) (m2µ2s+ µ2n2s− µ2r2s+ 1) q

+ 3
pµ2s

(
n2 − 2nr + r2

)
(m (η + S) + 2)

2

(n− r)
2
(η + S)

2
(m2µ2s+ µ2n2s− µ2r2s+ 1) q

. (3.7)

Figure 1 highlights the 3D and 2D wave profiles of the solution p1(η) with given
set of parameters.

(a) (b)

Figure 1. 3D and corresponding 2D graph of p1(η) with p = −1, µ = 1, s = 1, S = 1, q = 1, α =
1, m = 2, n = 1, r = −3.
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(a) α = 0.1 (b) α = 0.1

(c) α = 0.5 (d) α = 0.5

(e) α = 0.7 (f) α = 0.7

(g) α = 1 (h) α = 1

Figure 2. 3D and corresponding 2D graphs of p3(η) with different values of fractional parameter α
along side parameters p = −1, µ = 1, s = 1, S = 1, q = 1, m = 0, n = 3, r = −1.
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Figure 2 highlights the 3D and corresponding 2D wave profiles of the solution
p3(η) with given set of parameters. The changes in physical profiles of the waves
are influenced by different values of fractional parameter α.

Figure 3 shows the 3D and 2D graphs of p5(η) for given set of parameters.

(a) (b)

Figure 3. 3D and corresponding 2D graphs of p5(η) with different values of fractional parameter α
along side parameters p = −1, µ = 1, s = 1, S = 1, q = 1, m = 1, n = 3, r = 2

Set 3.2:

m = m, n = n, r = r, µ = µ, C1 = 0, C2 = 0,

v = − p

m2µ2s+ µ2n2s− µ2r2s− 1
,

N0 = −
pµ2s

(
2m2 − n2 + r2

)
(m2µ2s+ µ2n2s− µ2r2s− 1) q

,

N1 = 6
mµ2sp (n− r)

(m2µ2s+ µ2n2s− µ2r2s− 1) q
,

N2 = −3
spµ2

(
n2 − 2nr + r2

)
(m2µ2s+ µ2n2s− µ2r2s− 1) q

,

where m, n and r are random constants. Using Eq. (3.2) and value of constants
given in Set 3.2, families 1.11, 1.12, 1.15, 1.16 and 1.18 can be written as:

p6(η) =− 3

(√
−m2 − n2 + r2 tan

(
1
2

√
−m2 − n2 + r2 (η + S)

)
−m

)2
spµ2

(m2µ2s+ µ2n2s− µ2r2s− 1) q
,

(3.8)

p7(η) =−
pµ2s

(
2m2 − n2 + r2

)
(m2µ2s+ µ2n2s− µ2r2s− 1) q

+ 6
mµ2sp (n− r)

(m2µ2s+ µ2n2s− µ2r2s− 1) q

×

(
m

n− r
+

√
m2 + n2 − r2 tan

(
1
2

√
m2 + n2 − r2 (η + S)

)
n− r

)

− 3
pµ2s

(
n2 − 2nr + r2

)
(m2µ2s+ µ2n2s− µ2r2s− 1) q
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×

(
m

n− r
+

√
m2 + n2 − r2 tan

(
1
2

√
m2 + n2 − r2 (η + S)

)
n− r

)2

,

p8(η) =−
pµ2s

(
−n2 + r2

)
(µ2n2s− µ2r2s− 1) q

− 3
pµ2s

(
n2 − 2nr + r2

)
(n+ r)

(
tanh

(
1
2

√
n2 − r2 (η + S)

))2
(n− r) (µ2n2s− µ2r2s− 1) q

, (3.9)

p9(ξ) =
pµ2sn2

(µ2n2s− 1) q

− 3
pµ2sn2

(µ2n2s− 1) q

(
tan

(
1

2
arctan

(
e2n(η+S) − 1

e2n(η+S) + 1
, 2

en(η+S)

e2n(η+S) + 1

)))2

× pµ2sn2

(µ2n2s− 1) q
, (3.10)

p10(η) =−
pµ2s

(
2m2 − n2 + r2

)
(m2µ2s+ µ2n2s− µ2r2s− 1) q

+ 6
mµ2sp (m (η + S) + 2)

(η + C) (m2µ2s+ µ2n2s− µ2r2s− 1) q

− 3
pµ2s

(
n2 − 2nr + r2

)
(m (η + S) + 2)

2

(n− r)
2
(η + S)

2
(m2µ2s+ µ2n2s− µ2r2s− 1) q

. (3.11)

Figure 4 shows the 3D and 2D graphs of p7(η) for given set of parameters.

(a) (b)

Figure 4. 3D and corresponding 2D graphs depict the solution of p7(η) with p = −1, µ = 1, s =
1, α = 0.2, S = 1, q = 1, m = 2, n = 1, r = −1.

Set 3.3:

m = 0, n = n, r = r,

v = − p

4µ2n2s− 4µ2r2s− 1
,

µ = µ, N1 = 0, C1 = 0,

N0 = −2
pµ2s

(
n2 − r2

)
(4µ2n2s− 4µ2r2s− 1) q

,
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N2 = −3
spµ2

(
n2 − 2nr + r2

)
(4µ2n2s− 4µ2r2s− 1) q

,

C2 = −3
spµ2

(
n2 + 2nr + r2

)
(4µ2n2s− 4µ2r2s− 1) q

,

where n and r are random constants. Using Eq. (3.2) and values of constants given
in Set 3.3, families 2.15, 2.16, 2.11 and 2.13 can be written as:

p11(η) =− 2
pµ2s

(
n2 − r2

)
(4µ2n2s− 4µ2r2s− 1) q

− 3
pµ2s

(
n2 − 2nr + r2

)
(n+ r)

(
tanh

(
1
2

√
n2 − r2 (η + S)

))2
(n− r) (4µ2n2s− 4µ2r2s− 1) q

− 3
spµ2

(
n2 + 2nr + r2

)
(n− r)

(4µ2n2s− 4µ2r2s− 1) q (n+ r)
(
tanh

(
1
2

√
n2 − r2 (η + S)

))2 ,
(3.12)

p12(η) =− 2
pµ2sn2

(4µ2n2s− 1) q

− 3
pµ2sn2

(4µ2n2s− 1) q

(
tan

(
1

2
arctan

(
e2n(η+S) − 1

e2n(η+S) + 1
, 2

en(η+S)

e2n(η+S)+1

)))2

− 3
pµ2sn2

(4µ2n2s−1) q

(
tan

(
1

2
arctan

(
e2n(η+S)−1

e2n(η+S)+1
, 2

en(η+S)

e2n(η+S)+1

)))−2

,

(3.13)

p13(η) =− 2
pµ2sn2

(4µ2n2s− 1) q
− 3

pµ2sn2
(
nen(η+S) − 1

)2(
−nen(η+S) − 1

)2
(4µ2n2s− 1) q

− 3
pµ2sn2

(
−nen(η+S) − 1

)2
(4µ2n2s− 1) q

(
nen(ξ+S) − 1

)2 , (3.14)

p14(η) =− 2
pµ2sn2

(4µ2n2s− 1) q
− 3

pµ2sn2
(
en(η+S) + n

)2(
en(η+S) − n

)2
(4µ2n2s− 1) q

− 3
pµ2sn2

(
en(η+S) − n

)2
(4µ2n2s− 1) q

(
en(η+S) + n

)2 . (3.15)

Figure 5 shows the 3D and 2D graphs of p13(η) for given set of parameters.
Set 3.4:

m = 0, n = n, r = r, µ = µ,

v =
p

4µ2n2s− 4µ2r2s+ 1
, N0 = −6

pµ2s
(
n2 − r2

)
(4µ2n2s− 4µ2r2s+ 1) q

,

N1 = 0, N2 = 3
spµ2

(
n2 − 2nr + r2

)
(4µ2n2s− 4µ2r2s+ 1) q

,

C1 = 0, C2 = 3
spµ2

(
n2 + 2nr + r2

)
(4µ2n2s− 4µ2r2s+ 1) q

,
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(a) (b)

Figure 5. 3D and corresponding 2D graphs depict the solution of p13(η) with p = −1, µ = 1, s =
1, α = 0.3, S = 1, q = 1, m = 0, n = 2, r = 0.

where n and r are random constants. Using Eq. (3.2) and values of constants given
in Set 3.4, families 2.15, 2.16, 2.11 and 2.13 can be written as:

p15(η) =− 6
pµ2s

(
n2 − r2

)
(4µ2n2s− 4µ2r2s+ 1) q

+ 3
pµ2s

(
n2 − 2nr + r2

)
(n+ r)

(
tanh

(
1
2

√
n2 − r2 (η + S)

))2
(n− r) (4µ2n2s− 4µ2r2s+ 1) q

+ 3
spµ2

(
n2 + 2nr + r2

)
(n− r)

(4µ2n2s− 4µ2r2s+ 1) q (n+ r)
(
tanh

(
1
2

√
n2 − r2 (η + S)

))2 ,
(3.16)

p16(η) =− 6
pµ2sn2

(4µ2n2s+ 1) q

+ 3
pµ2sn2

(4µ2n2s+ 1) q

(
tan

(
1

2
arctan

(
e2n(η+S) − 1

e2n(η+S) + 1
, 2

en(η+S)

e2n(ξ+S) + 1

)))2

+ 3
pµ2sn2

(4µ2n2s+1) q

(
tan

(
1

2
arctan

(
e2n(η+S)−1

e2n(η+S)+1
, 2

en(η+S)

e2n(η+S)+1

)))−2

,

(3.17)

p17(η) =− 6
pµ2sn2

(4µ2n2s+ 1) q
+ 3

pµ2sn2
(
nen(η+S) − 1

)2(
−nen(η+S) − 1

)2
(4µ2n2s+ 1) q

+ 3
pµ2sn2

(
−nen(η+S) − 1

)2
(4µ2n2s+ 1) q

(
nen(η+S) − 1

)2 , (3.18)

p18(η) =− 6
pµ2sn2

(4µ2n2s+ 1) q
+ 3

pµ2sn2
(
en(η+S) + n

)2(
en(η+S) − n

)2
(4µ2n2s+ 1) q

+ 3
pµ2sn2

(
en(η+S) − n

)2
(4µ2n2s+ 1) q

(
en(η+S) + n

)2 . (3.19)
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4. Results and Discussion with Concluding Remarks

In this work, we applied improved tan
(ϕ(η)

2

)
-expansion method (ITEM) for ex-

act solutions of conformable regularized long wave burgers equation. Exact trav-
eling wave solutions for conformable regularized long wave burgers equation are
presented in 4 different sets in which each contains four to five solutions which
include dark, singular and other traveling wave solutions. The physical features
of some of these solutions are highlighted in 3D and corresponding 2D plots with
appropriate choice of parameteric values satisfying constraint conditions. In par-
ticular, Figure 2 portrays the solution p3(η) with values of fractional parameter
α = 0.1, α = 0.5, α = 0.7 and α = 1. It is observed that the fractional parameter
influences the shape dynamics of solutions as in Figure 2. It is quite evident that,
the ITEM is a reliable technique towards the study of fractional nonlinear evolu-
tion equations arising in different scientific regimes. To the best of our knowledge,
the results reported in this manuscript are new and have not been reported before
and can open a new window towards the comprehension of fractional differential
equations.
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