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THE GENERALIZED LYAPUNOV FUNCTION
AS AO’S POTENTIAL FUNCTION:

EXISTENCE IN DIMENSIONS 1 AND 2

Haoyu Wang1,†, Wenqing Hu2, Xiaoliang Gan3 and Ping Ao4

Abstract By using Ao’s decomposition for stochastic dynamical systems, a
new notion of potential function has been introduced by Ao and his collabora-
tors recently. We show that this potential function agrees with the generalized
Lyapunov function of the deterministic part of the stochastic dynamical sys-
tem. We further prove the existence of Ao’s potential function in dimensions
1 and 2 via the solution theory of first-order partial differential equations.
Our framework reveals the equivalence between Ao’s potential function and
Lyapunov function, the latter being one of the most significant central notions
in dynamical systems. Using this equivalence, our existence proof can also
be interpreted as the proof of existence of Lyapunov function for a general
dynamical system.

Keywords Stochastic dynamical system, the generalized Lyapunov function,
Ao’s decomposition, potential function.
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1. Introduction
Stability has been one of the major research directions for dynamical systems. By
stability, we mean the study of whether a dynamical system can maintain a prede-
termined state under various accidental or continued interference, without swinging
or unrest [19]. An unstable system, with small interference can not work normally;
and with big interference can bring disaster and even devastating consequences,
such as social unrest, financial crisis, power grid collapse, or plane crash. Due to
its role in applications, the study of stability has become a very important research
topic. A fundamental tool used to investigate the local stability of equilibrium
points in dynamical systems [30,33] is the Lyapunov function, which was originally
proposed in the doctoral thesis “General problems of motion stability” [29] by the
Russian mathematician Alexander Mikhimovich Lyapunov in 1892. In his doctoral
thesis, Lyapunov not only strictly defined the notion of stability, but also gave
a novel method – the so called second method which can be directly applied to

†The corresponding author. Email:wanghaoyu042@163.com(H. Wang)
1Department of Mathematics, 688 Yingbin Avenue, Zhejiang Normal Univer-
sity, 321004 Jinhua, China

2Department of Mathematics and Statistics, 202 Rolla Building, Missouri Uni-
versity of Science and Technology, 65401 Rolla, Missouri, USA

3School of Mathematics and Computing Science, 1 Jinji Road, Guilin Univer-
sity of Electronic Technology, 541004 Guilin, China

4Department of physics, 99 Shangda Road, Shanghai University, 200444
Shanghai, China

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220149


360 H.Y. Wang, W.Q. Hu, X.L. Gan & P. Ao

study stability. He was inspired by the energy function in physics and influenced
by famous mathematician Poincaré’s topography system, and he generalized the
classical notion of energy to his more abstract notion of Lyapunov function. The
greatest advantage of Lyapunov function lies in that one can use it to capture the
stability of the dynamical system without facing the usual difficulty of solving dif-
ferential equations. Although the Lyapunov function can be explicitly constructed
for many known systems, until now, there has not been a general method for explic-
itly constructing these Lyapunov functions in nonlinear dynamical systems. This
has been regarded as a hard problem by many well-known mathematicians in re-
lated fields [13, 21, 26, 33, 37]. It is also interesting to note that Krasovskii also
held the idea that proving the existence of Lyapunov function might carry with a
constructive method, but this method has not been found [24].

Recently, Ao and his collaborators proposed a new paradigm for stochastic dy-
namical systems, or rather dynamical systems perturbed by stochastic noise, called
the Ao’s decomposition (see [2, 3, 25, 42, 43]). In Ao’s decomposition, a potential
function is found [42, 43] which results in the consistency of stable points between
stochastic dynamical system and the corresponding deterministic dynamical system.
This potential function has been unifying some previous notions such as energy land-
scape or energy potential proposed by Wright [41] and later Waddington [40]. It
enables qualitative analysis of complex dynamical behaviors far from equilibrium
point (e.g., multi-steady states and periodic attractors), which are ubiquitous in real
systems [9,35] but are beyond the scope of the classical Lyapunov functions. It is also
helpful in understanding a highly complex stochastic multi-steady system, as it is
necessary to compare the relative stability of different attractors [39], account for the
transition rates between neighboring steady states induced by noise [10, 11, 16, 17],
and form an intuitive picture that reveals the essential mechanism underlying the
complex system [3]. It is also found that Ao’s potential function has been widely
applied in many fields such as physics, chemistry and biology: In physics, it is
closely related to the non-equilibrium thermodynamic framework [2]; In chemistry,
it provides useful explanations for protein folding [22]; In biology, it has been used
to explore basic problems in evolution such as studying the robustness, adaptability
and efficiency of real biological networks [38,45].

Inspired by famous mathematician Poincaré’s global idea of studying dynamic
system as a whole [6], here we introduce the notion of a generalized Lyapunov
function as a natural generalization of the classical Lyapunov function. It is defined
on the whole state space and its time derivative does not increase which has an
infimum at the attractor. Furthermode, we show that our generalized Lyapunov
function is equivalent to the potential function in Ao’s decomposition, and can serve
as the Lyapunov function for the deterministic part of the stochastic dynamical
system considered under the Ao’s decomposition framework (see [26,43]).

We further investigate the problem of the existence of Ao’s potential function,
or equivalently our generalized Lyapunov function, debating the point of view by
some researchers who insist that it doesn’t exist [31, 32, 36]. Our method relies
on the solution theory of first-order partial differential equations, as we reduce the
problem to proving the existence of solutions for a first-order quasilinear partial
differential equations. When dimension is 1, the solutions must exist, so that the
generalized Lyapunov function exists on the whole real interval. Furthermore, it
can be constructed explicitly. When dimension is 2, we firstly prove the local
existence of implicit solutions by first-integral method. To prove the existence
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of explicit solutions, we consider the corresponding Cauchy problem. Under the
assumption that the determinant of the coefficients of the equation is not zero at
the initial parameter, the existence of explicit solutions is proved by the existence
theorem of implicit functions. The generalized Lyapunov function globally exists
for 2 dimensional case except at some singularities. We will study the case further
when dimension is 3 or higher. As a byproduct, our proof of the existence reveals the
fundamental structure of general stochastic dynamical systems: it can be divided
into four important components – divergence, curl, the gradient of the generalized
Lyapunov function and white Gaussian noise.

This paper is organized as follows. In Section 2 we introduce our generalized
Lyapunov function and compare it with the Ao’s potential function in Ao’s de-
composition theory. In Section 3 we reduce the problem of the existence of the
generalized Lyapunov function to the existence of the solution of a first-order sys-
tem of partial differential equations. In Section 4 we show the existence of solutions
of the PDE system introduced in Section 3. In Section 5 we make a few conclusions.

2. The generalized Lyapunov function and Ao’s po-
tential function

2.1. The definition of the generalized Lyapunov function
Let us first restrict ourselves to smooth dynamics, but the results we present here
can be directly extended to more general cases. Consider a smooth dynamical
system given by

q̇ = f(q). (2.1)

Let q∗ be an equilibrium point for the system and let L : U → R be a continuously
differentiable function defined on an open neighborhood U of the point q∗. Then, L
is called a conventional Lyapunov function if it satisfies the following two conditions:

(i) L̇(q) =
dL
dt

∣∣∣∣
q′
≤ 0, for all q′ ∈ U ;

(ii) L(q∗) = 0 and L(q) > 0, if q ̸= q∗.

Obviously the above definition is local. Inspired by Poincaré’s general idea for
studying dynamical systems [6], we introduce the generalized Lyapunov function as
a natural generalization of its classical version.

Definition 2.1 (The generalized Lyapunov function). Let φ : U → R be a contin-
uously differentiable scalar function, where U is a set representing the whole state
space. Then φ is called a generalized Lyapunov function if it satisfies the following
conditions:

(i) φ̇(q) =
dφ
dt

∣∣∣∣
q′′

≤ 0, for all q′′ belongs to U ;

(ii) (Condition on attractors) ∇φ(q∗) = 0 for all points q∗ in the attraction do-
main.

It is easy to see that the generalized Lyapunov function has dynamical equiva-
lence to classical Lyapunov function near equilibrium point [26,43]. Later we will see
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that this is consistent with the fact that Ao’s decomposition would enable stochas-
tic dynamical behaviours correspond well to dynamical behaviours near equilibrium
point [42]. Beyond that, the generalized Lyapunov function also enables qualitative
analysis of complex dynamical behaviors far from equilibrium point (e.g., multi-
steady states and periodic attractors), which are ubiquitous in real systems. For
this natural generalization, the value of the function should decrease along the tra-
jectories, reaching a local minimum point at attractors and keeping constant on
it. Due to all these reasons, we see that the criteria (i) in Definition 2.1 keeps the
same as the criteria (i) for the conventional Lyapunov function. However, in the
attraction domain, we take a weaker form of the criteria (ii) from the conventional
Lyapunov function for the criteria (ii) of the generalized Lyapunov function, in
that we only require the gradient of the function to be 0 instead of having exact
minimum.

Comparing with classical Lyapunov function, the generalized Lyapunov func-
tion(the potential function) provides intuitive and global landscapes which is easier
for researchers to observe. Classical Lyapunov function can only solve single steady-
state problems locally, however, real dynamical systems are complex and usually
have more than one steady state. Therefore, the generalized Lyapunov function
has a wider range of applications in real dynamical systems. For example, Hu and
Xu studied the phenomenon of multi-stable chaotic attractors existing in general-
ized synchronization for a driving and response system named Rössler system [18].
Angeli and Sontag studied the emergence of multi-stability and hysteresis in those
monotone input/output systems that arise, under positive feedback, starting from
monotone systems with well-defined steady-state responses [1]. Liu and You studied
multi-stability, existence of almost periodic solutions of a class of recurrent neural
networks with bounded activation functions and all criteria they proposed can be
easily extended to fit many concrete forms of neural networks such as Hopfield
neural networks, or cellular neural networks, etc. [28]. The generalized Lyapunov
function has provided a more general and more unified perspective for researchers
to investigate different types of dynamical systems. In addition, our definition of
generalized Lyapunov function is similar to Conley and other researchers¡¯ work
(see [7,15]) when considering discrete dynamical system. It must be noted that our
theoretical framework is totally different from the stochastic Lyapunov function
(see [4]) under Itô’s process perspective. This is because our generalized Lyapunov
function serves as the Ao’s potential function of a stochastic dynamical system, and
it corresponds to the Lyapunov function of the deterministic part of the underlying
stochastic dynamical system. This relation will be revealed in the next subsection.

2.2. Ao’s decomposition theory and Ao’s potential function
Let us first consider the Langevin equation [12, 20]. Here we view it as a Markov
process and we use the physicists’ notation for the noise, and we can write this
equation in the form

q̇ = f(q, t) + ζ(q, t). (2.2)

The equation (2.2) is discussed in n-dimensional real Euclidean space. Here the state
variable q = [q1(t), q2(t), · · · , qn(t)]τ ∈ Rn is a function of time t. The function f is
in general nonlinear, and we assume that f(q, t) is an infinitely differentiable smooth
function. The noise ζ(q, t) is a function of the state variable q and the time variable
t, which is almost everywhere nondifferentiable. Let’s consider the case that ζ(q, t)
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is an n-dimensional white Gaussian noise with zero mean:

⟨ζ(q, t)⟩ = 0, (2.3)

and the covariance
⟨ζ(q, t)ζτ (q, t′)⟩ = 2D(q)δ(t− t′). (2.4)

Here we use the standard notations in physics literature. The superscript τ denotes
the transpose of a vector, δ(t − t′) is the Dirac delta function, ⟨·⟩ indicates the
average over the noise distribution, and the diffusion matrix D(q) is a symmetric
positive semi–definite matrix.

Recently, a new formulation of (2.2), named the Ao’s decomposition, has been
introduced in a series of works by Ao and collaborators [2, 3, 25, 42, 43]. Following
the idea of Ao’s decomposition, we act a matrix operator S(q(t))+A(q(t)) on both
sides of the equation (2.2), and we expect that the equation (2.2) can formally be
transformed into the following equation

[S(q(t)) +A(q(t))]q̇ = −∇φ(q(t)) + ξ(q, t), (2.5)

where the matrix S(q(t)) is a symmetric positive semi-definite matrix (which we call
the “friction matrix”), the matrix A(q(t)) is an anti–symmetric matrix (which we
call the “Lorenz matrix”), φ(q) is a real and single valued function of q1, q2, · · · , qn,
and ξ(q, t) is an n dimension white Gaussian noise with zero mean

⟨ξ(q, t)⟩ = 0, (2.6)

and the covariance
⟨ξ(q, t)ξτ (q, t′)⟩ = 2S(q)δ(t− t′). (2.7)

Equation (2.4) and equation (2.7) are expressions of the fluctuation-dissipation the-
orem (see [5, pp.387]), in which D(q) and S(q) reflect “dissipation”, the covariance
structures ⟨ζ(q, t)ζτ (q, t′)⟩ and ⟨ξ(q, t)ξτ (q, t′)⟩ reflect “fluctuation”.

Definition 2.2 (Ao’s decomposition and Ao’s potential function). The way we
write the Langevin equation (2.2) into the equation (2.5) is called Ao’s decomposi-
tion. The function φ(q) is called Ao’s potential function(see [2]).

Our main result of this paper can be summarized as the following

Theorem 2.1 (Summary of Main Reuslt). We have

(a) Ao’s decomposition (2.5) implies the Langevin equation (2.2).
(b) The Ao’s potential function φ(q) is just a king of Lyapunov function of the

deterministic system q̇ = f(q), which is the deterministic part of the stochastic
system (2.2).

(c) Under general circumstances, in dimensions 1 and 2, the Langevin equation
(2.2) also implies Ao’s decomposition (2.5), and therefore Ao’s potential func-
tion or the generalized Lyapunov function exists.

Proof. Statements (a), (b) will be shown in Section 3. Statement (c) will be
shown in Sections 3 and 4.
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3. Reduction of the problem into PDEs
We first look at part (a) of Theorem 2.1, that (2.5) implies (2.2). To this end, we
assume that the function matrix [S(q) + A(q)] is invertible. In a straightforward
way, equation (2.5) can be transformed into the equation

q̇ = −[S(q(t)) +A(q(t))]−1∇φ(q(t)) + ζ(q, t),

where ζ(q, t) is a noise that takes the form ζ(q, t) = [S(q)+A(q)]−1ξ(q, t). To match
(2.2), we can then set f(q) = −[S(q) +A(q)]−1∇φ(q). Combining with the explicit
representation of ζ(q, t) in terms of S(q), A(q) and ξ(q, t), as well as (2.7), we can
calculate

⟨ζ(q, t)⟩ = ⟨[S(q) +A(q)]−1ξ(q, t)⟩

= [S(q) +A(q)]−1⟨ξ(q, t)⟩

= 0,

and
⟨ζ(q, t)ζτ (q, t′)⟩ = ⟨[S(q) +A(q)]−1ξ(q, t)ξτ (q, t′)[S(q) +A(q)]−τ ⟩

= [S(q) +A(q)]−1⟨ξ(q, t)ξτ (q, t′)⟩[S(q) +A(q)]−τ

= 2[S(q) +A(q)]−1S(q)[S(q) +A(q)]−τδ(t− t′).

Comparing the above two calculations with (2.3), (2.7), we obtain

D(q) = [S(q) +A(q)]−1S(q)[S(q) +A(q)]−τ ,

which gives an explicit representation of D(q). As long as D(q) is obtained, we can
construct ζ(t) in (2.2). Therefore, we have proved that (2.5) implies (2.2).

We then demonstrate our rationale how we show that (2.2) implies (2.5). In
fact, transforming from (2.2) to (2.5) requires much more efforts. In this case,
we need to obtain S(q), A(q) and φ(q) from general dynamics (2.2). Within this
section, we propose a heuristic inference. Although this inference is not a rigorous
mathematical proof, but it can lead to a reformulation of the problem into PDEs.
The argument will be made rigorous in Section 4 where we use PDE methods to
demonstrated the existence. The main idea of this heuristic inference is that the
equations (2.2) and (2.5) can describe the same dynamical behaviors in Rn. Hence,
we may replace q̇ in (2.5) by the right hand side of equation (2.2), and we obtain

[S(q(t)) +A(q(t))][f(q(t)) + ζ(q(t), t)] = −∇φ(q(t)) + ξ(q(t), t).

Regarding t as a parameter in q(t), the above equation can be briefly written as

[S(q) +A(q)][f(q) + ζ(q, t)] = −∇φ(q) + ξ(q, t).

The above equation contains a deterministic part that is differentiable up to arbi-
trary order, and a random part that is nondifferentiable almost everywhere. From
the physical point of view, the two kinds of noises ζ(q, t) and ξ(q, t) have the same
source. Inspired by this, we may assume that we can establish the following decom-
position

[S(q) +A(q)]f(q) = −∇φ(q), (3.1)
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[S(q) +A(q)]ζ(q, t) = ξ(q, t). (3.2)

This subjective decompositions (3.1), (3.2) are the key to understand Ao’s de-
composition. Actually, if we combine (2.4) and (2.7), together with (3.2), we will
obtain

⟨ξ(q, t)ξτ (q, t′)⟩ = ⟨[S(q) +A(q)]ζ(q, t)ζτ (q, t′)[S(q) +A(q)]τ ⟩

= 2[S(q) +A(q)]D(q)[S(q) +A(q)]τδ(t− t′)

= 2[S(q) +A(q)]D(q)[S(q)−A(q)]δ(t− t′)

= 2S(q)δ(t− t′),

which implies
[S(q) +A(q)]D(q)[S(q)−A(q)] = S(q). (3.3)

It is worth mentioning that from the physical point of view, equation (3.3) is a
generalized Einstein relation in more than one dimension. Equations (3.1) and
(3.3) are regarded as the key relations in Ao’s decomposition theory, which reveal
the relations between f ↔ φ and ζ ↔ ξ.

From equation (3.3) we have

D(q) = [S(q) +A(q)]−1 · 1
2
{[S(q) +A(q)] + [S(q)−A(q)]} · [S(q)−A(q)]−1

=
1

2

{
[S(q)−A(q)]−1 + [S(q) +A(q)]−1

}
=

1

2

{
[S(q) +A(q)]−τ + [S(q) +A(q)]−1

}
,

where the symmetric part of [S(q)+A(q)]−1 is 1

2
[(S(q)+A(q))−1+(S(q)+A(q))−τ ].

It’s the diffusion matrix D(q) defined in equation (2.4). Hence, we can rewrite the
identity

[S(q) +A(q)][S(q) +A(q)]−1 = I

as
[S(q) +A(q)][D(q) +Q(q)] = I. (3.4)

where the matrix Q(q) is anti–symmetric unknown matrix function and I is the
identity matrix. Substituting equation (3.4) into equation (3.1), we obtain

[D(q) +Q(q)]−1f(q) = −∇φ(q). (3.5)

From equation (3.1), we notice that if q̇ = f(q∗) = 0, then ∇φ(q∗) = 0. More-
over, by (3.1), we have

d

dt
φ(q) = q̇τ∇φ(q) = −q̇τ [S(q) +A(q)]q̇ = −q̇τS(q)q̇ ≤ 0.

Thus we find that φ(q) satisfies φ̇(q) ≤ 0 for all q ∈ Rn. Hence, by Definition 2.1 we
obtain that φ(q) is a generalized Lyapunov function (compare with [43]). So this
proved part (b) of Theorem 2.1.

Assuming (2.2) holds true, (2.4) is given, and D(q) is known. Then in order to
obtain (2.5), we only have to show that there exists an anti-symmetric matrix Q(q)
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and a potential function φ(q) that satisfy (3.5). As long as this is proved, it means
that we have demonstrated the fact that (2.2) implies (2.5). And as a by-product,
taking into account part (b) of Theorem 2.1, we have shown the existence of φ(q) as
a generalized Lyapunov function. So this will settle part (c) of Theorem 2.1. Here
we reduce the existence of Q(q) to a PDE problem, and we address the solution
theory to this PDE problem in Section 4.

Assuming basic integrability conditions on f(q), D(q) and Q(q), by the classical
Helmholtz-Weyl decomposition we see that it suffices to show that the curl part of
the vector field [D(q) +Q(q)]−1f(q) vanishes. That is

∇× {[D(q) +Q(q)]−1f(q)} = 0. (3.6)

We notice that (3.6) is a family of n(n−1)
2 first-order quasi-linear partial differen-

tial equations for the coefficients of Q(q) in (3.5). Correspondingly, if the solution
Q(q) to the partial differential equation (3.6) exists, the generalized Lyapunov func-
tion φ(q) exists, simply by the classical Helmholtz-Weyl decomposition.

We also notice that the above heuristic inference at the level of mathematical
rigor, is actually saying that (3.6) is a sufficient but not necessary condition for
(2.2)⇒(2.5). In fact, if (3.6) holds, then by the Helmholtz-Weyl decomposition
there exists a function φ = φ(q) such that (3.5) holds, with the anti-symmetric
matrix Q(q) from (3.6). Moreover, with D(q) from (2.4) and Q(q) from (3.6) at
hand, we can construct the matrix S(q)+A(q) = [D(q)+Q(q)]−1, where the matrix
S(q) is its symmetric part and A(q) is its anti-symmetric part. The so-constructed
matrices S(q) and A(q) will satisfy (3.1) and (3.3). Thus we can construct the noise
ξ(q, t) from (3.2), which together with (3.1) imply that we can construct (2.5) from
(2.2).

Our problem has now been reduced to proving the existence of solution Q(q) to
(3.6), which is a first order PDE system. The rest of the paper is dedicated to the
investigation of this first order PDE, in particular in dimensions as low as 1 and 2.

4. Existence of solutions to first–order quasilinear
partial differential equations in dimensions 1 and
2

In Section 3, we have explained that proving the existence of the generalized Lya-
punov function is equivalent to proving the existence of solutions to equation (3.6).
As we have pointed out in Section 3, the equation (3.6) is a first-order partial dif-
ferential equation with the unknown anti-symmetric matrix function Q(x) to be
solved.

In general, it’s likely to happen that the solution of quasi-linear partial differen-
tial equation does not exist. This might even be the case for linear PDEs. Actually,
in 1957, H. Lewy constructed a linear equation with no singularity while surprisingly
there is no solution everywhere [27]. The equation he proposed has the form

Lu = F, (4.1)

where L is a linear differential operator on function u(x, y, z) defined by Lu =
−ux − iuy + 2i(x + iy)ux, and function F is an appropriately selected function
belonging to class C∞.
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The above discussion shows that in fact, proving the existence of solutions to
equations (3.6) can be difficult and complex. Below we’d like to discuss the special
cases when the problem dimension is 1 and 2. We note that for linear case, the
generalized Lyapunov function always exists (see [25]), so we only consider nonlinear
case later.

4.1. Dimension n = 1

In this case, we note that q = q1. We assume D(q) = d(q1), where d is an known
function obtained by equation (2.4). The antisymmetric matrix Q(q) = 0. Thus,
equation (3.6) can be transformed into the following form

∂

∂q1
×

[
f(q1)

d(q1)

]
= 0. (4.2)

When a⃗, b⃗ are one dimensional vectors, the angle θ between them is 0 or 2π. Ac-
cording to vector cross product rule, in this case we have

a⃗× b⃗ = |⃗a| · |⃗b| sin θ. (4.3)

Therefore, the equation (4.2) holds true. Furthermore, the generalized Lyapunov
function can be constructed explicitly as

φ(q1) =

∫
f(q1)

d(q1)
dq1. (4.4)

4.2. Dimension n = 2

In this case, q = (q1, q2). Let us assume that the anti-symmetric matrix Q(q) is
given by

Q(q) =

 0 Q12(q)

−Q12(q) 0

 ,

for some unknown function Q12(q). The matrix D(q) is known by equation (2.4),
we can assume that

D(q) =

d1(q) d3(q)

d3(q) d2(q)

 .

Note that in dimension 2 we have ∇× v =
∂v2
∂q1

− ∂v1
∂q2

for v = (v1, v2). By direct
calculation, from equation (3.6) we can obtain

w1(q1, q2, Q12)
∂Q12

∂q1
+ w2(q1, q2, Q12)

∂Q12

∂q2
= w3(q1, q2, Q12), (4.5)

in which

w1(q1, q2, Q12) =
f1Q

2
12 − 2(d3f1 − d1f2)Q12 + f1(d

2
3 − d1d2)

(d1d2 +Q2
12 − d23)

2
,
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w2(q1, q2, Q12) =
f2Q

2
12 + 2d3f2Q12 − (d1d2 + d23)f2

(d1d2 +Q2
12 − d23)

2
,

w3(q1, q2, Q12) =
(Q12f2 + d3f2)(d

(2)
1 d2 + d1d

(2)
2 − 2d

(2)
3 d3)(d

(1)
1 d2 + d1d

(1)
2 − 2d3)

(d1d2 +Q2
12 − d23)

2

− (Q12f1 − d3f1 + d1f2)(d
(1)
1 d2 + d1d

(1)
2 − 2d3)

(d1d2 +Q2
12 − d23)

2

+
Q12(f

(1)
1 − f

(2)
2 )− d3(f

(1)
1 + f

(2)
2 ) + f2d

(2)
3 − d

(1)
3 f1

d1d2 +Q2
12 − d23

+
d
(1)
1 f2 + d1f

(1)
2

d1d2 +Q2
12 − d23

+ f1 −
f
(2)
1

d1
.

In the above, the superscripts (1) and (2) denote the partial derivative concerning
the variable q1 and q2 respectively, d1(q), d2(q) and d3(q) are known functions.
According to the definition of the generalized Lyapunov function, we only consider
smooth function f , so w1, w2, w3 are C1 smooth functions of q1, q2, Q12. Note that
d1d3 − d22 > 0 due to positive definiteness of D(q). Under these circumstances, we
want to prove the existence of solutions to equation (4.5).

First of all, we consider a first order system of ordinary differential equations
with two unknown functions, which takes the form

dy1
dx = f1(x, y1, y2),

dy2
dx = f2(x, y1, y2).

(4.6)

Note that in the following statement of definitions and lemmas, we use notation
x, y1, y2, relatively, in the statement in proof of theorem which explained the main
ideas of the proof, we use notation q1, q2, Q12 in regards to the equations itself.

We will make use of the following Lemmas regarding the existence of the solution
to the general first-order system of PDEs (4.6). The proofs of these lemmas can be
found in [14].

Lemma 4.1. For p0 = (x0, y
0
1 , y

0
2) ∈ G, there exists a neighbourhood G0 ⊂ G of

p0, subject to that the equations (4.6) have two independent first integrals in G0.

Lemma 4.2. The equation (4.6) has at most two independent first integrals.

Lemma 4.3. Suppose Ψ1(x, y1, y2) = c1,Ψ2(x, y1, y2) = c2 are two independent
first integrals of differential equations (4.6) in area G. Then any first integrals of
differential equations (4.6) in area G,

V (x, y1, y2) = C,

can be expressed by equations Ψ1(x, y1, y2) = c1,Ψ2(x, y1, y2) = c2 which reads

V (x, y1, y2) = h[Ψ1(x, y1, y2),Ψ2(x, y1, y2)], (4.7)

where h[∗, ∗] is a continuously differentiable function.

Lemma 4.4. Suppose Φ1(x, y1, y2) = c1,Φ2(x, y1, y2) = c2 are two known indepen-
dent first integrals of differential equations (4.6). Then we can obtain the general
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solution of equation (4.6) in region G as:

y1 = Φ1(x,C1, C2), y2 = Φ2(x,C1, C2), (4.8)

where C1, C2 are arbitrary constants, and these general solutions express all solutions
of equations (4.6) in G.

By making use of the above Lemmas and the first integral method [14], we prove
the existence of the solution to the equation (4.5) in the following theorem.

Theorem 4.1. If V (q1, q2, Q12) = C is an implicit solution of equation (4.5), such
that ∂V

∂Q12
̸= 0, then the solution to equation (4.5) exists in the region G0 which is

the neighbourhood of q0 = (q01 , q
0
2 , Q

0
12) ∈ G.

Proof. We claim that the problem of solving equation (4.5) is equivalent to the
problem of solving a linear homogeneous equation. Assume V (q1, q2, Q12) = C is
some implicit solution of (4.5). By the assumption in Theorem 4.1, we can utilize
the implicit function differentiation rule to obtain

∂Q12

∂qi
= −

∂V
∂qi
∂V

∂Q12

, i = 1, 2. (4.9)

Then we substitute equation (4.9) into equation (4.5) to get

w1(q1, q2, Q12)
∂V

∂q1
+ w2(q1, q2, Q12)

∂V

∂q2
+ w3(q1, q2, Q12)

∂V

∂Q12
= 0, (4.10)

where V is viewed as function of q1, q2, Q12. Thus we see that the equation (4.5) is
transformed into first-order homogeneous linear partial differential equation (4.10)
about the unknown function V (q1, q2, Q12).

To prove the reverse statement, assume that the function V (q1, q2, Q12) is the
solution of the equation (4.9). By the assumption in Theorem 4.1, we know that
∂V

∂Q12
̸= 0. Thus we can rearrange (4.9) and make use of (4.9), to obtain that

Q12 = Q12(q1, q2)

is the solution of the equation (4.5). So we have proved the equivalence of (4.5) and
(4.9).

The above guarantees that we just need to prove the existence of solution to
(4.9). To this end we consider the characteristic equation corresponding to the
equation (4.9) along the fixed characteristic line, which has the form

dq1
w1(q1, q2, Q12)

=
dq2

w2(q1, q2, Q12)
=

dQ12

w3(q1, q2, Q12)
. (4.11)

The above is equivalent to the following ordinary differential equations in two di-
mensions: 

dq2
dq1

=
w2(q1, q2, Q12)

w1(q1, q2, Q12)
,

dQ12

dq1
=

w3(q1, q2, Q12)

w1(q1, q2, Q12)
.

(4.12)

According to Lemmas 4.1, 4.2 and 4.3, assume that q0 = (q01 , q
0
2 , Q

0
12) ∈ G, there

exists a neighborhood G0 ⊂ G of q0, such that ordinary differential equations (4.12)
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has only two independent first integral in region G0, denoted as Ψ1(q1, q2, Q12) =
C1,Ψ2(q1, q2, Q12) = C2. Then according to Lemma 4.4, the general solution of the
equation (4.9) can be written as

V (q1, q2, Q12) = Φ(Ψ1(q1, q2, Q12),Ψ2(q1, q2, Q12)), (4.13)

where Φ is a continuous differential function. It must be noted that this solution is
an implicit solution.

In order to seek for an explicit solution, we consider the corresponding Cauchy
problem of the equation (4.5). We formulae the Cauchy problem as the following
system of equations: w1(q1, q2, Q12)

∂Q12

∂q1
+ w2(q1, q2, Q12)

∂Q12

∂q2
= w3(q1, q2, Q12),

Q12(g(s), h(s)) = l(s).

(4.14)

In the above equation (4.14), it is assumed that there is a given curve Γ in the
space (q1, q2, z), whose parametric equation is

q1 = g(s), q2 = h(s), z = l(s). (4.15)

From (4.14), we aim at finding a solution of the form Q12(q1, q2), such that along
Γ this function satisfies the condition

l(s) = Q12(g(s), h(s)). (4.16)

Then we want to prove the existence of solution to the Cauchy problem of equation
(4.5) in the neighborhood of Γ. Because Γ can be covered by several finite open
arcs on itself, we only need to prove the existence of solution near each open arc.
Before we state the next Theorem, we would like to first propose the following

Assumption 4.1. We assume that

(i) The functions g(s), h(s), l(s) of the curve Γ defined in the neighbourhood of s0
are C1. We let P0 = (q01 , q

0
2 , z0) = (g(s0), h(s0), l(s0));

(ii) In a neighbourhood of the point P0, the coefficients of equation (4.5) w1, w2, w3

are C1;
(iii) At the point (s0, 0), we have∣∣∣∣∣∣ g′(s0) h′(s0)

w1(q
0
1 , q

0
2 , z0) w2(q

0
1 , q

0
2 , z0)

∣∣∣∣∣∣ ̸= 0. (4.17)

Based on the above assumption, we have

Theorem 4.2. Under Assumption 4.1 (i)-(iii), the solution to the equation w1(q1, q2, Q12)
∂Q12

∂q1
+ w2(q1, q2, Q12)

∂Q12

∂q2
= w3(q1, q2, Q12),

Q12(g(s), h(s)) = l(s),

(4.18)

exists in a neighbourhood of parameter s = s0. This local solution can be extended
to a global solution by excluding some singularities [8,23,34].
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Proof. Intuitively, the integral surface z = u(q1, q2) across Γ consists of charac-
teristic curves of any point on Γ. Assume for every s near s0, the local solutions of
the characteristic equation takes the parametric form

q1 = Q1(s, t), q2 = Q2(s, t), Q12 = Q12(s, t). (4.19)

So we only need to find solution whose values are correspondingly g(s), h(s), l(s)
for (4.19) when t = 0 and satisfying the characteristic differential equation (4.11).
Obviously, the functions Q1, Q2, Q12 about s, t satisfy

∂Q1

∂t
= a(Q1, Q2, Q12),

∂Q2

∂t
= b(Q1, Q2, Q12),

∂Q12

∂t
= c(Q1, Q2, Q12) (4.20)

and initial value condition

Q1(s, 0) = g(s), Q2(s, 0) = h(s), Q12(s, 0) = l(s). (4.21)

From existence and uniqueness theorem of solutions of ordinary differential equa-
tions and continuous dependence theorem on parameters of solutions of ordinary
differential equations, we can obtain there exist unique functions Q1(s, t), Q2(s, t),
Q12(s, t) is C1 in a neighbourhood of the point (s0, 0) and satisfies equations (4.20)
and (4.21). By Assumption 4.1 part (i) and initial value condition (4.21), we have

q01 = Q1(s0, 0), q
0
2 = Q2(s0, 0). (4.22)

Utilizing (4.20) and (4.21) and Assumption 4.1 part (iii), we can easily obtain∣∣∣∣∣∣Q
1
s(s0, 0) Q

2
s(s0, 0)

Q1
t (s0, 0) Q

2
t (s0, 0)

∣∣∣∣∣∣ ̸= 0. (4.23)

Therefore, by the existence theorem of implicit function, in a neighbourhood of
(x0, y0), we can deduce from

q1 = Q1(s, t), q2 = Q2(s, t) (4.24)

to find reverse solution s, t, written as

s = S(q1, q2), t = T (q1, q2). (4.25)

Then (4.19) can represent a surface Σ : Q12 = u(q1, q2) expressed by parameters
s, t. The function u defined by

Q12 = u(q1, q2) = Q12(S(q1, q2), T (q1, q2)) (4.26)

is the explicit representation of surface Σ. By statement mentioned before, the as-
sumption (iii) guarantee that (4.19) locally represents a surface Σ : Q12 = u(q1, q2).
Futhermore, from parameter expression (4.19) we can easily obtain Σ is the integral
surface. Therefore, u is the solution of equation (4.5).

If condition (4.17) is not satisfied, it would lead to sigularities. If the determinant
in (4.17) is equal to 0, it will lead to the contradiction with existence and uniqueness
of solution. To see it, from equation h(s) = u(f(s), g(s)) and (4.5), at s = s0, q1 =
g(s0), q2 = h(s0),

w2g
′ − w1h

′ = 0, l′ = g′
∂Q12

∂q1
+ h′ ∂Q12

∂q2
, w3 = w1

∂Q12

∂q1
+ w2

∂Q12

∂q2
. (4.27)
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Therefore,
w2l

′ − w3h
′ = 0, w1l

′ − w3g
′ = 0, (4.28)

This equation means g′, h′, l′ is in proportion to w1, w2, w3. Because Γ hasn’t the
characteristic direction at the point (s0, 0), the solution doesn’t exist.

Discussion about Assumption 4.1.
It is obvious that (i) and (ii) in Assumption 4.1 always hold. For (iii), Zhu et

al. are the first to propose the existence of Lyapunov function in dynamical system
with limit cycle [44]. They consider the stochastic dynamical system{

q̇1 = −q2 + q1(1− q21 − q22) + ξ1(t),

q̇2 = q1 + q2(1− q21 − q22) + ξ2(t),
(4.29)

where friction matrix and transverse matrix are S(q) =
(1−q2

1
−q22)

2

(1−q2
1
−q22)

2+1

1 0

0 1

 and

A(q) =
1−q2

1
−q22

(1−q2
1
−q22)

2+1

 0 1

−1 0

, respectively, and

D(q) +Q(q) = (S(q) +A(q))−1 =

 1 1
1−q21−q22

− 1
1−q21−q22

1

 . (4.30)

Therefore, the diffusion matrix defined before is D(q) =

1 0

0 1

, the antisymmetric

matrix defined before is Q(q) =

 0 1
1−q21−q22

− 1
1−q21−q22

0

, so the solution of PDE (4.5)

is Q12(q) =
1

1−q21−q22
. It’s very interesting that the limit cycle q21 + q22 = 1 exactly

corresponds to the non-existence of solution by calculation

w1(q1, q2, Q12) =
q2

(1− q21 − q22)
2
+

q1
1− q21 − q22

+ q2 + q1(1− q21 − q22),

w2(q1, q2, Q12) =
−q1

(1− q21 − q22)
2
+

q2
1− q21 − q22

+ q1 + q2(1− q21 − q22).
(4.31)

Then utilizing equation (4.17), we find another special case

g′(s0)[
−q1

(1− q21 − q22)
2
+

q2
1− q21 − q22

+ q1 + q2(1− q21 − q22)]

= h′(s0)[
q2

(1− q21 − q22)
2
+

q1
1− q21 − q22

+ q2 + q1(1− q21 − q22)],
(4.32)

illustrating that the solution does not exist. Except for these two special cases, the
solution exists locally.
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5. Summary
In this paper, we introduced the notion of a generalized Lyapunov function and we
demonstrated that it is equivalent to Ao’s potential function φ(q) in Ao’s decom-
position theory. We find that when dimension varies, the existence interval of the
generalized Lyapunov function and corresponding restricted condition varies. By
using results from the solution theory of first-order partial differential equations,
we show that the generalized Lyapunov function globally exists in dimension 2 ex-
cluding some singularities. When the dimension is 3 and more than 3, the existence
problem deserves further study and we leave it to a future work. Our proof reveals
an essential structure of general stochastic dynamical system - divergence (provided
by D(q)), curl (provided by Q(q)), the gradient of generalized Lyapunov function
∇φ(q) and white Gaussian noise ξ(q, t).
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