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RANDOM ATTRACTORS FOR
NON-AUTONOMOUS STOCHASTIC WAVE

EQUATIONS WITH STRONG DAMPING AND
ADDITIVE NOISE ON RN∗

Yanjiao Li1, Xiaojun Li1,† and Jiabin Zuo2

Abstract This paper investigates the long-time behavior of a stochastic
strongly damped wave equation with additive noise on RN . We establish
that there exists a unique pullback random attractor for the equation in space
H1(RN ) × L2(RN ) with the nonlinearity g(x, u) being of optimal subcritical
growth p: 1 ≤ p < p∗ ≡ N+2

(N−2)
(N ≥ 3). In addition, we get the upper semi-

continuity of the pullback random attractor as the intensity of noise goes to
zero.
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1. Introduction
At the present paper, we consider the following initial-value problem for a stochastic
strongly damped wave equation with additive noise defined on the whole space
RN (N ≥ 3):

utt −∆ut −∆u+ ut + g(x, u) = f(x, t) + εh(x)
dW

dt
, t > τ, (1.1)

with initial conditions

u(x, τ) = uτ (x), ut(x, τ) = u1,τ (x), τ ∈ R, (1.2)

where u = u(x, t) is a real function of x ∈ RN and t ≥ τ , ε ∈ (0, 1], g(x, u) is a
nonlinear function satisfying some conditions, f(x, t) and h(x) are given functions
in L2

loc(R, L2(RN )) and H2(RN ), respectively, W =W (t) is a two-sided real-valued
Wiener process on a probability space (Ω,F ,P), which will be specified later.
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One of the most important things in studying evolution partial differential equa-
tions is to investigate the long-time behavior of solutions of the equations, and
attractors are the ideal objects in this process. Up to now, there are abundant
results related to attractors having been established for the deterministic infinite-
dimensional dynamical systems (see e.g. monographs [2,7,20] and papers [9,17,30]).
For the results on existence of attractors for the deterministic (when ε = 0) wave
equations corresponding to (1.1)-(1.2), one can refer to [4, 12, 19, 28] and the ref-
erences therein. In this article, we are concerned with the existence of random
attractor for the non-autonomous stochastic strongly damped wave equation (1.1)-
(1.2) and the upper semicontinuity of the attractor as ε→ 0.

When the external force f is time-independent, the equation (1.1) becomes an
autonomous stochastic wave equation. The theories of random dynamical systems
and random attractors for autonomous stochastic equations were first established by
F. Flandoli et al. [5,6,13], in which the random attractor is a family of compact sets
depending on random parameters and has some invariant property under the action
of the random dynamical system. The concepts of pullback random attractors for
non-autonomous random dynamical systems were introduced by Crauel et al. in [10]
and then in details by Wang [22], where the pullback random attractor is a family of
compact sets depending on both random parameters and time. For other results on
the random attractors, one can refer to [3,21,23] for autonomous random dynamical
system and [14, 29, 31, 32] for non-autonomous random dynamical system. Later,
Cui and Langa in [11] introduced the concept of uniform random attractors for the
non-autonomous random dynamical system. Recently, we establish the existence
of uniform random attractors for the 2D stochastic Navier-Stokes equations in [15]
and stochastic strongly damped wave equation in [16], respectively.

There are some results about pullback random attractors for non-autonomous
stochastic wave equations on unbounded domains (see e.g. [24, 25, 27] and the ref-
erences therein). Particularly, authors in [24] and [25] establish the existence of
pullback random attractor for a stochastic strongly damped wave equation with
additive noise and multiplicative noise, respectively, when the nonlinearity g(x, u)
is of subcritical growth p : 1 ≤ p < 3 as N = 3. In the deterministic case, the
existence of global attractor for strongly damped wave equation with growth ex-
ponent p: 1 ≤ p ≤ p∗ ≡ N+2

N−2 defined on RN (N ≥ 3) has been established (see
e.g. [8, 28]). Here, we establish the existence and upper semicontinuity of pullback
random attractor for the stochastic strongly damped wave equation (1.1)-(1.2) de-
fined on RN with nonlinearity g(x, u) satisfying |g(x, u)| ≤ C(1 + |u|p), 1 ≤ p < p∗.
The existence of pullback random attractor for system (1.1)-(1.2) in the critical case
(p = p∗) is still unsolved and we will study it in the near future.

This paper is organized as follows. In the next section, we recall some definitions
and results on the pullback random attractors and non-autonomous random dynam-
ical systems. In Section 3, we prove that there exists a unique pullback random
attractor for problem (1.1)-(1.2). Section 4 is devoted to demonstrate the upper
semicontinuity of the pullback random attractor as ε tends to zero. Throughout
this article, we denote by C and ci (i = 1, 2, · · · ) the positive constants independent
of ε.
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2. Preliminaries
In this section, we present some basic concepts on non-autonomous random dynam-
ical systems and pullback random attractors (see [22,27] for details).

Let X be a complete separable metric space with Borel σ-algebra B(X). Let
(Ω,F ,P) be a probability space, where Ω = {ω ∈ C(R,R) : ω(0) = 0}, the Borel
σ-algebra F on Ω is generated by the compact open topology, and P is the cor-
responding Wiener measure on F . We identify “P-a.e. ω ∈ Ω” with “ω ∈ Ω”
hereinafter for simplicity. Consider the Wiener shift θt on the probability space
(Ω,F ,P) defined by

θtω(·) = ω(t+ ·)− ω(t), for all ω ∈ Ω, t ∈ R,

and then (Ω,F ,P, (θt)t∈R) is a metric dynamical system.

Definition 2.1. A mapping Ψ: R+ × R × Ω × X 7→ X is called a continuous
cocycle on X over R and (Ω,F ,P, (θt)t∈R) if for all τ ∈ R, t, s ∈ R+ and ω ∈ Ω,
the following conditions are fulfilled:

(i) Ψ(·, τ, ·, ·) : R+ × Ω×X 7→ X is (B(R+)×F × B(X),B(X))-measurable;
(ii) Ψ(0, τ, ω, ·) = idX ;
(iii) Ψ(t+ s, τ, ω, ·) = Φ(t, τ + s, θsω, ·) ◦ Φ(s, τ, ω, ·);
(iv) Ψ(t, τ, ω, ·) : X 7→ X is continuous.

Let D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} be a family of nonempty bounded subsets of
X and D be a collection of such families satisfying some conditions. A collection
D0 is said to be inclusion-closed if D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D0, then any
family O = {O(τ, ω) ⊆ D(τ, ω) : τ ∈ R, ω ∈ Ω} belongs to D0.

Definition 2.2. A family K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is said to be a
D-pullback absorbing set for Ψ if for all τ ∈ R, ω ∈ Ω and D ∈ D, there exists some
T = T (τ, ω,D) > 0 such that

Ψ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ K(τ, ω) for all t ≥ T.

Moreover, if for every τ ∈ R and ω ∈ Ω,K(τ, ω) is a closed nonempty subset of
X and K is measurable in ω with respect to F , then K is said to be a closed
measurable D-pullback absorbing set for Ψ.

Definition 2.3. The cocycle Ψ is D-pullback asymptotically compact in X if for
every τ ∈ R, ω ∈ Ω, and {tn} ⊆ R+ with tn → +∞, the sequence

{Ψ(tn, τ − tn, θ−tnω, xn)}∞n=1 possesses a convergent subsequence in X,

where xn ∈ B(τ − tn, θ−tnω) with {B(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D.

Definition 2.4. A family A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is said to be a D-
pullback random attractor for Ψ if the following properties hold for all τ ∈ R and
ω ∈ Ω:

(i) Measurability and Compactness: A is measurable in ω with respect to F and
A(τ, ω) is compact in X.
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(ii) Invariance: A is invariant in the sense that

Ψ(t, τ, ω,A(τ, ω)) = A(τ + t, θtω), ∀t ≥ 0.

(iii) Attracting: A attracts each element of D in the sense of pullback, i.e., for
each τ ∈ R and ω ∈ Ω, D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D,

lim
t→+∞

distX(Ψ(t, τ − t, θ−tω,D(τ − t, θ−tω)),A(τ, ω)) = 0.

We end this section with following result, which can be found in [22,27].

Lemma 2.1. Let D be an inclusion-closed collection of some families of nonempty
subsets of X and Ψ be a continuous cocycle on X over R and (Ω,F ,P, (θt)t∈R).
If Ψ possesses a closed measurable D-pullback absorbing set K = {K(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D and Ψ is D-pullback asymptotically compact in X, then Ψ possesses
a unique D-pullback random attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, which is
given by

A(τ, ω) = Ω(K, τ, ω) =
∩
r≥0

∪
t≥r

Φ(t, τ − t, θ−tω,K(τ − t, θ−tω)).

3. Pullback random attractor
3.1. Basic settings
We first introduce some notations and function spaces:

• Lp(RN )-the usual Lebesgue space with norm ‖ · ‖p. In particular, the norm
in L2(RN ) is denoted by ‖ · ‖.

• Hm(RN )-the usual Sobolev space with norm ‖ · ‖Hm .
• H(RN ) = H1(RN )×L2(RN )-the Hilbert space endowed with norm ‖ · ‖H and

inner product (·, ·)H, respectively, defined by

‖ϕ‖H = (‖∇u‖2 + ‖u‖2 + ‖v‖2) 1
2 , ∀ϕ = (u, v) ∈ H(RN ),

(ϕ1, ϕ2)H = (∇u1,∇u2) + (u1, u2) + (v1, v2), ϕi = (ui, vi) ∈ H(RN ), i = 1, 2.

• (·, ·) denotes the inner product in L2(RN ) and also denotes the dual pairing
between H1(RN ) and its dual space H−1(RN ).

Now, we show that the solution of problem (1.1)-(1.2) can generate a continuous
cocycle Ψϵ on H(RN ).

Let ς = ut + δu, where δ is a positive number to be specified later, and then we
can rewrite problem (1.1)-(1.2) as follows:

dς

dt
−∆ς − (1− δ)∆u+ (1− δ)ς + (δ2 − δ)u+ g(x, u) = f(x, t) + εh(x)

dω

dt
, (3.1)

du

dt
= ς − δu, (3.2)

with initial data

u(x, τ) = uτ (x), ς(x, τ) = ςτ (x), (3.3)
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where ςτ (x) = u1,τ (x) + δuτ (x), x ∈ RN .
In this article, we need the following assumptions:

(i) g = g(x, u) ∈ C(RN × R) with g(x, ·) ∈ C2(R) for almost all x ∈ RN , and

(A1) g(·, 0) ∈ L2(RN );
(A2) |g′u(x, 0)| ≤ C, |g′′u(x, u)| ≤ c1(1+ |u|p−2), for x ∈ RN , u ∈ R, 2 ≤ p < p∗ ≡

N+2
N−2 (N ≤ 6);

(A3) lim inf
|u|→∞

g(x, u)

u
≥ 0 uniformly as |x| ≤ r0, r0 is a positive constant;

(A4) lim inf
|u|→∞

g(x, u)u−c2G(x, u)
u2

≥0 uniformly as |x|≤r0, G(x, u)=
∫ u

0
g(x, r)dr;

(A5) (g(x, u)− g(x, 0))u ≥ c3u
2, g′u(x, u) ≥ −c4, for |x| > r0 and u ∈ R;

(A6) g(x, u)u ≥ c5|u|p+1 − φ1(x), φ1(x) ∈ L1(RN ), for x ∈ RN and u ∈ R.

(ii) f ∈ L2
loc(R, L2(RN )) and for any γ > 0, it holds∫ 0

−∞
eγs‖f(·, s+ τ)‖2ds < +∞, for all τ ∈ R. (3.4)

Without loss of generality, we can assume g(x, 0) = 0 (see [28] for details). In
the following, we give an example of functions g and f satisfying assumptions (i)
and (ii), respectively.

(1) Let
g(x, u) = a0(x)|u|p−1u+ a1(x)u, x ∈ RN , u ∈ R,

where a0(x), a1(x) ∈ C(RN ) and 0 < c5 ≤ a0(x) ≤ C, 0 < c3 ≤ a1(x) ≤ C. It
is obvious that g(x, u) satisfies assumption (i).

(2) Let

f(x, t) =
|t|α

1 + |x|β
, x ∈ RN , t ∈ R,

where 0 < α < +∞ and β ≥ N
2 + 1. Then f(x, t) satisfies assumption (ii).

In order to define a random dynamical system, we transform problem (3.1)-(3.3)
into pathwise deterministic one parameterized by ω. For any given ω ∈ Ω, let

y(θtω) = −
∫ 0

−∞
es(θtω)(s)ds, t ∈ R. (3.5)

Then y(θtω) is a one-dimensional Ornstein-Uhlenbeck process and satisfies the
Ornstein-Uhlenbeck equation

dy(θtω) + y(θtω)dt = dω(t).

In addition, we can get from [1] that y(θtω) is continuous in t for ω ∈ Ω and |y(ω)|
is tempered. Let z(θtω) = z(x, θtω) = h(x)y(θtω), and then z(θtω) solves

dz(θtω) + z(θtω)dt = h(x)dω(t).

Putting
v(t) = ς(t)− εz(θtω),
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we can rewrite problem (3.1)-(3.3) as follows:

dv

dt
−∆v−ε∆z(θtω)−(1−δ)∆u+(δ2−δ)u+(1−δ)v−εδz(θtω)+g(x, u)=f(x, t),

(3.6)
du

dt
= v + εz(θtω)− δu, (3.7)

with initial data

u(x, τ) = uτ (x), v(x, τ) = vτ (x), (3.8)

where vτ (x) = ςτ (x)− εz(θτω) = u1,τ (x) + δuτ (x)− εz(θτω), x ∈ RN .
Notice that the initial-value problem (3.6)-(3.8) can be viewed as deterministic

one with random parameter ω ∈ Ω. Under the conditions (A1)-(A3), (A5) and
(ii), the well-posedness for the deterministic wave equation with strong damping
defined on RN can be obtained by the method of [28]. By the similar proof as that
of [27,28], we have the following result.

Lemma 3.1. Let assumptions (i)-(ii) hold. Then for each ω ∈ Ω, and initial data
(uτ , vτ ) ∈ H(RN ), problem (3.6)-(3.8) possesses a unique solution (u, v) satisfying(

u(·, τ, ω, uτ ), v(·, τ, ω, vτ )
)
∈ C([τ,+∞),H(RN )). (3.9)

Moreover, for any t≥τ ,
(
u(t, τ, ω, uτ ), v(t, τ, ω, vτ )

)
is
(
F ,B(H1(RN ))×B(L2(RN ))

)
-

measurable in ω and continuous with respect to initial data (uτ , vτ ) in the norm of
H(RN ).

Denote by ϕ(·, τ, ω, ϕτ ) the solution
(
u(·, τ, ω, uτ ), v(·, τ, ω, vτ )

)
of problem (3.6)-

(3.8) with initial data ϕτ = (uτ , vτ ). Then by Lemma 3.1, we can define a continuous
cocycle Ψϵ for system (3.6)-(3.8) by

Ψϵ(t, τ, ω, ϕτ ) := ϕ(t+ τ, τ, θ−τω, ϕτ ), ε ∈ (0, 1]. (3.10)

We will study the existence and upper semicontinuity of pullback random at-
tractors for Ψϵ. For a given bounded nonempty subset B ⊆ H(RN ), we denote by
‖B‖ = sup

u∈B
‖u‖H. A family D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} of nonempty bounded

subsets of H(RN ) is called tempered with respect to (θt)t∈R if for every γ > 0, and
ω ∈ Ω,

lim
t→+∞

e−γt‖D(τ − t, θ−tω)‖ = 0. (3.11)

In the following, we denote by D the collection of all tempered families of nonempty
bounded subsets of H(RN ) and it is obvious that D is inclusion-closed.

We end this subsection with the following lemma that is useful for the proof of
existence of D-pullback random attractor for Ψϵ.

Lemma 3.2. Let assumptions (A1)-(A5) hold. Let G(u) =
∫
RN G(x, u)dx. Then

for any ν > 0, there exist ρi(ν) ≥ 0, i = 1, 2 such that

G(u) ≥ −ν‖u‖2 − ρ1(ν), (3.12)
(g(x, u), u)− ηG(u) ≥ −ν‖u‖2 − ρ2(ν), (3.13)
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for u ∈ H1(RN ) and η : 0 < η < min{c2, 2c3
c4+2c3

}. Furthermore, there exist α > 0
and β ≥ 0 such that

(g(x, u), u) + ‖∇u‖2 ≥ α‖u‖2 − β, ∀u ∈ H1(RN ). (3.14)

Proof. Firstly, by assumption (A5) and g(x, 0) = 0, we can get that for any ν > 0,

G(x, u) ≥ c3
2
u2, as |x| > r0. (3.15)

When |x| ≤ r0, we get from assumption (A3) that for any ν > 0, there is a positive
constant M0(ν) such that for all |u| > M0(ν),

g(x, u)u ≥ −νu2, and G(x, u) ≥ −νu2.

Since G(x, u) ∈ C(RN × R), we can get there exists a positive constant C(ν) such
that

G(x, u) ≥ −C(ν) for |x| ≤ r0, |u| ≤M0(ν).

Therefore, we get

G(x, u) ≥ −νu2 − C(ν) for |x| ≤ r0. (3.16)

Integrating (3.16) with respect to x on |x| ≤ r0 and (3.15) on |x| > r0, then we can
get (3.12). Similar to the proof of Lemma 3.1 in [18], we can get (3.13) and (3.14),
respectively, and we omit the details.

3.2. Existence of D-pullback random attractor for Ψϵ

This subsection is devoted to show the existence of D-pullback random attractor
for Ψϵ generated by the solution of problem (3.6)-(3.8). Now, we derive the uni-
form estimates of the solution of problem (3.6)-(3.8) to get a closed measurable
D-pullback absorbing set for Ψϵ. Hereinafter, we denote by δ a fixed constant
satisfying δ < min{ 1

5 ,
α
2 ,

c3
4 }.

Lemma 3.3. Let assumptions (i)-(ii) hold. Then for any τ ∈ R, ω ∈ Ω, and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T1 = T1(τ, ω,D) > 0 such that for
all t ≥ T1, the solution ϕ of problem (3.6)-(3.8) satisfies

‖ϕ(τ, τ − t, θ−τω, ϕτ−t)‖2H ≤ R1,ϵ(τ, ω), (3.17)∫ τ

τ−t

e
δη
2 (s−τ)‖ϕ(s, τ − t, θ−τω, ϕτ−t)‖2Hds ≤ R1,ϵ(τ, ω), (3.18)∫ τ

τ−t

e
δη
2 (s−τ)‖∇v(s, τ − t, θ−τω, vτ−t)‖2ds ≤ R1,ϵ(τ, ω), (3.19)

where ϕτ−t ∈ D(τ − t, θ−tω) and R1,ϵ(τ, ω) is given by

R1,ϵ(τ, ω) =M1 +M1

(∫ 0

−∞
e

δη
2 s‖f(s+ τ)‖2ds+ ε

(
1 +

∫ 0

−∞
e

δη
2 s|y(θsω)|p+1ds

))
with M1 being a positive constant independent of τ, ω, D and ε.
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Proof. Using the multiplier v in equation (3.6) and then adding δ(u, dudt ) to the
both sides of the equation, we get that

1

2

d

dt
‖v‖2 + δ(u,

du

dt
) + ‖∇v‖2 − ε(∆z(θtω), v)− (1− δ)(∆u, v)

+ (δ2 − δ)(u, v) + (1− δ)‖v‖2 − εδ(z(θtω), v)

+ (g(x, u), v) = (f, v) + δ(u,
du

dt
). (3.20)

By (3.7), we obtain that

(u, v) =
1

2

d

dt
‖u‖2 + δ‖u‖2 − ε(u, z(θtω)), (3.21)

− (∆u, v) =
1

2

d

dt
‖∇u‖2 + δ‖∇u‖2 − ε(∇u,∇z(θtω)), (3.22)

(g(x, u), v) =
d

dt
G(u) + δ(g(x, u), u)− ε(g(x, u), z(θtω)). (3.23)

From (3.20)-(3.23) and (3.7), we can get

1

2

d

dt

(
‖v‖2 + (1− δ)‖∇u‖2 + δ2‖u‖2 + 2G(u)

)
+ ‖∇v‖2

+ δ3‖u‖2 − ε(δ2 − δ)(u, z(θtω))− ε(∆z(θtω), v)

+ δ(1− δ)‖∇u‖2 − ε(1− δ)(∇u,∇z(θtω)) + (1− δ)‖v‖2

− εδ(z(θtω), v) + δ(g(x, u), u)− ε(g(x, u), z(θtω))

=(f, v) + δ(u, v + εz(θtω)). (3.24)

By the Young inequality, we have

1

2

d

dt

(
‖v‖2 + (1− δ)‖∇u‖2 + δ2‖u‖2 + 2G(u)

)
+ ‖∇v‖2

+ δ3‖u‖2 + δ(1− δ)‖∇u‖2 + (1− δ)‖v‖2 + δ(g(x, u), u)

≤δ
3

8
‖u‖2 + 2ε(δ − δ2)2

δ3
‖z(θtω)‖2 +

1

2
‖∇v‖2 + ε

2
‖∇z(θtω)‖2 +

δ(1− δ)

2
‖∇u‖2

+
ε(1− δ)

2δ
‖∇z(θtω)‖2 +

δ

2
‖v‖2 + δε

2
‖z(θtω)‖2 + ε(g(x, u), z(θtω))

+
δ

2
‖v‖2 + 1

2δ
‖f‖2 + δ2

2
‖u‖2 + ‖v‖2

2
+
δ3

8
‖u‖2 + 2ε

δ
‖z(θtω)‖2. (3.25)

By assumption (A2), the Cauchy inequality and the Hölder inequality, we have

ε(g(x, u), z(θtω))

=ε(g′u(x, θu)u, z(θtω))

≤εc6
∫
RN

|u||z|dx+ εc6

∫
RN

|u|p|z|dx

≤δ
3

4
‖u‖2 + εc26

δ3
‖z(θtω)‖2 + εc6

(∫
RN

|u|p·
p+1
p dx

) p
p+1

(∫
RN

|z(θtω)|p+1dx
) 1

p+1

≤δ
3

4
‖u‖2 + εc26

δ3
‖z(θtω)‖2 +

δc5
4

∫
RN

|u|p+1dx+
εc26
δc5

‖z(θtω)‖p+1
H1 , (3.26)
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where 0 < θ < 1. Substituting (3.26) into (3.25), and using assumption (A6), we
can get that,

1

2

d

dt

(
‖v‖2 + (1− δ)‖∇u‖2 + δ2‖u‖2 + 2G(u)

)
+

1

2
‖∇v‖2

+ (
δ3

2
− δ2

2
)‖u‖2 + (

δ

4
− δ2

2
)‖∇u‖2 + δ

4
‖∇u‖2

+ (
1

2
− 2δ)‖v‖2 + 3δ

4
(g(x, u), u)

≤εc7
(
‖z(θtω)‖2H1 + ‖z(θtω)‖p+1

H1

)
+

1

2δ
‖f‖2 + ‖φ1‖1,

which along with (3.14) yields

1

2

d

dt

(
‖v‖2 + (1− δ)‖∇u‖2 + δ2‖u‖2 + 2G(u)

)
+

1

2
‖∇v‖2

+ (
δ3

2
− δ2

2
)‖u‖2 + (

δ

4
− δ2

2
)‖∇u‖2

+ (
1

2
− 2δ)‖v‖2 + δ

2
(g(x, u), u) +

δα

4
‖u‖2

≤εc7
(
‖z(θtω)‖2H1 + ‖z(θtω)‖p+1

H1

)
+

1

2δ
‖f‖2 + β + ‖φ1‖1. (3.27)

Set

H(t) :=‖v‖2 + (1− δ)‖∇u‖2 + δ2‖u‖2 + 2G(u),

K(t) :=
δ

2
(δ2 − δ +

α

2
)‖u‖2 + δ

4
(1− 2δ)‖∇u‖2 + (

1

2
− 2δ)‖v‖2 + δ

2
(g(x, u), u).

(3.28)

By Lemma 3.2 we can get that, for any η: 0 < η < min{c2, 2c3
c4+2c3

, δ},

K(t)− δη

4
H(t)

=
δ

2
(δ2 − δ +

α

2
− η

2
δ2)‖u‖2 + δ

4
(1− 2δ − η + ηδ)‖∇u‖2

+ (
1

2
− 2δ − δη

4
)‖v‖2 + δ

2
(g(x, u), u)− δη

2
G(u)

≥δ
2

(
(g(x, u), u)−ηG(u)

)
+
δ

2
(
δ2

2
+
α

2
−δ)‖u‖2+1

2
(1− 5δ)‖v‖2+ δ(1− 3δ)

4
‖∇u‖2

≥δ
2

(
− ν‖u‖2 − ρ2(ν)

)
+
δ

2
(
δ2

2
+
α

2
− δ)‖u‖2 + 1

2
(1− 5δ)‖v‖2 + δ(1− 3δ)

4
‖∇u‖2

≥δ
2
(
α

2
− δ)‖u‖2 + 1

2
(1− 5δ)‖v‖2 + δ(1− 3δ)

4
‖∇u‖2 − ρ2(ν)

≥σ0‖ϕ‖2H − ρ2(ν), (3.29)

where we have chosen

ν =
δ2

2
, σ0 = min{δ

2
(
α

2
− δ),

1

2
(1− 5δ),

δ

4
(1− 3δ)}.
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It follows from (3.27)-(3.29) that

d

ds
H(s) +

δη

2
H(s) + 2σ0‖ϕ‖2H + ‖∇v‖2

≤2εc7
(
‖z(θsω)‖2H1 + ‖z(θsω)‖p+1

H1

)
+

1

δ
‖f‖2 + 2‖φ1‖1 + 2ρ2(ν) + 2β. (3.30)

Multiplying (3.30) by e
δη
2 s and then integrating over [τ − t, τ ] with t > 0 with

respect to s, we have

‖v(τ, τ − t, ω, vτ−t)‖2 + 2σ0

∫ τ

τ−t

e
δη
2 (s−τ)‖ϕ(s, τ − t, ω, ϕτ−t)‖2Hds

+ δ2‖u(τ, τ − t, ω, uτ−t)‖2 + (1− δ)‖∇u(τ, τ − t, ω, uτ−t)‖2

+

∫ τ

τ−t

e
δη
2 (s−τ)‖∇v(s, τ − t, θ−τω, vτ−t)‖2ds+ 2G(u(τ, τ − t, ω, uτ−t))

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2ds+ δ2‖uτ−t‖2 + 2G(uτ−t)

)
e−

δη
2 t

+ 2εc7‖h‖2H1

∫ τ

τ−t

e
δη
2 (s−τ)|y(θsω)|2ds+

1

δ

∫ τ

τ−t

e
δη
2 (s−τ)‖f(s)‖2ds

+ 2εc7‖h‖p+1
H1

∫ τ

τ−t

e
δη
2 (s−τ)|y(θsω)|p+1ds+

4

δη
‖φ1‖1 +

4

δη
ρ2(ν) +

4β

δη
. (3.31)

Substituting ω in (3.31) by θ−τω, we get that

‖v(τ, τ − t, θ−τω, vτ−t)‖2 + 2σ0

∫ τ

τ−t

e
δη
2 (s−τ)‖ϕ(s, τ − t, θ−τ , ϕτ−t)‖2Hds

+ δ2‖u(τ, τ − t, θ−τω, uτ−t)‖2 + (1− δ)‖∇u(τ, τ − t, θ−τω, uτ−t)‖2

+

∫ τ

τ−t

e
δη
2 (s−τ)‖∇v(s, τ − t, θ−τω, vτ−t)‖2ds+ 2G(u(τ, τ − t, θ−τω, uτ−t))

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)

)
e−

δη
2 t +

4

δη
‖φ1‖1 +

4β

δη

+
4

δη
ρ2(ν)+εc8(1+

∫ τ

τ−t

e
δη
2 (s−τ)|y(θs−τω)|p+1ds)+

1

δ

∫ τ

τ−t

e
δη
2 (s−τ)‖f(s)‖2ds

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)

)
e−

δη
2 t +

4

δη
‖φ1‖1 +

4β

δη

+
4

δη
ρ2(ν) +

1

δ

∫ 0

−∞
e

δη
2 s‖f(s+ τ)‖2ds+ εc8(1 +

∫ 0

−∞
e

δη
2 s|y(θsω)|p+1ds).

(3.32)

Notice that |y(θtω)| is tempered, and then we have∫ 0

−∞
e

δη
2 s|y(θsω)|p+1ds < +∞, ∀ω ∈ Ω. (3.33)

Since ϕτ−t ∈ D(τ − t, θ−tω), by assumptions (A2), the embedding H1(RN ) ↪→
Lp+1(RN ) and tempered property of D, we obtain that(

‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)
)
e−

δη
2 t
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≤C
(
‖vτ−t‖2 + ‖uτ−t‖2 + ‖uτ−t‖p+1

H1 + ‖∇uτ−t‖2
)
e−

δη
2 t → 0 as t→ +∞. (3.34)

Moreover, by Lemma 3.2 we can get that

‖v(τ, τ − t, θ−τω, vτ−t)‖2 + (1− δ)u(τ, τ − t, θ−τω, uτ−t)‖2

+ δ2‖u(τ, τ − t, θ−τω, uτ−t)‖2 + 2G(u(τ, τ − t, θ−τω, uτ−t))

≥‖v(τ, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖∇u(τ, τ − t, θ−τω, uτ−t)‖2

+ δ2‖u(τ, τ − t, θ−τω, uτ−t)‖2 − 2ν‖u(τ, τ − t, θ−τω, uτ−t)‖2 − 2ρ1(ν)

≥σ1‖ϕ(τ, τ − t, θ−τω, ϕτ−t)‖2H − 2ρ1(ν), (3.35)

where we have chosen ν =
δ2

4
and σ1 =

δ2

2
. The combination of (3.32)-(3.35)

implies the result.

Corollary 3.1. Let assumptions (i)-(ii) hold. Then Ψϵ generated by problem (3.6)-
(3.8) possesses a closed measurable D-pullback absorbing set Kϵ = {Kϵ(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D, where

Kϵ(τ, ω) = {ϕ ∈ H(RN ) : ‖ϕ‖2H ≤ R1,ϵ(τ, ω)},

and R1,ϵ(τ, ω) is given by Lemma 3.3.

Proof. From Lemma 3.3 and (3.10), we immediately get that, for every τ ∈ R,
ω ∈ Ω and every D ∈ D, Kϵ satisfies that

Ψϵ(t, τ − t, θ−tω,D(τ − t, θ−tω)) ⊆ Kϵ(τ, ω), ∀t ≥ T1,

where T1 is given by Lemma 3.3. We next prove that Kϵ is tempered, i.e. Kϵ ∈ D.
For any γ > 0, ε ∈ (0, 1], we have

e−γt‖Kϵ(τ − t, θ−tω)‖2 ≤ e−γtR1,ϵ(τ − t, θ−tω)

=M1e
−γt+M1e

−γt
(∫ 0

−∞
e

δη
2 s‖f(s+τ−t)‖2ds+ε

(
1+

∫ 0

−∞
e

δη
2 s|y(θs−tω)|p+1ds

))
≤2M1e

−γt +M1e
−γt

∫ 0

−∞
e

δη
2 s

(
‖f(s+ τ − t)‖2 + |y(θs−tω)|p+1

)
ds. (3.36)

Let γ̃ = min{γ, δη2 }, and we get that for all t ≥ 0,

M1e
−γt

∫ 0

−∞
e

δη
2 s

(
‖f(s+ τ − t)‖2 + |y(θs−tω)|p+1

)
ds

≤M1

∫ 0

−∞
eγ̃(s−t)

(
‖f(s+ τ − t)‖2 + |y(θs−tω)|p+1

)
ds

≤M1

∫ −t

−∞
eγ̃s

(
‖f(s+ τ)‖2 + |y(θsω)|p+1

)
ds. (3.37)

By assumption (ii) and the tempered property of |y(θsω)|, we have∫ 0

−∞
eγ̃s

(
‖f(s+ τ)‖2 + |y(θsω)|p+1

)
ds < +∞, for all τ ∈ R. (3.38)
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It follows from (3.36)-(3.38) that

lim
t→+∞

e−γt‖Kϵ(τ − t, θ−tω)‖2 = 0,

that is Kϵ ∈ D. Furthermore, since for each τ ∈ R, R1,ϵ(τ, ·) : Ω 7→ R is (F ,B(R))-
measurable, then Kϵ(τ, ·) is also measurable. Hence, Kϵ ∈ D is a closed measurable
D-pullback absorbing set for Ψϵ. We complete the proof.

To get the pullback asymptotic compactness for Ψϵ, the following lemmas will
be needed.

Lemma 3.4. Let assumptions (i)-(ii) hold. Then for any τ ∈ R, ω ∈ Ω, and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T2 = T2(τ, ω,D) > 0 such that for
all t ≥ T2, and r ∈ [0, t], the solution ϕ of problem (3.6)-(3.8) satisfies

‖ϕ(τ − r, τ − t, θ−τω, ϕτ−t)‖2H(RN ) ≤M2 +M2e
δη
2p rR2,ϵ(τ, ω), (3.39)

where ϕτ−t ∈ D(τ − t, θ−tω) and R2,ϵ is given by

R2,ϵ(τ, ω) = ε(1 +

∫ 0

−∞
e

δη
2p s|y(θsω)|2pds) +

∫ 0

−∞
e

δη
2p s‖f(s+ τ)‖2ds,

and M2 is a positive constant independent of τ, ω, D and ε.

Proof. Similarly to (3.29), by Lemma 3.2 we can get that for any p ≥ 1 and
0 < η < min{c2, 2c3

c4+2c3
, δ},

K(t)− δη

4p
H(t) ≥ −ρ2(ν),

where K(t) and H(t) are given by (3.28). Then we can get

d

dt
H(t) +

δη

2p
H(t)

≤2εc7
(
‖z(θtω)‖2H1 + ‖z(θtω)‖p+1

H1

)
+

1

δ
‖f‖2 + 2ρ2(ν) + 2β + 2‖φ1‖1. (3.40)

Applying the Gronwall inequality to (3.40) on interval [τ − t, τ − r] with r ∈ [0, t],
we can get

‖v(τ − r, τ − t, ω, vτ−t)‖2 + (1− δ)‖∇u(τ − r, τ − t, ω, uτ−t)‖2

+ δ2‖u(τ − r, τ − t, ω, uτ−t)‖2 + 2G(u(τ − r, τ − t, ω, uτ−t))

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)

)
e

δη
2p (r−t)

+ 2εc7‖h‖2H1

∫ τ−r

τ−t

e
δη
2p (s−τ+r)|y(θsω)|2ds+

1

δ

∫ τ−r

τ−t

e
δη
2p (s−τ+r)‖f(s)‖2ds

+ 2εc7‖h‖p+1
H1

∫ τ−r

τ−t

e
δη
2p (s−τ+r)|y(θsω)|p+1ds

+
4p

δη
ρ2(ν) +

4p

δη
β +

4p

δη
‖φ1‖1. (3.41)

Substituting ω by θ−τω in above, we can obtain that

‖v(τ − r, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖∇u(τ − r, τ − t, θ−τω, uτ−t)‖2
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+ δ2‖u(τ − r, τ − t, θ−τω, uτ−t)‖2 + 2G(u(τ − r, τ − t, θ−τω, uτ−t))

≤e
δη
2p r

((
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)

)
e−

δη
2p t

+ 2εc7‖h‖2H1

∫ −r

−t

e
δη
2p s|y(θsω)|2ds+

1

δ

∫ −r

−t

e
δη
2p s‖f(s+ τ)‖2ds

+ 2εc7‖h‖p+1
H1

∫ −r

−t

e
δη
2p s|y(θsω)|p+1ds

)
+

4p

δη
ρ2(ν) +

4p

δη
β +

4p

δη
‖φ1‖1

≤e
δη
2p r

((
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)

)
e−

δη
2p t

+ εc8(1 +

∫ 0

−∞
e

δη
2p s|y(θsω)|p+1ds) +

1

δ

∫ 0

−∞
e

δη
2p s‖f(s+ τ)‖2ds

)
+

4p

δη
ρ2(ν) +

4p

δη
β +

4p

δη
‖φ1‖1.

Setting

Rϵ(τ, ω) = εc8(1 +

∫ 0

−∞
e

δη
2p s|y(θsω)|p+1ds) +

1

δ

∫ 0

−∞
e

δη
2p s‖f(s+ τ)‖2ds,

then by the tempered property of |y(θsω)| and assumption (ii), we can get that
Rϵ(τ, ω) is well defined. Similarly to (3.34), we have(

‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2 + 2G(uτ−t)
)
e−

δη
2p t → 0, as t→ +∞.

Then we obtain that there exists T2 = T2(τ, ω,D) such that for any t ≥ T2

‖v(τ − r, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖∇u(τ − r, τ − t, θ−τω, uτ−t)‖2

+ δ2‖u(τ − r, τ − t, θ−τω, uτ−t)‖2 + 2G(u(τ − r, τ − t, θ−τω, uτ−t))

≤2e
δη
2p rRϵ(τ, ω) +

4p

δη
ρ2(ν) +

4p

δη
β +

4p

δη
‖φ1‖1, (3.42)

which along with (3.12) implies the result.
Choose a smooth function ρ such that 0 ≤ ρ(s) ≤ 1 for all s ∈ R and

ρ(s) =

{
0, |s| ≤ 1,

1, |s| ≥ 2.

Denote by ψ(x) = ρ( |x|R ) for all x ∈ RN . Then we have 0 ≤ ψ(x) ≤ 1 for all x ∈ RN

and

ψ(x) =

{
0, |x| ≤ R,

1, |x| ≥ 2R.
(3.43)

In addition, we can get that there exist positive constants κ1 and κ2 such that

|∇ψ(x)|2 ≤ κ1
R2

, |∆ψ(x)| ≤ κ2
R2

. (3.44)

For any given R > r0, let BR := {x ∈ RN : |x| ≤ R} and BC
R := RN\BR.
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Lemma 3.5. Let assumptions (i)-(ii) hold. Then for any ε > 0, τ ∈ R, ω ∈ Ω,
and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exist T3 = T3(τ, ε, ω,D) > 0 and
R1 = R1(τ, ε, ω) > r0, such that for all t ≥ T3, R ≥ R1, the solution ϕ of problem
(3.6)-(3.8) satisfies

‖ϕ(τ, τ − t, θ−τω, ϕτ−t)‖2H(BC
2R) ≤ ε,

where ϕτ−t ∈ D(τ − t, θ−tω).

Proof. Using the multiplier ϕ2v in equation (3.6), we have

1

2

d

dt
‖ψv‖2 + (∇v,∇(ψ2v)) + ε(∇z(θtω),∇(ψ2v)) + (1− δ)(∇u,∇(ψ2v))

+ (δ2 − δ)(u, ψ2v) + (1− δ)‖ψv‖2 − δε(z(θtω), ψ
2v)

=(f(x), ψ2v)− (g(x, u), ψ2v). (3.45)

By (3.7) and integration by parts, we can get

(∇u,∇(ψ2v)) = (∇u, 2ψ∇ψv) + (ψ∇u, ψ∇v)

= (∇u, 2ψ∇ψv) + 1

2

d

dt
‖ψ∇u‖2 + δ‖ψ∇u‖2 − ε(ψ∇u, ψ∇z(θtω)),

(3.46)

(u, ψ2v) =
1

2

d

dt
‖ψu‖2 + δ‖ψu‖2 − ε(ψu, ψz(θtω)), (3.47)

(g(x, u), ψ2v) =
d

dt

∫
RN

ψ2G(x, u)dx+ δ(g(x, u), ψ2u)− ε(g(x, u), ψ2z(θtω)),

(3.48)
(∇v,∇(ψ2v)) = (∇v, 2ψ∇ψv) + (ψ∇v, ψ∇v), (3.49)
(∇z,∇(ψ2v)) = (ψ∇z(θtω), ψ∇v) + (∇z(θtω), 2ψ∇ψv). (3.50)

Then we can get from (3.45)-(3.50) that

1

2

d

dt

(
‖ψv‖2 + (1− δ)‖ψ∇u‖2 + 2

∫
RN

ψ2G(x, u)dx+ (δ2 − δ)‖ψu‖2
)

+ (∇v, 2ψ∇ψv) + ‖ψ∇v‖2 + ε(ψ∇z(θtω), ψ∇v) + ε(∇z(θtω), 2ψ∇ψv)
+ (1− δ)(∇u, 2ψ∇ψv) + (1− δ)‖ψv‖2 + δ(g(x, u), ψ2u)

+ (1− δ)δ‖ψ∇u‖2 + δ(δ2 − δ)‖ψu‖2

=ε(1− δ)(ψ∇u, ψ∇z(θtω)) + ε(δ2 − δ)(ψu, ψz(θtω)) + δε(ψz(θtω), ψv)

+ ε(g(x, u), ψ2z(θtω)) + (f(x), ψ2v). (3.51)

Set

H1(t) := ‖ψv‖2 + (1− δ)‖ψ∇u‖2 + 2

∫
RN

ψ2G(x, u)dx+ (δ2 − δ)‖ψu‖2.

Then by the Young inequality, assumption (A5) and some calculations, we can get
from (3.51) that

1

2

d

dt
H1(t) +

δc3
4

‖ψu‖2 + 3δ

4
(g(x, u), ψ2u) + ‖ψ∇v‖2 + δ(1− δ)‖ψ∇u‖2
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+ δ(δ2 − δ)‖ψu‖2 + (1− δ)‖ψv‖2

≤1

2
‖ψ∇v‖2 + C‖∇ψv‖2 + εC‖ψ∇z(θtω)‖2 + εC‖ψz(θtω)‖2

+ δ‖ψv‖2 + 1

2δ
‖ψf‖2 + ε(g(x, u), ψ2z(θtω))

+
δ

2
(1− δ)‖ψ∇u‖2 + δ

4
(
c3
4

+ δ2 − δ)‖ψu‖2. (3.52)

Using assumption (A2), we have

ε(g(x, u), ψ2z(θtω)) = εC

∫
RN

(|u|+ |u|p)ψ2z(θtω)dx

≤ εC

∫
RN

ψ2|u||z(θtω)|dx+ εC

∫
RN

ψ2|z(θtω)||u|pdx

≤ δ

4
(
c3
4

+ δ2 − δ)‖ψu‖2 + εC‖ψz(θtω)‖2

+ εC(

∫
RN

ψ2|u|p+1dx)
p

p+1 (

∫
RN

ψ2|z(θtω)|p+1dx)
1

p+1

≤ δ

4
(
c3
4

+ δ2 − δ)‖ψu‖2 + εC‖ψz(θtω)‖2

+
δc5
4

∫
RN

ψ2|u|p+1dx+ εC

∫
RN

ψ2|z(θtω)|p+1dx. (3.53)

Therefore, by assumption (A6), we have

1

2

d

dt
H1(t) +

δ

2
(g(x, u), ψ2u) +

1

2
‖ψ∇v‖2 + δ

2
(1− δ)‖ψ∇u‖2

+
δ

2
(
c3
4

+ δ2 − δ)‖ψu‖2 + (1− 2δ)‖ψv‖2

≤ C

R2
‖v‖2 + εC(‖ψ∇z(θtω)‖2 + ‖ψz(θtω)‖2)

+
1

2δ
‖ψf‖2 + εC

∫
RN

ψ2|z(θtω)|p+1dx+ ‖ψφ1‖1. (3.54)

Denote by

K1(t) =
δ

2
(1− δ)‖ψ∇u‖2 + δ

2
(
c3
4
+ δ2 − δ)‖ψu‖2 +(1− 2δ)‖ψv‖2 + δ

2
(g(x, u), ψ2u).

Then, for any 0 < η < 2c3
c4+2c3

, we have

K1(t)−
ηδ

4
H1(t) ≥(1− 2δ − ηδ

4
)‖ψv‖2 + δ

2
(1− δ)(1− η

2
)‖ψ∇u‖2

+
δ

2

∫
RN

ψ2g(x, u)u− ηψ2G(x, u)dx

≥δ
2

∫
RN

ψ2g(x, u)u− ηψ2G(x, u)dx. (3.55)

Actually, we can obtain that∫
RN

ψ2g(x, u)u− ηψ2G(x, u)dx ≥ 0, for all η ∈ (0,
2c3

c4 + 2c3
).
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Notice that R > r0. Then by assumption (A5) and η < 2c3
c4+2c3

, we can get that

g(x, u)u− ηG(x, u) = η(g(x, u)u−G(x, u)) + (1− η)g(x, u)u

= η

∫ u

0

g(x, u)− g(x, s)ds+ (1− η)g(x, u)u

≥ −c4
2
ηu2 + (1− η)c3u

2 ≥ 0.

Hence, we have
K1(t)−

ηδ

4
H1(t) ≥ 0,

which along with (3.54) implies that

d

dt
H1(t) +

δη

2
H1(t) ≤

C

R2
‖v‖2 + εC(‖ψ∇z(θtω)‖2 + ‖ψz(θtω)‖2)

+
1

δ
‖ψf‖2 + εC

∫
RN

ψ2|z(θtω)|p+1dx+ 2‖ψφ1‖1

≤ C

R2
‖v‖2 + εC‖ψh‖2H1 |y(θtω)|2 + 2‖ψφ1‖1

+
1

δ
‖ψf‖2 + εC|y(θtω)|p+1

∫
RN

ψ2|h|p+1dx. (3.56)

By the similar way as the derivation of (3.32), we can obtain that

‖ψv(τ, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖ψ∇u(τ, τ − t, θ−τω, uτ−t)‖2

+2

∫
RN

ψ2G(x, u(τ, τ−t, θ−τω, uτ−t))dx+(δ2−δ)‖ψu(τ, τ−t, θ−τω, uτ−t)‖2

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + 2

∫
RN

ψ2G(x, uτ−t)dx

+ (δ2 − δ)‖uτ−t‖2
)
e−

ηδ
2 t +

4

δη
‖ψφ1‖1

+ εC

∫
RN

ψ2|h|p+1dx

∫ 0

−t

e
ηδ
2 s|y(θsω)|p+1ds+ εC‖ψh‖2H1

∫ 0

−t

e
ηδ
2 s|y(θsω)|2ds

+
C

R2

∫ τ

τ−t

e
ηδ
2 s‖v(s, τ − t, θ−τω, vτ−t)‖2ds+

1

δ

∫ 0

−t

e
ηδ
2 s‖ψf(s+ τ)‖2ds. (3.57)

Since ϕτ−t ∈ D(τ − t, θ−tω), by assumptions (A2), the embedding H1(RN ) ↪→
Lp+1(RN ), and the tempered property of D, we can get that(

‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + 2

∫
RN

ψ2G(x, uτ−t)dx

+ (δ2 − δ)‖uτ−t‖2
)
e−

ηδ
2 t → 0, as t→ +∞. (3.58)

On the other hand, note that h ∈ H2(RN ), H2(RN ) ↪→ Lp+1(RN ), φ1 ∈ L1(RN )
and |y(θtω)| is tempered. Therefore, by (3.18) and assumption (ii), we can get that
for any ε > 0, there exist T3 = T3(τ, ε, ω,D) > 0 and R1 = R1(τ, ε, ω) > r0 such
that for any t ≥ T3 and R ≥ R1,

‖ψv(τ, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖ψ∇u(τ, τ − t, θ−τω, uτ−t)‖2
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+ 2

∫
RN

ψ2G(x, u(τ, τ − t, θ−τω, uτ−t))dx+ (δ2 − δ)‖ψu(τ, τ − t, θ−τω, uτ−t)‖2

≤ε. (3.59)

Let α2=δ2. Then by (3.15), we get

‖ψv(τ, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖ψ∇u(τ, τ − t, θ−τω, uτ−t)‖2

+ 2

∫
RN

ψ2G(x, u(τ, τ − t, θ−τω, uτ−t))dx+ (δ2 − δ)‖ψu(τ, τ − t, θ−τω, uτ−t)‖2

≥‖ψv(τ, τ − t, θ−τω, vτ−t)‖2 + (1− δ)‖ψ∇u(τ, τ − t, θ−τω, uτ−t)‖2

+ (c3 + δ2 − δ)‖ψu(τ, τ − t, θ−τω, uτ−t)‖2

≥α2‖ψϕ(τ, τ − t, θ−τω, ϕτ−t)‖2H,

which along with (3.59) implies the result.
Denote by ρ̃(s) = 1− ρ(s) for s ∈ R and ψ̃ = ρ̃( |x|R ) for all x ∈ RN . Set{

ũ(t, τ, ω, ũ0) = ψ̃u(t, τ, ω, u0),

ṽ(t, τ, ω, ṽ0) = ψ̃v(t, τ, ω, v0),
(3.60)

where (u, v) is the solution of problem (3.6)-(3.8). Notice that ϕ̃ = (ũ, ṽ) satisfies
the following equations in bounded domain B2R:

dṽ

dt
−∆ṽ − εψ̃∆z(θtω)− (1− δ)∆ũ+ (δ2 − δ)ũ+ (1− δ)ṽ

= −ψ̃g + εδψ̃z(θtω) + ψ̃f −∆ψ̃v − 2∇ψ̃∇v − (1− δ)(∆ψ̃u+ 2∇ψ̃∇u), (3.61)
dũ

dt
= ṽ − δũ+ εψ̃z(θtω), (3.62)

with boundary condition
ũ = ṽ = 0 for |x| = 2R.

Let {ek}∞k=1 be an orthonormal basis of L2(B2R) such that

−∆ek = λkek, (3.63)

with zero boundary condition in B2R, where

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , λk → +∞, as k → +∞.

Let Pn : L2(B2R) 7→ Xn be the orthogonal projection operator from L2(B2R) onto
the space Xn = span{e1, e2, · · · , en}.

Lemma 3.6. Let assumptions (i)-(ii) hold. Then for any ε > 0, τ ∈ R, ω ∈ Ω
and D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exist R2 = R2(τ, ε, ω) ≥ 1, T4 =
T4(τ, ε, ω,D) > 0 and N1 = N1(τ, ε) ≥ 1 such that for any R ≥ R2, t ≥ T4 and
n ≥ N1,

‖(I − Pn)ϕ̃(τ, τ − t, θ−τω, ϕ̃τ−t)‖2H(B2R) ≤ ε,

with ϕ̃τ−t = ψ̃ϕτ−t ∈ D(τ − t, θ−tω).
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Proof. Set ũn,1 = Pnũ, ũn,2 = (I −Pn)ũ, ṽn,1 = Pnṽ, ṽn,2 = (I −Pn)ṽ. Applying
operator (I − Pn) to (3.61)-(3.62), we can obtain

dṽn,2
dt

−∆ṽn,2 − ε(I − Pn)ψ̃∆z(θtω)− (1− δ)∆ũn,2 + (δ2 − δ)ũn,2

+ (1− δ)ṽn,2 − ε(I − Pn)δψ̃z(θtω) + (I − Pn)ψ̃g

= (I − Pn)ψ̃f − (I − Pn)∆ψ̃v − 2(I − Pn)∇ψ̃∇v
− (I − Pn)(1− δ)(∆ψ̃u+ 2∇ψ̃∇u), (3.64)

dũn,2
dt

= ṽn,2 − δũn,2 + ε(I − Pn)ψ̃z(θtω). (3.65)

Using the multiplier ṽn,2 in equation (3.64) and then adding δ(ũn,2,
d

dt
ũn,2) to the

both sides of the equation, we have

1

2

d

dt

(
‖ṽn,2‖2 + (1− δ)‖∇ũn,2‖2 + δ2‖ũn,2‖2

)
+ ‖∇ṽn,2‖2

+
3δ(1− δ)

4
‖∇ũn,2‖2 +

δ(1− δ)λn
4

‖ũn,2‖2 + δ3‖ũn,2‖2

+ (1− δ)‖ṽn,2‖2 − (1− δ)ε(∇ũn,2,∇(ψ̃z(θtω)))

− (δ2 − δ)ε(ũn,2, ψ̃z(θtω))− ε(δψ̃z(θtω), ṽn,2) + (ψ̃g, ṽn,2)

=(ψ̃f, ṽn,2)− (∆ψ̃v, ṽn,2)− 2(∇ψ̃∇v, ṽn,2)
+ ε(ψ̃∆z(θtω), ṽn,2)− (1− δ)(∆ψ̃u+ 2∇ψ̃∇u, ṽn,2)
+ δ(ũn,2, ṽn,2) + δε(ũn,2, ψ̃z(θtω)). (3.66)

Since λn → +∞, we can choose Ñ1 ≥ 1 such that for any n ≥ Ñ1, λn ≥ 4. Thus it
follows from (3.66) that

1

2

d

dt

(
‖ṽn,2‖2 + (1− δ)‖∇ũn,2‖2 + δ2‖ũn,2‖2

)
+ ‖∇ṽn,2‖2

+
3δ(1− δ)

4
‖∇ũn,2‖2 + δ(1 + δ2 − δ)‖ũn,2‖2

+ (1− δ)‖ṽn,2‖2 − (1− δ)ε(∇ũn,2,∇(ψ̃z(θtω)))

− (δ2 − δ)ε(ũn,2, ψ̃z(θtω))− ε(δψ̃z(θtω), ṽn,2) + (ψ̃g, ṽn,2)

=(ψ̃f, ṽn,2)− (∆ψ̃v, ṽn,2)− 2(∇ψ̃∇v, ṽn,2)
+ ε(ψ̃∆z(θtω), ṽn,2)− (1− δ)(∆ψ̃u+ 2∇ψ̃∇u, ṽn,2)
+ δ(ũn,2, ṽn,2) + δε(ũn,2, ψ̃z(θtω)). (3.67)

By the Gagliardo-Nirenberg inequality, the Cauchy inequality and assumption (A2),
we can obtain that

(ψ̃g, ṽn,2) ≤C
∫
RN

|g′u(x, θu)u||ṽn,2|dx

≤C
∫
RN

(|u|+ |u|p)|ṽn,2|dx

≤C
∫
RN

|u||ṽn,2|dx+ C
( ∫

RN

|u|p+1dx
) p

p+1
( ∫

RN

|ṽn,2|p+1dx
) 1

p+1



Random attractors for non-autonomous stochastic wave equations 1757

≤C‖u‖‖ṽn,2‖+ C‖u‖pp+1‖ṽn,2‖p+1

≤Cλ−
1
2

n ‖u‖‖∇ṽn,2‖+ C‖u‖pH1‖∇ṽn,2‖
N(p+1)−2N

2(p+1) ‖ṽn,2‖
2N+(2−N)(p+1)

2(p+1)

≤Cλ−1
n ‖u‖2 + 1

4
‖∇ṽn,2‖2 + Cλ

− 2N+(2−N)(p+1)
(p+1)

n ‖u‖2pH1 +
1

4
‖∇ṽn,2‖2,

(3.68)

where 0 < θ < 1. By using the Cauchy inequality, (3.68), (3.44), we can obtain
from (3.67) that

1

2

d

dt

(
‖ṽn,2‖2 + (1− δ)‖∇ũn,2‖2 + δ2‖ũn,2‖2

)
+
δ

2
(1− δ)‖∇ũn,2‖2 + (

1

2
− 2δ)‖ṽn,2‖2 +

δ

2
(1 + δ2 − 2δ)‖ũn,2‖2

≤εC‖(I − Pn)∇(ψ̃z(θtω))‖2 + εC‖(I − Pn)ψ̃z(θtω)‖2 + εC‖(I − Pn)ψ̃∆z(θtω)‖2

+ C‖(I − Pn)ψ̃f‖2 + Cλ−1
n ‖u‖2 + C

R4
‖v‖2 + C

R2
‖∇v‖2

+ Cλ
− 2N+(2−N)(p+1)

(p+1)
n ‖u‖2pH1 +

C

R4
‖u‖2 + C

R2
‖∇u‖2. (3.69)

Setting

H2(t) = ‖ṽn,2‖2 + (1− δ)‖∇ũn,2‖2 + δ2‖ũn,2‖2,

K2(t) =
δ

2
(1− δ)‖∇ũn,2‖2 + (

1

2
− 2δ)‖ṽn,2‖2 +

δ

2
(1 + δ2 − 2δ)‖ũn,2‖2,

we have
K2(t)−

δ

2
H2(t) ≥ 0.

Then, (3.69) yields

d

dt
H2(t) + δH2(t)

≤εC‖(I − Pn)∇ψ̃z(θtω)‖2 + εC‖(I − Pn)ψ̃∇z(θtω)‖2 + εC‖(I − Pn)ψ̃z(θtω)‖2

+ εC‖(I − Pn)ψ̃∆z(θtω)‖2 + C‖(I − Pn)ψ̃f‖2

+ Cλ−1
n ‖u‖2 + Cλ

− 2N+(2−N)(p+1)
(p+1)

n ‖u‖2pH1

+
C

R2
(‖u‖2 + ‖∇u‖2 + ‖v‖2) + C

R2
‖∇v‖2. (3.70)

Similar to the proof of (3.32), we can get

‖ṽn,2(τ, τ − t, θ−τω, ṽτ−t)‖2 + (1− δ)‖∇ũn,2(τ, τ − t, θ−τω, ũτ−t)‖2

+ δ2‖ũn,2(τ, τ − t, θ−τω, ũτ−t)‖2

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2

)
e−δt

+ C‖(I − Pn)h(x)‖2H2(B2R)

∫ 0

−t

eδs|y(θsω)|2ds+
C

R2
‖h(x)‖2

∫ 0

−t

eδs|y(θsω)|2ds

+ C

∫ 0

−t

eδs‖(I − Pn)ψ̃f(s+ τ)‖2ds
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+
C

R2

∫ τ

τ−t

eδ(s−τ)‖∇v(s, τ − t, θ−τω, vτ−t)‖2ds

+
C

R2

∫ τ

τ−t

eδ(s−τ)‖ϕ(s, τ − t, θ−τω, ϕτ−t)‖2Hds

+ Cλ
− 2N+(2−N)(p+1)

(p+1)
n

∫ τ

τ−t

eδ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2pH1ds

+ Cλ−1
n

∫ τ

τ−t

eδ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2ds. (3.71)

Since h ∈ H2(RN ) and λn → +∞ as n → ∞, we can get that for any ε > 0, there
exist R̃ = R̃(ε) ≥ 1 and Ñ2 = Ñ2(ε) ≥ 1 such that for any R ≥ R̃ and n ≥ Ñ2

‖ṽn,2(τ, τ − t, θ−τω, ṽτ−t)‖2 + (1− δ)‖∇ũn,2(τ, τ − t, θ−τω, ũτ−t)‖2

+ δ2‖ũn,2(τ, τ − t, θ−τω, ũτ−t)‖2

≤
(
‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2

)
e−δt

+ ε

∫ τ

τ−t

eδ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2pH1ds

+ ε

∫ τ

τ−t

eδ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2ds

+ ε

∫ τ

τ−t

eδ(s−τ)‖∇v(s, τ − t, θ−τω, vτ−t)‖2ds

+ ε

∫ τ

τ−t

eδ(s−τ)‖ϕ(s, τ − t, θ−τω, ϕτ−t)‖2Hds

+ C

∫ 0

−∞
eδs‖(I − Pn)ψ̃f(s+ τ)‖2ds+ ε

∫ 0

−∞
eδs|y(θsω)|2ds. (3.72)

We now estimate every term on the right-hand side of (3.72). For the first term,
similarly to (3.34), we can obtain that there exists T̃ = T̃ (τ, ω,D, ε) > 0 such that
for any t ≥ T̃ (

‖vτ−t‖2 + (1− δ)‖∇uτ−t‖2 + δ2‖uτ−t‖2
)
e−δt < ε. (3.73)

For the second term on the right-hand side of (3.72), applying Lemma 3.4, we can
get that there exists T̃1 = T̃1(τ, ω,D) > 0 such that for all t ≥ T̃1

ε

∫ τ

τ−t

eδ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2pH1ds

≤ε
∫ t

0

e−δs‖u(τ − s, τ − t, θ−τω, uτ−t)‖2pH1ds

≤εC
(∫ t

0

e−δsMp
2 ds+Mp

2R
p
2,ϵ(τ, ω)

∫ t

0

e−δse
δη
2 sds

)
≤εC

(
1 +Rp

2,ϵ(τ, ω)
)
. (3.74)

Also, by Lemma 3.3 we can get that there exists T̃2 = T̃2(τ, ω,D) > 0 such that for
all t ≥ T̃2

ε

∫ τ

τ−t

eδ(s−τ)‖∇v(s, θsω, vτ−t)‖2ds+ ε

∫ τ

τ−t

eδ(s−τ)‖ϕ(s, τ − t, θ−τω, ϕτ−t)‖2Hds
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+ ε

∫ τ

τ−t

eδ(s−τ)‖u(s, τ − t, θ−τω, uτ−t)‖2ds

≤3εR1,ϵ(τ, ω). (3.75)

For the second to the last term on the right-hand side of (3.72), by assumption (ii)
we can get that ∫ 0

−∞
eδs‖ψ̃f(s+ τ)‖2ds < +∞.

Therefore, by the Lebesgue dominated convergence theorem one can get that∫ 0

−∞
eδs‖(I − Pn)ψ̃f(s+ τ)‖2ds→ 0 as n→ +∞,

which implies that there exists Ñ3 = Ñ3(τ, ε) ≥ 1 such that for all n ≥ Ñ3,∫ 0

−∞
eδs‖(I − Pn)ψ̃f(s+ τ)‖2ds < ε. (3.76)

Substituting the estimates (3.73)-(3.76) to (3.72), we obtain the result.
We are now in the position to prove the pullback asymptotic compactness for

Ψϵ generated by problem (3.6)-(3.8).

Lemma 3.7. Let assumptions (i)-(ii) hold. Then Ψϵ for problem (3.6)-(3.8) is
D-pullback asymptotically compact.

Proof. Let {tk} ⊆ R+ such that tk → +∞ as k → +∞, and D = {D(τ, ω) : τ ∈
R, ω ∈ Ω} ∈ D, ϕτ−tk ∈ D(τ − tk, θ−tkω). By Lemma 3.3 we can get that for each
ω ∈ Ω and τ ∈ R, there exists K1 = K1(τ, ω,D) ≥ 1 such that the sequence of
solutions {ϕ(τ, τ − tk, θ−τω, ϕτ−tk)} for problem (3.6)-(3.8) satisfies

‖ϕ(τ, τ − tk, θ−τω, ϕτ−tk)‖2H(RN ) ≤ R1,ϵ(τ, ω), ∀k ≥ K1. (3.77)

Similarly, we can deduce from Lemma 3.5 that there exist R̂1 = R̂1(τ, ε, ω) >
max{1, r0} and K2 = K2(τ, ω,D, ε) ≥ K1 such that for all k ≥ K2,

‖ϕ(τ, τ − tk, θ−τω, ϕτ−tk)‖2H(RN\BR̂1
) ≤ ε. (3.78)

Then by Lemma 3.6, we get there exist N̂1 = N̂1(τ, ω, ε) ≥ 1, R̂2 = R̂2(τ, ω, ε) ≥ R̂1

and K3 = K3(τ, ω,D, ε) ≥ K2 such that for all k ≥ K3,

‖(I − PN̂1
)ϕ̃(τ, τ − tk, θ−τω, ϕ̃τ−tk)‖2H(B2R̂2

) ≤ ε, (3.79)

where ϕ̃(τ, τ−tk, θ−τω, ϕ̃τ−tk) = ρ̃( |x|
R̂2

)ϕ(τ, τ−tk, θ−τω, ϕτ−tk). By (3.77), we have

{ϕ̃(τ, τ − tk, θ−τω, ϕ̃τ−tk)} is bounded in E(B2R̂2
).

With this fact and (3.79), we can get that {ϕ̃(τ, τ − tk, θ−τω, ϕ̃τ−tk)} is precompact
in H(B2R̂2

). Notice that ρ̃( |x|
R̂2

) = 1 for |x| ≤ R̂2, and then we can get that {ϕ(τ, τ−
tk, θ−τω, ϕτ−tk)} is also precompact in H(BR̂2

). Finally, by (3.78), we can obtain
that {ϕ(τ, τ − tk, θ−τω, ϕτ−tk)} is precompact in H(RN ), which along with (3.10)
implies that the result.

By Corollary 3.1, Lemma 3.7 and Lemma 2.1, we get the main result of this
section.
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Theorem 3.1. Let assumptions (i)-(ii) hold. Then the continuous cocycle Ψϵ

corresponding to problem (3.6)-(3.8) possesses a unique D-pullback random attractor
Aϵ = {Aϵ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in H(RN ).

4. Upper semicontinuity of the D-pullback random
attractor

In this section, we devote to show the upper semicontinuity of the D-pullback ran-
dom attractor Aϵ for Ψϵ as ε goes to zero. In the following, to express the dependence
of solution on ε, we denote by ϕϵ = (uϵ, vϵ) the solution of problem (3.6)-(3.8) with
initial data ϕϵ

τ = (uϵτ , v
ϵ
τ ).

When ε = 0, the random equations (3.6)-(3.8) degenerate into the following
deterministic equations:

dv

dt
−∆v − (1− δ)∆u+ (δ2 − δ)u+ (1− δ)v + g(x, u) = f(x, t), (4.1)

du

dt
= v − δu, (4.2)

with initial data

u(x, τ) = uτ (x), v(x, τ) = vτ (x) = u1,τ (x) + δuτ (x). (4.3)

Let Ψ0 be the continuous deterministic cocycle generated by problem (4.1)-(4.3).
Let D0 be the collection of all tempered families of deterministic nonempty bounded
subsets of H(RN ). Similarly, we can also get Ψ0 possesses a unique D0-pullback
attractor A0 = {A(τ) : τ ∈ R} under the assumptions (i)-(ii).

We first introduce a result about upper semicontinuity of pullback random at-
tractor with respect to some parameter, which has been proved in [26].

Lemma 4.1. Let Ψ0 be a continuous deterministic cocycle on X over R, which has
a unique D0-pullback attractor A0 = {A0(τ) : τ ∈ R} ∈ D0. Suppose that Ψϵ is a
continuous cocycle on X over R and (Ω,F ,P, (θt)t∈R) such that:

(a) Ψϵ possesses a closed measurable D-pullback absorbing set Kϵ = {Kϵ(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D and a unique D-pullback random attractor Aϵ = {Aϵ(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D.

(b) There is a mapping ζ : R 7→ R such that for every τ ∈ R, ω ∈ Ω,

lim sup
ϵ→0

‖Kϵ(τ, ω)‖X ≤ ζ(τ),

and
K0 = {K0(τ) = {u ∈ X : ‖u‖X ≤ ζ(τ)} : τ ∈ R} ∈ D0.

(c) For any t > 0, τ ∈ R, ω ∈ Ω, ε→ 0 and xn, x ∈ X with xn → x as n→ +∞,
it holds

lim
ϵ→0

Ψϵ(t, τ, ω, xn) = Ψ0(t, τ, x).

(d) There exists an ε0 > 0 such that for each τ ∈ R and ω ∈ Ω,∪
0<ϵ≤ϵ0

Aϵ(τ, ω) is precompact in X.
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Then for any τ ∈ R and ω ∈ Ω,

distX(Aϵ(τ, ω),A0(τ)) → 0, as ε→ 0.

For every τ ∈ R, ω ∈ Ω and T > 0, let ϕϵ(t, τ, ω, ϕϵ
τ ) and ϕ(t, τ, ϕτ ), respectively,

be the solution of problem (3.6)-(3.8) and problem (4.1)-(4.3) with initial conditions
ϕϵ
τ and ϕτ . The following result implies the convergence of solution ϕϵ(t, τ, ω, ϕϵ

τ ) →
ϕ(t, τ, ϕτ ) when ϕϵ

τ → ϕτ (ε → 0), which plays an important role in the proof of
upper semicontinuity of the D-pullback random attractor Aϵ.

Lemma 4.2. Let assumptions (i)-(ii) hold. Assume that there exists a constant R0

such that ‖ϕϵ
τ‖2H + ‖ϕτ‖2H ≤ R0. Then for all t ∈ [τ, τ + T ], it holds

‖ϕϵ(t, τ, ω, ϕϵ
τ )− ϕ(t, τ, ϕτ )‖2H ≤ CeC(t−τ)‖ϕϵ

τ − ϕτ‖2H + Cε

∫ t

τ

eC(t−s)|y(θsω)|2ds.

Proof. Let ūϵ = uϵ−u, v̄ϵ = vϵ−v, and then ϕ̄ϵ = ϕϵ−ϕ = (ūϵ, v̄ϵ). By equations
(3.6)-(3.7) and equations (4.1)-(4.2), we can obtain that

dv̄ϵ

dt
−∆v̄ϵ − ε∆z(θtω)− (1− δ)∆ūϵ + (δ2 − δ)ūϵ + (1− δ)v̄ϵ

− εδz(θtω) + g(x, uϵ)− g(x, u) = 0, (4.4)
dūϵ

dt
= v̄ϵ + εz(θtω)− δūϵ. (4.5)

Using the multiplier v̄ϵ in equation (4.4) and then adding δ(ūϵ, dū
ϵ

dt ) to the both
sides of the equation, we get that

1

2

d

dt

(
‖v̄ϵ‖2 + (1− δ)‖∇ūϵ‖2 + δ2‖ūϵ‖2

)
+ ‖∇v̄ϵ‖2

+ δ(δ2 − δ)‖ūϵ‖2 − ε(δ2 − δ)(ūϵ, z(θtω))− ε(∆z(θtω), v̄
ϵ)

+ δ(1− δ)‖∇ūϵ‖2 − ε(1− δ)(∇ūϵ,∇z(θtω)) + (1− δ)‖v̄ϵ‖2

− εδ(z(θtω), v̄
ϵ) + (g(x, uϵ)− g(x, u), v̄ϵ)

=δ(ūϵ, v̄ϵ + εz(θtω)− δūϵ). (4.6)

Notice that H1(RN ) ↪→ Lp+1(RN ). Then by assumption (A2), we get

|(g(x, uϵ)− g(x, u), v̄ϵ)|

≤ C

∫
RN

(|θu+ (1− θ)uϵ|p−1 + 1)|ūϵ||v̄ϵ|dx

≤ C

∫
RN

(|u|p−1 + |uϵ|p−1)|ūϵ||v̄ϵ|dx+ C

∫
RN

|ūϵ||v̄ϵ|dx

≤ C

2
‖v̄ϵ‖2 + C

2
‖ūϵ‖2 + C(‖u‖p+1

H1 + ‖uϵ‖p+1
H1 )‖ūϵ‖p+1‖v̄ϵ‖p+1

≤ C

2
‖v̄ϵ‖2 + C

2
‖ūϵ‖2 + C(‖u‖p+1

H1 + ‖uϵ‖p+1
H1 )‖ūϵ‖H1‖v̄ϵ‖H1 . (4.7)

Using (3.27) for (uϵ, vϵ) and (u, v), respectively, and then integrating on [τ, t] with
t ∈ [τ, τ + T ], we can obtain that there exists C(τ, ω,R0, T ) such that

‖u(t, τ, uτ )‖2H1 + ‖uϵ(t, τ, ω, uϵτ )‖2H1 ≤ C(τ, ω,R0, T ). (4.8)
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It follows from (4.7)-(4.8) and the Cauchy inequality that

|(g(x, uϵ)− g(x, u), v̄ϵ)|

≤C
2
‖v̄ϵ‖2 + C

2
‖ūϵ‖2 + C‖ūϵ‖H1‖v̄ϵ‖H1

≤C
2
‖v̄ϵ‖2 + C

2
‖ūϵ‖2 + C‖ūϵ‖2H1 +

1− δ

2
‖v̄ϵ‖2H1 . (4.9)

Combining (4.6) and (4.9), and using the Cauchy inequality, we can get that

1

2

d

dt

(
‖v̄ϵ‖2 + (1− δ)‖∇ūϵ‖2 + δ2‖ūϵ‖2

)
≤C(‖v̄ϵ‖2 + (1− δ)‖∇ūϵ‖2 + δ2‖ūϵ‖2) + Cε|y(θtω)|2. (4.10)

Applying the Gronwall inequality to (4.10) on [τ, t], we obtain the desired result.

We now prove the upper semicontinuity of D-pullback random attractor Aϵ when
ε→ 0.

Theorem 4.1. Let assumptions (i)-(ii) hold. Then for every τ ∈ R and ω ∈ Ω,

lim
ϵ→0

distH(RN )(Aϵ(τ, ω),A0(τ)) = 0.

Proof. We only need to show that Ψϵ satisfies conditions (a)-(d) of Lemma 4.1.
From Lemma 3.3, Corollary 3.1 and Theorem 3.1, we can get that Ψϵ possesses

a closed measurable D-pullback absorbing set Kϵ = {Kϵ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D
given by

Kϵ(τ, ω) = {ϕ ∈ H(RN ) : ‖ϕ‖2H ≤ R1,ϵ(τ, ω)}, (4.11)
where

R1,ϵ(τ, ω) =M1 +M1

(∫ 0

−∞
e

δη
2 s‖f(s+ τ)‖2ds+ ε(1 +

∫ 0

−∞
e

δη
2 s|y(θsω)|p+1ds)

)
(4.12)

and Ψϵ possesses a unique D-pullback random attractor Aϵ = {Aϵ(τ, ω) : τ ∈ R, ω ∈
Ω} ∈ D. Moreover, for every τ ∈ R and ω ∈ Ω, we have Aϵ(τ, ω) ⊆ Kϵ(τ, ω). Thus,
condition (a) is hold.

Let
R(τ) =M1 +M1

∫ 0

−∞
e

δη
2 s‖f(s+ τ)‖2ds.

By (4.11) and (4.12), we can get that for each τ ∈ R and ω ∈ Ω,

lim sup
ϵ→0

‖Kϵ(τ, ω)‖ ≤ R(τ).

Moreover, similar to the derivation of Lemma 3.3 and Corollary 3.1, we can get

K0 = {K0(τ) = {ϕ ∈ H(RN ) : ‖ϕ‖2H ≤ R(τ)} : τ ∈ R} ∈ D0

is a closed D0-pullback absorbing set for Ψ0. The condition (b) is obtained.
By Lemma 4.2, we know that Ψϵ and Ψ0 associated to problem (3.6)-(3.8)

and problem (4.1)-(4.3), respectively, satisfy condition (c) of Lemma 4.1. Now,
it remains to prove condition (d). Denote by K = {K(τ, ω) : τ ∈ R, ω ∈ Ω}, and

K(τ, ω) = {ϕ ∈ H(RN ) : ‖ϕ‖2H ≤ R(τ, ω)}, (4.13)
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where

R(τ, ω) =M1 +M1

(∫ 0

−∞
e

δη
2 s‖f(s+ τ)‖2ds+ (1 +

∫ 0

−∞
e

δη
2 s|y(θsω)|p+1)ds

)
.

Since ε ∈ (0, 1], we can get from (4.11) and (4.13) that, for any τ ∈ R and ω ∈ Ω,∪
0<ϵ≤1

Aϵ(τ, ω) ⊆
∪

0<ϵ≤1

Kϵ(τ, ω) ⊆ K(τ, ω). (4.14)

It follows from (4.13)-(4.14), Lemma 3.5, and the invariance of Aϵ that for any
ε > 0, τ ∈ R and ω ∈ Ω, there exists R̃1 = R̃1(ε, τ, ω) > max{1, r0} such that

‖ϕ‖2H(BC
R̃1

) ≤ ε, for every ϕ ∈
∪

0<ϵ≤1

Aϵ(τ, ω). (4.15)

In addition, we can get from Lemma 3.6, (4.13)-(4.14) and the invariance of Aϵ that
there exists R̃2 ≥ R̃1 such that, for all τ ∈ R, ω ∈ Ω,∪

0<ϵ≤1

Aϵ(τ, ω) is precompact in H(BR̃2
),

which together with (4.15) implies that, for all τ ∈ R, ω ∈ Ω,∪
0<ϵ≤1

Aϵ(τ, ω) is precompact in H(RN ).

We complete the proof.
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