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DIFFERENCE QUOTIENT ESTIMATES AND
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DISCONTINUOUS GALERKIN METHODS
FOR NONLINEAR CONVECTION-DIFFUSION

EQUATIONS∗
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Abstract In this paper, we apply the post-processing technique to the im-
provement of the superconvergence of the discontinuous Galerkin method for
the nonlinear convection-diffusion equations. We firstly analyze the error es-
timate and convergence accuracy under L2-norm, and then demonstrate that
the α-order difference quotient of DG error is of order k + 3/2 − α/2 when
the upwind fluxes are used. By the duality argument, we construct an ap-
propriate dual equation, and futher obtain superconvergence results of order
in the negative-order norm, namely 2k + 3/2 − α/2 order superconvergence
accuracy. Finally, we choose an appropriate kernel function and apply the
SIAC filter to the nonlinear convection-diffusion equation to obtain at least
3k/2 + 1 order superconvergence for post-processed solutions. All theoretical
results are proved by numerical experiments.
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1. Introduction
In the past twenty years, the superconvergence of the discontinuous Galerkin (DG)
methods has yielded many research results. For details, please refer to [19]. Smooth-
ness-increasing accuracy-conserving (SIAC) filters are used to enhance the accuracy
of DG solutions by means of the post-processing technique. The basic idea of post-
processing based on the theory of superconvergence negative-order norm estimates
is to use an appropriate kernel function to convolve the DG solution in order to
obtain a higher convergence order for the exact solutions in L2-norm and lower
errors.
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The following gives the superconvergence results of the negative-order norm esti-
mates of the hyperbolic equations and the post-processing of DG methods. Inspired
by Bramble and Schatz [2] for the continuous Galerkin method of elliptic equations,
Cockburn et al. [3] established the post-processing technique theory of DG method
for solving hyperbolic equations by means of negative-order norm estimates and
obtained the (2k + 1)-th order superconvergence results when the exact solution
is globally smooth. This post-processing technique was later applied by Ryan et
al. to different aspects of the problem. Ryan and Shu [20] proposed an unilateral
post-processing technique that fully considers the vicinity of the regional boundary,
the discontinuous solution, and the cell interface. The result of the (2k + 1)-th
order superconvergence covered the entire computational region. Mirzaee et al. [15]
extended the linear hyperbolic equations on the uniform grid in the literature to
the variable coefficient hyperbolic equations on the triangular structure. For the
study of negative-order norm error estimate and superconvergence for general non-
uniform mesh and structural tetrahedral mesh cases, see [4, 16]. Since the kernel
function in the post-processing technique is related to the grid size, the encryption
grid will greatly affect the computational efficiency of post-processing. King et
al. [7] analyzed intrinsic connection between the error level and superconvergence
accuracy caused by the encrypted grid, and gave a detailed comparison of the cal-
culation effects of different grids. These post-processing methods that improve the
smoothness of numerical solutions and maintain negative-order norm accuracy are
collectively referred to as SIAC filtering methods [17, 21]. Li and Ryan et al. [8, 9]
studied the connection between the error of the filtered solution and the nonuniform
mesh and developed a filter scaling that approximates the optimal error reduction.
The filtered solution has demonstrated the improvement in accuracy order as well as
reducing error compared to the original DG solution. Recently, Ryan [18] and De-
campo showed the application of one-dimensional line SIAC filtering in streamline
visualization.

For the one-dimensional linear hyperbolic equation with δ-singularities in the
initial value condition or the source term, Yang and Shu [23] gave the DG error
estimates of the negative (k + 1)-th order norm and the negative (k + 2)-th order
norm over the entire calculation region Ω. Ji et al. [5] generalized the SIAC filter to
the multidimensional linear convection-diffusion equations, and obtained the (2k+
m)-th order superconvergence result in the negative-order norm by means of the
dual argumentation technique in [3], and m depends on the selection of numerical
fluxes. From the post-processing theory [2, 3], it is known that the negative-order
norm estimates of the difference quotient of DG error are an important tool for
obtaining the superconvergence error estimates of the post-processed solution in the
L2-norm. Once the negative-order norm estimates of the DG error are obtained, the
negative-order norm estimates of the difference quotient of the DG error are readily
available. Ji et al. [6] gave the negative-order norm error estimates of the DG method
for multidimensional evolutionary hyperbolic conservation laws. The numerical
example is used to verify that the local post-processing SIAC filtering method based
on convolution kernel function can make the convergence order of the linear problem
DG method increase to 2k+1. For the nonlinear hyperbolic conservation law, Meng
and Ryan [12] studied the problems of difference quotient estimates and accuracy
improvement of the nonlinear scalar hyperbolic conservation law equation. They
proved that the difference quotient of the DG error can reach the k+3/2−α/2 order
convergence precision in the L2-norm when the upwind fluxes are used and by using
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the dual argument, the superconvergence accuracy achieved 2k + 3/2− α/2 in the
negative-order norm, and obtained at least (3k/2 + 1)-th order superconvergence
to post-processed solutions. Furthermore, Meng and Ryan [13] extended the above
method to the difference quotient estimates and accuracy enhancement of nonlinear
symmetric systems, and obtained the same results.

In recent years, for the study of nonlinear convection-diffusion equations, Xu and
Shu [22] studied error estimates of the semi-discrete local discontinuous Galerkin
method for nonlinear convection-diffusion equations and achieved (k + 1)-th order
superconvergence result. For nonlinear convection-diffusion equations, although
more research can be found in [1, 10, 11, 14], the post-processing technique applied
to the improvement of the superconvergence discontinuous Galerkin method is not
provided. In the past two decades, people have studied various superconvergence
properties of DG methods, which not only deepens the understanding of DG so-
lutions, but also is very useful for practitioners. The superconvergence of the
subsequent understanding is achieved by establishing a negative order norm er-
ror estimate, which enables us to obtain a higher order approximation by simply
post-processing the specially designed check DG solution at the end of calculation.
For the nonlinear convection diffusion equation considered in this paper, it is im-
portant and interesting to solve the above problems by establishing L2 norm and
negative order norm error estimates of the difference. The key technical issue is
how to construct a suitable dual problem for the difference of the nonlinear con-
vection diffusion equation. However, for two-dimensional expansion, especially for
establishing the relationship between the spatial derivative and the time derivative
of the error, this does not seem trivial. The main tool used to derive L2 norm error
estimates for the divided differences is energy analysis. In order to deal with the
nonlinearity of the flux function, Taylor expansion is used in the error estimation
of nonlinear problems, following standard techniques. What we want to point out
is that the superconvergence analysis in this paper shows the possible relationship
between the supercloseness and negative-order norm estimates.

In this paper, we study accuracy-enhancement semi-discrete LDG methods for
solving the nonlinear convection-diffusion equation.

ut + f(u)x = εuxx, (x, t) ∈ (a, b)× (0, T ], (1.1a)
u(x, 0) = u0(x), x ∈ (a, b). (1.1b)

The boundary conditions of the equation were chosen as periodic boundary condi-
tions and u0(x) is a smooth function. We assume the nonlinear flux function f(u)
and the exact solution u are sufficiently smooth. We demonstrate that the α-th or-
der (1 ≤ α ≤ k+1) difference quotient of the LDG error achieves (k+3/2−α/2)-th
order in the L2-norm when the upwind fluxes are used. By the duality argument, we
obtain superconvergence results of order 2k+3/2−α/2 in the negative-order norm.
Then we extend the SIAC filter to the nonlinear convection-diffusion equation to
obtain at least (3k/2 + 1)-th order superconvergence results.

The main structure is as follows: In Section 2, we mainly give some proper-
ties and definitions about the discontinuous finite element space. In Section 3, we
give main conclusions and proofs of nonlinear convection-diffusion equation in the
L2-norm. In Section 4, we give the accuracy-enhancement superconvergence anal-
ysis based on L2-norm error estimates of difference quotients. In Section 5, we
demonstrates the theoretical results through numerical experiments.
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2. Preliminaries
2.1. Meshing and function spaces
First, we divide Ω = (a, b) into N cells as follows a = x 1

2
< x 3

2
< · · · < xN+ 1

2
= b.

We denote xj = (xj− 1
2
+ xj+ 1

2
)/2 as cell center. We introduce two overlapping

uniform meshes for Ω, namely Ij = (xj− 1
2
, xj+ 1

2
) and Ij+ 1

2
= (xj , xj+1) with h =

xj+ 1
2
− xj− 1

2
. Combining with the above meshes, we define the discontinuous finite

element space as

V α
h = {v : v|I

j
′ ∈ P k(Ij′ ),∀j

′
= j +

l

2
, l = α mod 2, j = 1, · · · , N},

where P k(Ij′ ) denotes the set of polynomial of degree up to k defined on the cell
Ij′ = (xj′− 1

2
, xj′+ 1

2
), α represents the order of difference quotient for a known

function, whose definition is given in preliminaries.
Obviously, V α

h is a piecewise polynomial space on mesh Ij′ = Ij for even α
and a piecewise polynomial space on mesh Ij′ = Ij+ 1

2
for odd α. For the sake of

simplicity, we use Vh to denote standard finite element space of degree k defined on
the cell Ij , if there is no confusion. We use w−

i and w+
i to denote the values of

w(x) at the discontinuity point xi from the left cell and right cell, respectively. We
use [[w]] = w+ −w− and {{w}} = (w+ +w−)/2 to denote the jump and average of
w(x) at each element boundary point.

For any integer s > 0, we denote by W s,p(D) the Sobolev space on sub-domain
D ⊂ Ω equipped with the norm ∥ · ∥s,p,D. Especially, if p = 2, then W s,p(D) =
Hs(D), and ∥ · ∥s,p,D = ∥ · ∥s,D. If s = 0, then ∥ · ∥s,D = ∥ · ∥D. When D = Ω, we
will omit the index D. Furthermore, the broken Sobolev space can be defined as

W s,p(Ωh) = {u ∈ L2(Ω) : u|Ij ∈W s,p(Ij), j = 1, 2, · · · , N}

with Ωh being the union of all cells. Additionally, we denote by ∥·∥∂I
j
′ the standard

L2-norm on cell interfaces of the mesh Ij′ , and ∥v∥2Γh
=

∑N
j=1 ∥v∥2∂I

j
′ with ∥v∥∂I

j
′ =

((v+
j′− 1

2

)2 + (v−
j′+ 1

2

)2)
1
2 . for the sake of simplicity, referring to [3], we introduce the

so-called jump semi-norm |[v]| = (
∑N

j=1[[v]]
2
j′− 1

2

)
1
2 for v ∈ H1(Ωh).

In post-processing, we need to consider the definition of negative-order norm:
given l > 0 and domain Ω, we have

∥v∥−l,Ω = sup
Φ∈C∞

0 (Ω)

(v,Φ)

∥Φ∥l
. (2.1)

2.2. Difference quotient, projection and DG spatial discretiza-
tion properties

For different constants, we denote by C a positive constant independent of h, but
dependent on the exact solution of the equation, which could have different values in
different situations. To emphasize non-linearity of the flux function f(u), we denote
by C∗ a non-negative constant about f(x), u(x, t) and their derivatives maximum,
likewise max |f ′

(u)ux|.
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2.2.1. Properties for the difference quotient

For any function w(x) and integer α, the central difference quotient is defined as

∂αhw(x) =
1

hα

α∑
i=1

(−1)α

α
i

w(x+
(

α
2 − i

)
h

)
. (2.2a)

Note that the above definition still hold even if w is a piecewise function with
possible discontinuities at the cell boundaries. The difference quotient has the
following properties: for any functions w and v

∂αh (w(x)v(x)) =

α∑
i=1

α
i

∂ihw(x+ α−i
2 h

)
∂α−i
h v

(
x− i

2h
)
, (2.2b)

∂αh (w(x), v(x)) = (−1)α(w(x), ∂αh v(x)). (2.2c)

Here (2.2b) and (2.2c) are the so-called Leibniz rule and summation by parts for
the difference quotient.

2.2.2. The inverse and projection properties

For any u ∈ V α
h , there exists a positive constant C independent of u and h such

that

(i)∥∂xp∥ ≤ Ch−1∥p∥; (ii)∥p∥Γh
≤ Ch−1/2∥p∥; (iii)∥p∥∞ ≤ Ch−1/2∥p∥.

Introduce the standard L2 projection of function u ∈ L2(Ω) into the finite ele-
ment space V k

h , recorded as Phu, which is a unique function in V k
h , and satisfies

(u− Phu, vh) = 0, ∀vh ∈ V k
h . (2.3)

For the proof below, we also need to introduce two special projections P±
h into

Vh, which appear in [22-23]. For any known function u ∈ H1(Ωh) and an arbitrary
element Ij′ = (xj′− 1

2
, xj′+ 1

2
), the special Gauss-Radau projection of u , denoted by

P±
h u, is the unique functions in V k

h , for each j
′ satisfing

(u− P+
h u, vh)j′ = 0, ∀vh ∈ P k−1(Ij′ ), (u− P+

h u)
+
j′− 1

2

= 0, (2.4a)

(u− P−
h u, vh)j′ = 0, ∀vh ∈ P k−1(Ij′ ), (u− P−

h u)
−
j′+ 1

2

= 0. (2.4b)

We denote by η = u(x)−Qhu(x)(Qh = Ph or P
±
h ) the projection error for sufficiently

smooth u(x) such that

∥ηu∥+ h∥(ηu)x∥+ h
1
2 ∥ηu∥Γh

≤ Chk+1∥u∥k+1. (2.5a)

Furthermore, we obtain

∥ηu∥∞ ≤ Chk+1∥u∥k+1,∞. (2.5b)
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2.2.3. The inverse and projection properties

The DG spatial discretization operators Hj′ (·, ·) are defined on each cell Ij′ =
(xj′− 1

2
, xj′+ 1

2
), namely

Hj′ (w, v) = (w, vx)j′ − ŵv−|j′+ 1
2
+ ŵv+|j′− 1

2
. (2.6)

We use H to denote the summation of Hj′ with respect to cell Ij′ , that is

H−(w, v) = (w, vx) +

N∑
j=1

(w−[[v]])|j′+ 1
2
= −(wx, v)−

N∑
j=1

([[w]]v+)|j′− 1
2
, (2.7a)

H+(w, v) = (w, vx) +

N∑
j=1

(w+[[v]])|j′+ 1
2
= −(wx, v)−

N∑
j=1

([[w]]v−)|j′− 1
2
. (2.7b)

And the DG spatial discretization operator has the following property

H+(w, v) +H−(v, w) = 0. (2.8)

In order to perform the L2 error estimate of difference quotients, we need the
following properties of DG operator H.

Property 2.1. Suppose that r(u)(r = f
′
(u)) is sufficiently smooth with respect to

each variable. For any w, v ∈ V α
h , there holds the following inequality

H(rw, v) ≤ C∗(∥w∥+ ∥wx∥+ h−
1
2 |[w]|)∥v∥, (2.9a)

and especially if r = f
′
(u) ≥ δ > 0, there holds

H(rw,w) ≤ C∗∥w∥2 −
δ

2
|[w]|2. (2.9b)

Property 2.2. Under the conditions of Property 2.1, for sufficiently small h, there
holds

H((∂αh r)w, v) ≤ C∗(∥w∥+ ∥wx∥+ h−
1
2 |[w]|)∥v∥, ∀α ≥ 0. (2.10)

Property 2.3. Suppose that r(u) is sufficiently smooth with respect to each vari-
able. For any w ∈ Hk+1(Ωh) and v ∈ V α

h , there holds the following inequality

H(r(w − P−
h w), v) ≤ C∗h

k+1∥v∥. (2.11)

Property 2.4. Suppose that r(u) is sufficiently smooth with respect to each vari-
able. For any w ∈ Hk+1(Ωh) and v ∈ V α

h , there holds the following inequality

H(∂αh (r(w − P−
h w)), v) ≤ C∗h

k+1∥v∥, ∀α ≥ 0. (2.12)

For details of the proof of the above properties, please refer to [12].

2.3. Smoothness-increasing accuracy-conserving (SIAC) filter
The SIAC filters are used to extract the hidden accuracy of the DG methods by post-
processing technique, which uses a specially selected kernel function to convolve with
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the DG solutions to improve the accuracy and reduce the oscillation of the error.
namely

u∗h = K2k+1,k+1
h ∗ uh,

where u∗h is the post-processed solution and uh are DG solutions at final time.
As for the kernel function K2k+1,k+1

h , it is a linear combination of B-splines of
order k + 1 obtained by convolving the feature function ψ(1) = χ of the interval
(−1/2, 1/2) with itself k times. We give the definition as follows

K2k+1,k+1
h (x) =

1

h

∑
γ∈Z

c2k+1,k+1
γ ψ(k+1)

(x
h
− γ

)
,

where c2k+1,k+1
γ can be obtained by the property of the kernel function, namely

K2k+1,k+1
h ∗ p = p, p is a polynomial of degree 2k. The convolution kernel has the

following important property.

Theorem 2.1 ( [3]). For 0 < T < T ∗, where T ∗ is the maximum time for the
existence of a smooth solution, let u ∈ L∞([0, T ];H2k+1(Ω)) is the exact solution of
the equation (1.1), Ω0 + 2supp(K2k+1,k+1

h (x)) ⊂⊂ Ω and uh is the approximation
of u, then

∥u− u∗h∥ ≤ h2k+1

(2k + 1)!
C1|u|2k+1 + C1C2

∑
α≤k+1

∥∂αh (u− uh)∥−(k+1),Ω,

where C1 and C2 depend on Ω0, k, but is independent of h.

3. The Convergence results for difference quotient
in L2-norm

3.1. The convergence results in L2-norm
In this section, we give the LDG scheme of the difference quotients of equations
(1.1a) and (1.1b) according to the marks in [12,24].

The difference quotients of nonlinear convection-diffusion equations (1.1a) and
(1.1b) are

∂αhut + ∂αh f(u)x = ∂αh εuxx, (x, t) ∈ Ω× (0, T ], (3.1a)
∂αhu(x, 0) = ∂αhu0(x), x ∈ Ωα, (3.1b)

where Ωα = (a+ lh2 , b+ lh2 ) with l = α mod 2. When α = 0, equations (3.1a) and
(3.1b) reduce to (1.1a) and (1.1b).

For partial differential equations with higher-order spatial derivatives, we use
the semi-discrete LDG schemes constructed in [1] to rewrite equations (1.1a) and
(1.1b) as

∂αhut + ∂αh f(u)x = ∂αh
√
εqx, (x, t) ∈ Ω× (0, T ], (3.2a)

∂αh q =
√
ε∂αhux. (3.2b)
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The semi-discrete LDG method for solving equations (3.2a) and (3.2b) can be ap-
proximated as: find the unique functions uh, qh ∈ Vh such that the weak forms

((∂αhuh)t, vh)j′ = Hj′ (∂
α
h f(uh), vh)−Hj′ (

√
ε∂αh qh, vh), (3.3a)

(∂αh qh, wh)j′ = −Hj′ (
√
ε∂αhuh, wh), (3.3b)

hold for all vh, wh ∈ V α
h .

Without loss of generality, we only consider the case f ′
(u) > δ > 0 and ε = 1.

The numerical fluxes are selected as the upwind and alternating fluxes

f̂(u−h , u
+
h ) = f(u−h ), ûh = u−h , q̂h = q+h .

Error between exact solution and numerical solution is denoted by eu = u− uh.
Inserting the Gauss-Radau projection, we have

eu = u− P−
h u+ P−

h u− uh = ηu + ξu,

eq = q − P+
h q + P+

h q − qh = ηq + ξq,

where η is the projection error and ξ is the projection of the error.

Theorem 3.1. For any 0 ≤ α ≤ k+1, let ∂αhu, ∂αh q be the exact solutions of equa-
tions (3.2a) and (3.2b), which are assumed to be sufficiently smooth with bounded
derivative, and assume that |f ′(u)| is uniformly lower bounded by a positive con-
stant. Let ∂αhuh, ∂αh qh be the numerical solutions of the LDG schemes (3.3a) and
(3.3b) with initial conditions ∂αhuh(0) = P−

h (∂αhu0), ∂αh qh(0) = Ph(∂
α
h q0) when the

upwind flux is used. For a uniform mesh of Ω = (a, b), if the finite element space
V α
h (k ≥ 1) is taken as the k order piecewise polynomial space, then for small enough
h and any T > 0 there holds the following error estimate

∥∂αh ξu(T )∥2 +
∫ T

0

|[∂αh ξu]|2dt ≤ C∗h
2k+3−α, (3.4)

where the positive integer C∗ depends on u, ∥u∥k+1, ∥ut∥k+1, ∥utt∥k+1, δ, T , but is
independent of h.

Corollary 3.1. Under the conditions of Theorem 2.1, if α ≥ 1, we have the fol-
lowing error estimate:

∥∂αh (u− uh)(T )∥ ≤ C∗h
k+ 3

2−
α
2 . (3.5)

More details of proof are given in [12].

3.2. Proof of the main results in the L2-norm
Equations (3.3a) and (3.3b) become

((∂αhuh)t, vh)j′ = Hj′ (∂
α
h f(uh), vh)−H+

j′
(∂αh qh, vh), (3.6a)

(∂αh qh, wh)j′ = −H−
j′
(∂αhuh, wh). (3.6b)

For the selection of initial conditions, we denote by P−
h ∂

α
hu0 the Gauss-Radau

projection of ∂αhu0(x) as initial value of equation (3.2a), and the variable ∂αh q(x, 0) =
∂αh∂xu0(x). ∂αh qh satisfies

(∂αh (q − qh), wh)j′
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=(∂αhu0 − P−
h ∂

α
hu0)w

−
h |j′+ 1

2
− (∂αhu0 − P−

h ∂
α
hu0)w

+
h |j′− 1

2

− ((∂αhu0 − P−
h ∂

α
hu0), (wh)x) = 0.

Namely ∂αh qh is L2 projection of ∂αh q(x, 0). Initial conditions satisfy

∥∂αh ξu(·, 0)∥ = ∥P−
h ∂

α
hu− P−

h ∂
α
huh(·, 0)∥ = 0,

∥ξq(·, 0)∥ = ∥P+
h ∂

α
h q − ∂αh qh(·, 0)∥ = ∥P+

h ∂
α
h q − Ph∂

α
h q∥ ≤ Chk+1.

As for the proof of Theorem 3.1, for the case α = 0 has been proved in [1], the
following conclusions are obtained.

∥ξu∥ ≤ C∗h
k+ 3

2 , (3.7a)
∥(ξu)x∥ ≤ C∗(∥(ξu)t∥+ hk+1), (3.7b)
∥(ξu)t∥ ≤ C∗h

k+1. (3.7c)

We only need to consider 1 ≤ α ≤ k + 1. In order to clearly display the main
idea of how to perform the L2-norm error estimates for difference quotients, in the
following two parts we mainly prove Theorem 3.1 with α = 1 and α = 2. Then
3 ≤ α ≤ k + 1 can be proved by induction, which are omitted to save space.

3.2.1. Proof of first order difference quotient

when α = 1, the LDG scheme (3.6) becomes

((∂huh)t, vh)j′ = Hj′ (∂hf(uh), vh)−H+
j′
(∂hqh, vh), (3.8)

(∂hqh, wh)j′ = −H−
j′
(∂huh, wh),

with j
′
= j + 1

2 , which holds for any vh, wh ∈ V α
h , j = 1, · · ·, N . By Galerkin

orthogonality, we have the following error equations

((∂heu)t, vh)j′ = Hj′ (∂h(f(u)− f(uh)), vh)−H+
j′
(∂heq, vh), (3.9)

(∂heq, wh)j′ = −H−
j′
(∂heu, wh),

for all vh, wh ∈ V α
h . For the sake of simplicity, we denote

∂heu = ēu = η̄u + ξ̄u, η̄u = ∂hηu, ξ̄u = ∂hξu,

∂heq = ēq = η̄q + ξ̄q, η̄q = ∂hηq, ξ̄q = ∂hξq.

Due to η̄−u |j′+ 1
2
= η̄+q |j′+ 1

2
= 0 and projection orthogonality, summing over all j′ ,

we have

((∂heu)t, vh) = H(∂h(f(u)− f(uh)), vh)−H+(ξ̄q, vh), (3.10a)
(∂heq, wh) = −H−(ξ̄u, wh). (3.10b)

When taking vh = ξ̄u, wh = ξ̄q in equations (3.10), we get the following equations

1

2

d

dt
∥ξ̄u∥2 + ((η̄u)t, ξ̄u) = H(∂h(f(u)− f(uh)), ξ̄u)−H+(ξ̄q, ξ̄u), (3.11a)

∥ξ̄q∥2 + (η̄q, ξ̄q) = −H−(ξ̄u, η̄q). (3.11b)

In order to estimate the nonlinear term on the right side of equation (3.11a), we
give the following lemmas.
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Lemma 3.1. Assuming that the conditions of Theorem 3.1 hold, we have

H(∂h(f(u)− f(uh)), ξ̄u) ≤ C∗∥ξ̄u∥2 −
δ

2
|[ξ̄u]|2 + h−1|[ξu]|2 + Ch2k+2, (3.12)

where the positive constants C and C∗ are independent of h and uh.

More details of proof are given in [12].
We are now ready to obtain the estimate of ξ̄u in L2-norm. Adding equations

(3.11a) and (3.11b), we obtain

1

2

d

dt
∥ξ̄u∥2 + ∥ξ̄q∥2

= H(∂h(f(u)− f(uh)), ξ̄u)− ((η̄u)t, ξ̄u)− (η̄q, ξ̄q)−H+(ξ̄q, ξ̄u)−H−(ξ̄u, ξ̄q).

By the property of DG discrete operator (2.8), we have

−H+(ξ̄q, ξ̄u)−H−(ξ̄u, ξ̄q) = 0.

Then, we obtain

1

2

d

dt
∥ξ̄u∥2 + ∥ξ̄q∥2 ≤ |H(∂h(f(u)− f(uh)), ξ̄u)|+ |((η̄u)t, ξ̄u)|+ |(η̄q, ξ̄q)|. (3.13)

For the integral terms in (3.13), we have

|((η̄u)t, ξ̄u)|+ |(η̄q, ξ̄q)| ≤ Ch2k+2 + C∗∥ξ̄u∥2 + C∗∥ξ̄q∥2. (3.14)

Substituting (3.12) and (3.14) into (3.13), taking into account the bound for η̄u and
(η̄u)t and applying the Cauchy-Schwarz inequality and the Young’s inequality, we
have

1

2

d

dt
∥ξ̄u∥2 + ∥ξ̄q∥2 +

δ

2
|[ξ̄u]|2 ≤ C∗∥ξ̄u∥2 + C∗∥ξ̄q∥2 + h−1|[ξu]|2 + Ch2k+2.

We integrate the above inequality with respect to time t from 0 to T , notice
that ξ̄u(0) = 0 due to ξu(0) = 0, and convergence result (3.8a), we obtain

1

2
∥ξ̄u∥2 +

δ

2

∫ T

0

|[ξ̄u]|2dt ≤ C∗

∫ T

0

∥ξ̄u∥2dt+ Ch2k+2.

Finally, by Gronwall’s inequality we obtain

∥ξ̄u∥2 +
∫ T

0

|[ξ̄u]|2dt ≤ C∗h
2k+2. (3.15)

Thus, we finish the proof of Theoerm 3.1 when α = 1.

3.2.2. Proof of second order difference quotient

When α = 2, the LDG schemes (3.6a) and (3.6b) become

((∂2huh)t, vh)j′ = Hj′ (∂
2
hf(uh), vh)−H+

j′
(∂2hqh, vh), (3.16)

(∂2hqh, wh)j′ = −H−
j′
(∂2huh, wh),
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with j
′
= j, which hold for any vh, wh ∈ V α

h , j = 1, · · ·, N . By Galerkin orthogo-
nality, there is the following error equations

((∂2heu)t, vh)j′ = Hj′ (∂
2
h(f(u)− f(uh)), vh)−H+

j′
(∂2heq, vh), (3.17)

(∂2heq, wh)j′ = −H−
j′
(∂2heu, wh),

for all vh, wh ∈ V α
h . For the sake of simplicity, we take

∂2heu = ẽu = η̃u + ξ̃u, η̃u = ∂2hηu, ξ̃u = ∂2hξu,

∂2heq = ẽq = η̃q + ξ̃q, η̃q = ∂2hηq, ξ̃q = ∂2hξq.

Noting that η̃−u |j′+ 1
2
= η̃+q |j′+ 1

2
= 0 and summing over all j′ , we have

((∂2heu)t, vh) = H(∂2h(f(u)− f(uh)), vh)−H+(ξ̃q, vh), (3.18)
(∂2heq, wh) = −H−(ξ̃u, wh).

If we take vh = ξ̃u, wh = ξ̃q in equation (3.18), we get the following equations

1

2

d

dt
∥ξ̃u∥2 + ((η̃u)t, ξ̃u) = H(∂2h(f(u)− f(uh)), ξ̃u)−H+(ξ̃q, ξ̃u), (3.19a)

∥ξ̄q∥2 + (η̃q, ξ̃q) = −H−(ξ̃u, ξ̃q). (3.19b)

Since the estimation of the nonlinear term on the right side of equation (3.19a) is
complicated, we give the following lemma.

Lemma 3.2. Suppose that the conditions of Theorem 3.1 hold, we have

H(∂2h(f(u)− f(uh)), ξ̃u) ≤ C∗∥ξ̃u∥2 −
δ

2
|[ξ̃u]|2 + h−1|[ξu]|2 + Ch2k+2, (3.20)

where the positive constant C and C∗ are independent of h and uh.

Proof By the second order Taylor expansion, we have

H(∂2h(f(u)− f(uh)), ξ̃u)

= H(∂2h(f
′
(u)ξu), ξ̃u) +H(∂2h(f

′
(u)ηu), ξ̃u)−H(∂2h(R1e

2
u), ξ̃u) (3.21)

= P +Q− S.

The estimates are made separately below.
For P , we use the Leibniz rule (2.2b) to rewrite ∂2h(f

′
(u)ξu) as

∂2h(f
′
(u)ξu) =f

′
(u(x+ h))ξ̃u(x) + 2∂hf

′
(u(x+ h/2))ξ̄u(x− h/2)

+ ∂2h(f
′
(u(x))ξu(x− h).

Therefore, we know

P = H(f
′
(u)ξ̃u(x), ξ̃u) + 2H(∂hf

′
(u)ξ̄u, ξ̃u) +H((∂2h(f

′
(u))ξu, ξ̃u)

= P1 + P2 + P3,
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where we have omitted the dependence of x for convenience if there is no confusion.
Directly applying (2.9a) and (2.9b) in Property 2.1 together with the assumption
f

′
(u) ≥ δ > 0, we get the estimation of P1 as follows

P1 ≤ C∗∥ξ̃u∥2 −
δ

2
|[ξ̃u]|2. (3.22a)

By Property 2.2, we obtain the estimates of P2 and P3 as follows

P2 ≤ C∗(∥ξ̄u∥+ ∥(ξ̄u)x∥+ h−
1
2 |[ξ̄u]|)∥ξ̃u∥, (3.22b)

P3 ≤ C∗(∥ξu∥+ ∥(ξu)x∥+ h−
1
2 |[ξu]|)∥ξ̃u∥. (3.22c)

Substituting (3.7a) - (3.7c) into (3.22b) - (3.22c), and combining (3.22a) with (3.15),
after directly applying Young’s inequality, we obtain

P ≤ C∗∥ξ̃u∥2 −
δ

2
|[ξ̃u]|2 + h−1(|[ξu]|2 + |[ξ̄u]|2) + ∥(ξ̄u)x∥2 + Ch2k+2. (3.23)

For integral terms in (3.23), we also need to estimate (ξ̄u)x, which is given in the
following lemma.

Lemma 3.3. Suppose that the conditions in Theorem 3.1 hold, we have

∥(ξ̄u)x∥ ≤ C∗(∥(ξ̄u)t∥+ hk+1), (3.24)

where the positive constant C and C∗ are independent of h and uh.

Proof Firstly, we use the Taylor expansion (3.14a) and the Leibniz rule (2.2b) to
rewrite ∂h(f(u)− f(uh)) as

∂h(f(u)− f(uh)) = ∂h(f
′
(u)ξu) + ∂h(f

′
(u)ηu)− ∂h(R1e

2
u)

= f
′
(u(x+ h/2))ξ̄u + (∂h(f

′
(u))ξu(x− h/2) + ∂h(f

′
(u)ηu)

−R1(u(x+ h/2))(∂he
2
u)− (∂hR1)e

2
u(x− h/2)

= π1 + · · ·+ π5.

Equation (3.10) can be written as

((ēu)t, vh) = H(∂h(f(u)− f(uh)), vh)−H+(ξ̄q, vh)

= Π1 + · · ·+Π5 +Θ, (3.25)

with Πi = H(πi, vh)(i = 1, · · ·, 5) and Θ = H+(ξ̄q, vh). Next, we separatly estimate
each term.

Firstly consider Π1. By the definition of the DG discrete operator, we obtain

Π1 = H(f
′
(u)ξ̄u, ξu) = −(f

′
(ξ̄u)x, vh)−

N∑
j=1

(f
′
[[ξ̄u]]v

+
h )j .

We take vh = (ξ̄q)x − rLk(d) and note that r = (−1)k((ξ̄q)x)
−
j+1 is a constant and

d = 2(x − xj+ 1
2
)/h ∈ [−1, 1] , where Lk is the standard Legendre polynomial of
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degree k in [−1, 1]. So Lk(−1) = (−1)k and Lk is orthogonal to any polynomial of
degree at most k − 1. Due to v+j = v−j+1 = 0, we have

Π1 = −(∂xf
′
(u)ξu)− (f

′
(ξ̄u)x, (ξ̄q)x − bLk(s) = −A−B. (3.26)

On each element Ij′ = Ij+ 1
2
= (xj , xj+1), by the linearization f

′
(u) = f

′
(uj+ 1

2
) +

(f
′
(u) − f

′
(uj+ 1

2
)) with uj+ 1

2
= u(xj+ 1

2
, t) and ((ξ̄u)x, Lk)j+ 1

2
= 0, we obtain an

equation about B as follows

B = B1 +B2, (3.27)

where

B1 =

N∑
j=1

f
′
(uj+ 1

2
)(∥(ξ̄u)x∥∥(ξ̄q)x∥)I

j+1
2

,

B2 = ((f
′
(u)− f

′
(uj+ 1

2
))(ξ̄u)x, (ξ̄q)x − rLk).

By inverse property (ii), for vh = (ξ̄q)x − rLk, we have

∥vh∥ ≤ C∥(ξ̄q)x∥.

Substituting the above results into (3.25) and noting that f ′
(u) ≥ δ > 0, we obtain

δ∥(ξ̄u)x∥∥(ξ̄q)x∥ ≤ Y1 =

5∑
i=2

Πi −A−B2 +Θ− ((ēu)t, (ξ̄q)x − rLk). (3.28)

Next, we estimate each term on the right side of (3.28).
For Π2, by using the definition of the DG discrete operator and (vh)

+
j = 0, we

obtain

Π2 = −((∂h(f
′
(u)ξu), vh).

Furthermore, by Cauchy-Schwarz inequality, we obtain a bound for Π2. That is

∥Π2∥ ≤ C∗(∥ξu∥+ ∥(ξu)x∥)∥(ξ̄q)x∥. (3.29a)

Directly applying Property 2.4 to estimate Π3, we obtain

∥Π3∥ ≤ C∗h
k+1∥(ξ̄q)x∥. (3.29b)

Using the proof method similar to lemma3.1, we have

∥Π4∥ ≤ C∗h
−1∥eu∥∞(∥ξ̄u∥+ hk+1)∥(ξ̄q)x∥, (3.29c)

∥Π5∥ ≤ C∗h
−1∥eu∥∞(∥ξu∥+ hk+1)∥(ξ̄q)x∥. (3.29d)

By the Cauchy-Schwarz inequality, we have

∥A∥ ≤ C∗∥ξ̄u∥∥(ξ̄q)x∥, (3.29e)
∥B2∥ ≤ C∗∥ξ̄u∥∥(ξ̄q)x∥. (3.29f)
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Using the triangular inequality, we have

|((ēu)t, (ξ̄q)x − rLk)| ≤ C(∥(ξ̄u)t∥+ hk+1)∥(ξ̄q)x∥. (3.29g)

Noting that (vh)
−
j+1 = 0, we obtain

Θ = H(ξ̄q, vh) = ((ξ̄q)x, vh).

Finally, it follows from Cauchy-Schwarz inequality that

|Θ| ≤ C∗∥(ξ̄q)x∥2. (3.29h)

If we want to get the conclusion of Lemma 3.3, we need to estimate ∥(ξ̄q)x∥.
Since H+(ēq, vh) = H+(ξ̄q, vh) and (vh)

+
j = 0, we obtain

((ξ̄q)x, vh) +

N∑
j=1

([[ξ̄q]](vh)
+)j = H(∂h(f(u)− f(uh)), vh)− ((ēu)t, vh)

≤ |H(∂h(f(u)− f(uh)), vh)|+ |((ēu)t, vh)|.

According to Lemma 3.1 and Cauchy-Schwarz inequality, we have

|((ξ̄q)x, vh)| ≤ C∗∥ξ̄u∥2 −
δ

2
|[ξ̄u]|2 + h−1|[ξu]|2 + ∥(ēu)t∥+ Ch2k+2.

When vh = (ξ̄q)x − rLk(d), we have

∥(ξ̄q)x∥2 ≤ (C∗∥ξ̄u∥2 −
δ

2
|[ξ̄u]|2 + h−1|[ξu]|2 + ∥(ēu)t∥+ Ch2k+2)∥(ξ̄q)x∥.

It is easy to see that

∥(ξ̄q)x∥ ≤ C∗∥ξ̄u∥2 −
δ

2
|[ξ̄u]|2 + h−1|[ξu]|2 + ∥(ξ̄u)t∥+ Ch2k+2. (3.30)

Substituting (3.29a)-(3.29h) into (3.28) and using estimates (3.7a)-(3.7c), (3.15) and
(3.30), we complete the proof of Lemma 3.3.

In order to estimate ∥(ξ̄u)t∥, we also need to estimate the terms ∥((ξu)t)x∥ and
∥(ξu)tt∥, whose results are shown in Lemma 3.4 and 3.5.

Lemma 3.4. Suppose that the conditions in Theorem 3.1 hold, we have

∥((ξu)t)x∥ ≤ C∗(∥(ξu)tt∥+ hk+1). (3.31)

The proof of Lemma 3.4 is similar to Lemma 3.3.

Lemma 3.5. Suppose that the conditions in Theorem 3.1 hold, we have

∥(ξu)tt∥2 +
∫ T

0

|[(ξu)tt]|2dt ≤ C∗h
2k+1. (3.32)
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Proof Considering ξu(0) = 0 and (ξu)t(0) ≤ Chk+1 has been proved in [1], we
find that the first-order time derivative of the original error equations

((eu)tt, vh) = H(∂t(f(u)− f(uh)), vh)−H+((ξq)t, vh), (3.33a)
((eq)t, wh) = −H−((ξu)t, wh), (3.33b)

still hold at t = 0 for any vh, wh ∈ V α
h . Taking vh = (ξu)tt(0) = 0 in (3.41a) and

using similar proof method to ∥(ξu)t(0)∥ in [12], we get a bound for ∥(ξu)tt(0)∥ as
follows

∥(ξu)tt(0)∥ ≤ Chk+1. (3.34)

For (ξu)tt(T ), T > 0, taking into account the second-order time derivative of the
original error equation and letting vh = (ξu)tt, wh = (ξq)tt, we have

((eu)ttt, (ξu)tt) = H(∂tt(f(u)− f(uh)), (ξu)tt)−H+((ξq)tt, (ξu)tt),

((eq)tt, (ξq)tt) = −H−((ξu)tt, (ξq)tt).

Adding the above two equations together, according to the property of the DG
discrete operator, we obtain

1

2

d

dt
∥(ξu)tt∥2 + ∥(ξq)tt∥2 (3.35)

≤ |H(∂tt(f(u)− f(uh)), (ξu)tt|+ |((ηu)ttt, (ξu)tt)|+ |((ηq)tt, (ξq)tt)|.

Next, we use Taylor expansion and the Leibniz rule (2.2b) for spatial derivatives
to estimate the right nonlinear term of inequality (3.35), respectively. Rewrite
∂tt(f(u)− f(uh)) as

∂tt(f(u)− f(uh) =∂tt(f
′
(u)ξu) + ∂tt(f

′
(u)ηu)− ∂tt(R1e

2
u)

=(∂ttf
′
(u))ξu + 2(∂tf

′
(u))(ξu)t + f

′
(u)(ξu)tt + (∂ttf

′
(u))ηu

+ 2(∂tf
′
(u))(ηu)t + f

′
(u)(ηu)tt − (∂ttR1)e

2
u

− 2(∂tR1)∂te
2
u −R1(∂tte

2
u)

=ψ1 + · · ·+ ψ9.

Then, the estimation of the nonlinear term

H(∂tt(f(u)− f(uh)), (ξu)tt) = Ψ1 + · · ·+Ψ9, (3.36)

with Ψi = H(ψi, (ξu)tt)(i = 1, · · ·, 9).
By (2.9a) in Property 2.1, we obtain the estimation of Ψ1 as follows

|Ψ1| ≤ C∗(∥ξu∥+ ∥(ξu)x∥+ h−
1
2 |[ξu]|)∥(ξu)tt∥

≤ C∗(h
k+1 + h−

1
2 |[ξu]|)∥(ξu)tt∥

≤ C∗(∥(ξu)tt∥2 + h−1|[ξu]|2 + h2k+2), (3.37a)

where error estimates (3.7a) - (3.7c) and Young’s inequality are used. Analogously,
we obtain

|Ψ2| ≤ C∗(∥(ξu)t∥+ ∥((ξu)t)x∥+ h−
1
2 |[(ξu)t]|)∥(ξu)tt∥
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≤ C∗(h
k+1 + ∥(ξu)tt∥+ h−

1
2 |[(ξu)t]|)∥(ξu)tt∥

≤ C∗(∥(ξu)tt∥2 + h−1|[(ξu)tt]|2 + h2k+2). (3.37b)

Directly applying (2.9b) in Property 2.1, we get

|Ψ3| ≤ C∗∥(ξu)tt∥2 −
δ

2
|[(ξu)tt]|2. (3.37c)

Noting that (ηu)t = ut − P−
h ut and (ηu)tt = utt − P−

h utt, by Property 2.3, we have

|Ψ4|+ |Ψ5|+ |Ψ6| ≤ C∗h
k+1∥(ξu)tt∥. (3.37d)

Using similar proof method as lemma3.1, we obtain

|Ψ7| ≤ C∗h
−1∥eu∥∞(∥ξu∥+ hk+1)∥(ξu)tt∥,

|Ψ8| ≤ C∗h
−1∥eu∥∞(∥(ξu)t∥+ hk+1)∥(ξu)tt∥,

|Ψ9| ≤ C∗h
−1(∥eu∥∞ + ∥(eu)t∥∞)(∥(ξu)t∥+ ∥(ξu)tt∥+ hk+1)∥(ξu)tt∥.

By using the inverse property (iii), the superconvergence result (3.7a), (3.7c) and
the approximate error estimate (2.5b), for small enough h, we have

C∗h
−1∥eu∥∞ ≤ C∗h

−1(∥ξu∥∞ + ∥ηu∥∞) ≤ C∗h
k ≤ C,

C∗h
−1∥(eu)t∥∞ ≤ C∗h

−1(∥(ξu)t∥∞ + ∥(ηu)t∥∞) ≤ C∗h
k− 1

2 ≤ C,

where C is a positive constant independent of h. Therefore, we have

|Ψ7| ≤ C(∥ξu∥+ hk+1)∥(ξu)tt∥, (3.37e)
|Ψ8| ≤ C(∥(ξu)t∥+ hk+1)∥(ξu)tt∥, (3.37f)
|Ψ9| ≤ C(∥(ξu)t∥+ ∥(ξu)tt∥+ hk+1)∥(ξu)tt∥. (3.37g)

Substituting (3.37a)-(3.37g) into (3.36), combining estimates (3.7a)-(3.7c) and
Cauchy-Schwarz inequality, we obtain

H(∂tt(f(u)− f(uh), (ξu)tt)

≤ C∗(∥(ξu)tt∥2 + h−1(|[ξu]|2 + |[(ξu)t]|2) + h2k+2). (3.38)

For the the integral terms in (3.35), we have

|((ηu)ttt, (ξu)tt)|+ |((ηq)tt, (ξq)tt)| ≤ Ch2k+2 + C∗∥(ξu)tt∥2 + C∗∥(ξq)tt∥2. (3.39)

Substituting (3.44) and (3.39) into (3.35), directly applying Cauchy-Schwarz in-
equality and Young’s inequality, we obtain

1

2

d

dt
∥(ξu)tt∥2 +

δ

2
|[(ξu)tt]|2 + ∥(ξq)tt∥2

≤ C∗∥(ξu)tt∥2 + C∗h
−1(|[ξu]|2 + |[(ξu)t]|) + Ch2k+2 + C∗∥(ξq)tt∥.

Integrating the above inequality with respect to time t from 0 to T and combining
the initial error estimate (3.33) with the superconvergence results (3.7a) and (3.7c),
we obtain

1

2
∥(ξu)tt∥2 +

δ

2

∫ T

0

|[(ξu)tt]|2dt ≤ C∗

∫ T

0

∥(ξu)tt∥2dt+ Ch2k+1.
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By using the Gronwall’s inequality, we obtain

∥(ξu)tt∥2 +
∫ T

0

|[(ξu)tt]|2dt ≤ C∗h
2k+1. (3.40)

This finishes the proof of Lemma 3.5.
By Lemmas 3.4 and 3.5, we can give the bound for (ξ̄u)t.

Lemma 3.6. Suppose that the conditions in Theorem 3.1 hold, we have

∥(ξ̄u)t∥2 +
∫ T

0

|[(ξ̄u)t]|2dt ≤ C∗h
2k+1, (3.41)

where the positive constants C and C∗ are independent of h and uh.

Proof Since ξu(0) = 0, it is easy to show that ξ̄u(0) = 0. Original error equation
still hold for any vh ∈ V α

h at t = 0. In equation (3.7a), let vh = (ξ̄u)t(0). Using
similar proof method of ∥(ξu)t(0)∥ in [1], we get the estimate of (ξ̄u)t(0) as follows

∥(ξ̄u)t(0)∥ ≤ C∗h
k+1. (3.42)

We are going to obtain the estimate of ∥(ξ̄u)t(T )∥ for T > 0. Taking the time
derivative of the original error equation and letting vh = (ξ̄u)t, wh = (ξ̄q)t, we have

((eu)tt, (ξ̄u)t) = H(∂t∂h(f(u)− f(uh)), (ξ̄u)t)−H+((ξ̄q)t, (ξ̄u)t), (3.43a)
((eq)t, (ξ̄q)t) = −H−((ξ̄u)t, (ξ̄q)t). (3.43b)

Adding (3.51a) to (3.43b), we obtain

1

2

d

dt
∥(ξ̄u)t∥2 + ∥(ξ̄q)t∥2 (3.44)

≤ |H(∂t∂h(f(u)− f(uh)), (ξ̄u)t)|+ |(∥(η̄u)tt∥, ∥(ξ̄u)t∥)|+ |(∥(η̄q)t∥, ∥(ξ̄q)t∥)|.

In order to estimate the right side of (3.44), we use Taylor expansion (3.14a)
and Leibniz rule (2.2b) for spatial derivatives to rewrite ∂t∂h(f(u)− f(uh)) as

∂t∂h(f(u)− f(uh))

= ∂h∂t(f
′
(u)ξu) + ∂h∂t(f

′
(u)ηu)− ∂h∂t(f

′
(u)R1e

2
u)

= ∂h(∂tf
′
(u)ξu) + ∂h(f

′
(u)(ξu)t) + ∂h(∂tf

′
(u)ηu) + ∂h(f

′
(u)(ηu)t)

− ∂h(R1∂te
2
u)− ∂h(∂tR1e

2
u)

= ∂tf
′
(u(x+

h

2
))ξu(x) + ∂h(∂tf

′
(u))ξu(x− h

2
) + f

′
(u(x+

h

2
))(ξ̄u)t(x)

+ ∂tf
′
(u)(ξ̄u)t(x−

h

2
)+∂h(∂tf

′
(u)ηu)+∂h(f

′
(u)(ηu)t)−R1(u(x+

h

2
))∂h(∂te

2
u)

− ∂hR1∂te
2
u(x− h

2
)− ∂tR1(u(x+

h

2
))∂he

2
u − ∂h(∂tR1)e

2
u(x− h

2
)

= θ1 + · · ·+ θ10.

The right side term of inequality (3.52) can be written as

H(∂t∂h(f(u)− f(uh)), (ξ̄u)t) = Θ1 + · · ·+Θ10, (3.45)
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with Θi = H(θi, (ξ̄u)t) for i = 1, · · ·, 10. Next, we will estimate these terms sepa-
rately.

By (2.9a) in Property 2.1, (3.23), (3.32) and Young’s inequality, we obtain the
estimation of Θ1 as follows

|Θ1| ≤ C∗(∥ξ̄u∥+ ∥(ξ̄u)x∥+ h−
1
2 |[ξ̄u]|)∥(ξ̄u)t∥

≤ C∗(h
k+1 + ∥(ξ̄u)t∥+ h−

1
2 |[ξ̄u]|)∥(ξ̄u)t∥

≤ C∗(h
2k+2 + ∥(ξ̄u)t∥2 + h−1|[ξ̄u]|2). (3.46a)

Analogously, for Θ2 and Θ4, we apply Property 2.2, (3.7a)-(3.7c) and (3.31) to get

|Θ2| ≤ C∗(∥(ξ̄u)t∥2 + h−1|[ξu]|2 + h2k+2), (3.46b)
|Θ4| ≤ C∗(∥(ξ̄u)t∥2 + ∥(ξ̄u)tt∥2 + h−1|[(ξu)t]|2 + h2k+2). (3.46c)

By using (2.9b) in Property 2.1 together with the assumption that f ′
(u) ≥ δ > 0,

we obtain the estimate of Θ3:

|Θ3| ≤ C∗(∥(ξ̄u)t∥2 −
δ

2
|[(ξ̄u)t]|2). (3.46d)

Noting that (ηu)t = ut − P−
h (ut), by Property 2.4, we have

|Θ5|+ |Θ6| ≤ C∗h
k+1∥(ξ̄u)t∥. (3.46e)

Using the similar proof method as lemma3.1, we obtain

|Θ7| ≤ C∗(∥(ξu)t∥+ ∥(ξ̄u)t∥+ hk+1)∥(ξ̄u)t∥, (3.46f)
|Θ8| ≤ C∗(∥(ξu)t∥+ hk+1)∥(ξ̄u)t∥, (3.46g)
|Θ9| ≤ C∗(∥ξ̄u∥+ hk+1)∥(ξ̄u)t∥, (3.46h)
|Θ10| ≤ C∗(∥ξu∥+ hk+1)∥(ξ̄u)t∥. (3.46i)

Substituting (3.46a)-(3.46i) into (3.45) and applying the Cauchy-Schwarz inequality,
we obtain

H(∂t∂h(f(u)− f(uh)), (ξ̄u)t)

≤ C∗(∥(ξ̄u)t∥2 + h−1(|[ξu]|2 + |[(ξu)t]|2 + |[ξ̄u]|2) + h2k+1), (3.48)

where the estimates (3.7a)-(3.7c) and (3.31) are used.
For the integral terms in (3.44), we have

|(∥(η̄u)tt∥, ∥(ξ̄u)t∥)|+ |(∥(η̄q)t∥, ∥(ξ̄q)t∥)| ≤ C∗(h
2k+2 + ∥(ξ̄u)t∥2 + ∥(ξ̄q)t∥2). (3.49)

Substituting (3.48) and (3.49) into (3.44), we have

1

2

d

dt
∥(ξ̄u)t∥2 +

δ

2
|[(ξ̄u)t]|2 + ∥(ξ̄q)t∥2

≤ C∗(∥(ξ̄u)t∥2 + ∥(ξ̄q)t∥2 + h2k+1) + C∗h
−1(|[ξu]|2 + |[(ξu)t]|2 + |[ξ̄u]|).

We integrate the above inequality with respect to time t from 0 to T . Combining
the initial estimate (3.42) with (3.7a), (3.7c), (3.15) and (3.48), we obtain

1

2
∥(ξ̄u)t∥2 +

δ

2

∫ T

0

|[(ξ̄u)t]|2dt ≤ C∗

∫ T

0

∥(ξ̄u)t∥2dt+ Ch2k+1.
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Finally, according to Gronwall’s inequality, we have

∥(ξ̄u)t∥2 +
∫ T

0

|[(ξ̄u)t]|2dt ≤ C∗h
2k+1. (3.50)

This finishes the proof of Lemma 3.6.
We take the estimates in Lemmas 3.3 and 3.6 into (3.31) to obtain

P ≤ C∗∥ξ̃u∥2 −
δ

2
|[ξ̃u]|2 + h−1(|[ξu]|2 + |[ξ̄u]|2) + Ch2k+1. (3.51)

For the estimate of Q, direct applying Property 2.4, we have

Q ≤ C∗h
k+1∥ξ̃u∥. (3.52)

For the estimate of S, we use the Leibniz rule (2.2b) to rewrite ∂2h(R1e
2
u) as

∂2h(R1e
2
u)

= R1(u(x+ h))∂2he
2
u + 2∂hR1(u(x+

h

2
))∂he

2
u(x− h

2
) + ∂2hR1(u(x))e

2
u(x− h)

= E1 + E2 + E3,

where

E1 = R1(u(x+ h))(eu(x+ h)ẽu(x) + 2ēu(x+
h

2
)ēu(x− h

2
) + ẽu(x)eu(x− h)),

E2 = 2∂hR1(u(x+
h

2
))ēu(x− h

2
)(eu(x) + eu(x− h)),

E3 = ∂2hR1(u(x))e
2
u(x− h).

Thus, we obtain

S = H(E1, ξ̃u) +H(E2, ξ̃u) +H(E3, ξ̃u) = S1 + S2 + S3.

By using the similar proof method of lemma3.1, we have

S1 ≤ C∗h
−1(∥eu∥∞ + ∥ēu∥∞)(∥ξ̃u∥+ ∥ξ̄u∥+ hk+1)∥ξ̃u∥

≤ C(∥ξ̃u∥+ ∥∥ξ̄u + hk+1)∥ξ̃u∥,
S2 ≤ C∗h

−1∥eu∥∞(∥ξ̄u∥+ hk+1)∥ξ̃u∥ ≤ C(∥∥ξ̄u + hk+1)∥ξ̃u∥,
S3 ≤ C∗h

−1∥eu∥∞(∥ξu∥+ hk+1)∥ξ̃u∥ ≤ C(∥ξu∥+ hk+1)∥ξ̃u∥.

Note that h is small enough. We assume C∗h
−1(∥eu∥∞ + ∥ēu∥∞) ≤ C when k > 1.

Thus, we have
S ≤ C(∥ξ̃u∥+ ∥∥ξ̄u + ∥ξu∥hk+1)∥ξ̃u∥. (3.53)

Substituting (3.51)-(3.53) into (3.21) and considering (3.7a) and (3.15), we obtain
the result of Lemma 3.2.

Next, we will go on estimating the L2-norm of ξ̃u. Adding (3.19a) and (3.19b),
we obtain

1

2

d

dt
∥ξ̃u∥2 + ∥ξ̃q∥2
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= H(∂h(f(u)− f(uh)), ξ̃u)− ((η̃u)t, ξ̃u)− (η̃q, ξ̃q)−H+(ξ̃q, ξ̃u)−H−(ξ̃u, η̃q).

According to the property of DG discrete operator (2.8), we know

−H+(ξ̃q, ξ̃u)−H−(ξ̃u, η̃q) = 0.

Then, we have

1

2

d

dt
∥ξ̃u∥2 + ∥ξ̃q∥2 = H(∂h(f(u)− f(uh)), ξ̃u)− ((η̃u)t, ξ̃u)− (η̃q, ξ̃q). (3.54)

For the integral terms in (3.54), we have

|((η̃u)t, ξ̃u)|+ |(η̃q, ξ̃q)| ≤ Ch2k+2 + C∗∥ξ̃u∥2 + C∗∥ξ̃q∥2. (3.55)

Substituting (3.20) and (3.55) into (3.54), applying Cauchy-Schwarz inequality and
Young’s inequality, we obtain

1

2

d

dt
∥ξ̃u∥2 +

δ

2
|[ξ̃u]|2 + ∥ξ̃q∥2 ≤ C∗∥ξ̃u∥2 + C∗∥ξ̃q∥2 + h−1(|[ξu]|2 + |[ξ̄u]|2) + Ch2k+1.

Integrating the above inequality with respect to time t between 0 and T . Thus
ξ̃u(0) = ∂2hξ(0) = 0 due to ξ(0) = 0. Combining with estimates (3.7a) and (3.15),
we have

1

2
∥ξ̃u∥2 +

δ

2

∫ T

0

|[ξ̃u]|2dt ≤ C∗

∫ T

0

∥ξ̃u∥2dt+ Ch2k+1.

Finally, it is easy to show by Gronwall’s inequality that

∥ξ̃u∥2 +
∫ T

0

|[ξ̃u]|2dt ≤ C∗h
2k+1, (3.56)

which finishes the proof of Theorem 3.1 when α = 2.
By the proof of Theorem 3.1 when α = 1 and α = 2, we find that it is necessary

to estimate the relevant low order difference quotient and the corresponding spatial
and time derivatives if we want to obtain the L2-norm estimates of high order
difference quotients. Therefore, when α = 3, we need to estimate (ξ̃u)x, (ξ̃u)t,
((ξ̄u)t)x, (ξ̄u)tt, ((ξu)tt)x and (ξu)ttt. Thus, Theorem 3.1 can be proved in the same
way for α ≤ k + 1.

4. Superconvergent error estimates in the negative-
order norm

For nonlinear convection-diffusion equation, by post-processing theory[3,13], in or-
der to obtain the superconvergence error estimate of the post-processed solution,
it is necessary to obtain the negative-order norm estimates of the difference quo-
tients of LDG error. Using dual argumentation and combining with the previously
obtained L2-norm estimate, we have the following results.

Theorem 4.1. For any 0 ≤ α ≤ k+1, let ∂αhu, ∂αh q be the exact solutions of equa-
tions (3.2a) and (3.2b), which are assumed to be sufficiently smooth with bounded
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derivatives. Let ∂αhuh, ∂αh qh be the numerical solutions of the LDG schemes (3.3a)
and (3.3b) with initial conditions ∂αhuh(0) = P−

h (∂αhu0), ∂αh qh(0) = Ph(∂
α
h q0) when

the upwind flux is used. For a uniform mesh of Ω = (a, b), if the finite element
space V α

h (k ≥ 1) is taken as the k order piecewise polynomial space, then for small
enough h and any T > 0 there holds the following error estimate

∥∂αh (u− uh)∥−(k+1),Ω ≤ C∗h
2k+ 3

2−
α
2 , (4.1)

where the positive integer C∗ depends on u, ∥u∥k+1, ∥ut∥k+1, ∥utt∥k+1, δ and T ,
but is independent of h.

Combining Theorems 4.1 and 2.1, we obtain the following corollary.

Corollary 4.1. Assume that the conditions in Theorem 4.1 hold. If K2k+1,k+1
h

is a convolution kernel consisting of 2k + 1 B-splines of order k + 1 such that it
reproduces polynomials of degree 2k, then we have

∥u− u∗h∥ ≤ C∗h
3k
2 +1, (4.2)

where u∗h = K2k+1,k+1
h ∗ uh.

For k+1 order B-splines, using similar argument for proof of the negative k+1
order norm estimates, we can obtain the following superconvergent error result

∥∂αh (u− uh)(T )∥−(k+1),Ω ≤ Chk−
3
2−

α
2 +k+1−1 ≤ Ch

3k
2 +1.

4.1. Proof of the main results in the negative-order norm
Similar to the proof of the L2-norm estimates of the difference quotient in Section
3.2, we only consider the case f ′

(u) ≥ δ > 0. According to the definition of negative-
order norm, we first use dual argument in [3,12] to estimate (∂αh (u−uh)(T ),Φ) with
Φ ∈ C∞

0 (Ω). For the nonlinear convection-diffusion equations (1.1a) and (1.1b)
when ε = 1, we choose the dual equation as follows.

Find a function φ such that φ(·, t) is periodic for all t ∈ [0, T ] and satisfies

∂αhφt + f
′
(u)∂αhφx + ∂αhφxx = 0, (x, t) ∈ Ω× [0, T ), (4.3a)

φ(x, T ) = Φ(x), x ∈ Ω. (4.3b)

Furthermore, if we multiply equation (3.1a) by φ and (4.3a) by (−1)αu and
integrate on Ω, we have

d

dt
(∂αhu, φ) + Γ(u;φ) = 0, (4.4)

Γ(u;φ) = (−1)α((f
′
(u)u− f(u)), ∂αhφx),

where we use integration by parts and summation by parts (2.2c).
We integrate (4.4) with respect to time t between 0 and T to obtain

(∂αhu, φ)(T ) = (∂αhu, φ)(0)−
∫ T

0

Γ(u;φ)dt. (4.5)

To estimate (∂αh (u−uh)(T ),Φ), for any λ ∈ V α
h , we use (4.5) to get an equivalent

form:

(∂αh (u− uh)(T ),Φ)
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= (∂αh (u− uh)(T ), φ(T ))

= (∂αhu, φ)(0)−
∫ T

0

Γ(u;φ)dt− (∂αhuh, φ)(0)−
∫ T

0

d

dt
(∂αhuh, φ)dt

= (∂αh (u− uh), φ)(0)−
∫ T

0

(((∂αhuh)t, φ) + (∂αhuh, φt))dt−
∫ T

0

Γ(u;φ)dt

= Σ1 +Σ2 +Σ3,

where

Σ1 = (∂αh (u− uh), φ)(0),

Σ2 = −
∫ T

0

(((∂αhuh)t, φ− λ)−B1(∂
α
h f(uh), ∂

α
h qh, φ− λ))dt,

Σ3 = −
∫ T

0

((∂αhuh, φt) +B1(∂
α
h f(uh), ∂

α
h qh, φ) + Γ(u;φ))dt,

B1(∂
α
h f(uh), ∂

α
h qh, vh) = H(∂αh f(uh), vh)−H(∂αh qh, vh).

Next we will estimate Σ1, Σ2 and Σ3 respectively.

Lemma 4.1. There exists a positive constant C independent of h, such that

|Σ1| ≤ Ch2k+1∥∂αhu0∥k+1∥φ(0)∥k+1. (4.6)

The proof of Lemma 4.1 can refer to [12].

Lemma 4.2. There exists a positive constant C independent of h, such that

|Σ2| ≤ Ch2k+
3
2−

α
2 ∥φ∥k+1. (4.7)

Proof According to the definition of Ξ2, taking λ = Phφ, we have

((∂αhuh)t, φ− Phφ) = 0.

And the integral term inside Σ2 is

σ2 = −B1(∂
α
h f(uh), ∂

α
h qh, φ− λ)

= −H(∂αh f(uh), φ− λ) +H(∂αh qh, φ− λ)

= −H(∂αh f(uh), φ− Phφ) +H(∂αh qh, φ− Phφ)

=M +N.

First, we give the estimate of M , namely

M = −H(∂αh f(uh), φ− Phφ)

= −(∂αh (f(uh)− f(u)), (φ− Phφ)x) + (∂αh f(u)x, φ− Phφ)

+

N∑
j=1

(∂αh (f(u)− f(u−h ))[[φ− Phφ]])j′− 1
2

=M1 +M2 +M3.
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Next, we consider the estimates of M1, M2 and M3. For M1, by using the second
order Taylor expansion, we obtain

M1 = (∂αh (f
′
(u)eu −R1e

2
u), (φ− Phφ)x)

= (∂αh (f
′
(u)eu), (φ− Phφ)x)− (∂αh (R1e

2
u), (φ− Phφ)x)

=M l
1 −Mn

1 ,

where M l
1 and Mn

1 are the linear and nonlinear part of M1 , respectively. By using
the Leibniz rule (2.2b), Cauchy-Schwarz inequality, (3.5) and (2.5a), we have

|M l
1| ≤ C

α∑
l=0

∥∂α−l
h eu∥∥(φ− Phφ)x∥ ≤ C∗h

2k+ 3
2−

α
2 ∥φ∥k+1. (4.8a)

Analogously, for nonlinear part Mn
1 , by using the Leibniz rule (2.2b) twice for

∂αh (R1e
2
u), Cauchy-Schwarz inequality and (2.5a), we obtain

|Mn
1 | ≤ C

α∑
l=0

∥∂α−l
h e2u∥∥(φ− Phφ)x∥

≤
α∑

m=0

∥∂mh eu∥∞∥∂α−m
h eu∥∥(φ− Phφ)x∥

≤ ∥C∗h
3k+ 5

2−
α
2 ∥φ∥k+1. (4.8b)

Combining estimates (4.8a) and (4.8b), we obtain

|M1| ≤ C∗h
2k+ 3

2−
α
2 ∥φ∥k+1. (4.9)

Then, we give the estimate of M2 by making use of the orthogonal property of
the L2 projection Ph.

M2 = (∂αh f(u)x − Ph(∂
α
h f(u)x), φ− Phφ),

namely

|M2| ≤ Ch2k+2∥∂αh f(u)x∥k+1∥φ∥k+1, (4.10)

where we have used error estimate (2.5a).
Finally, we give the estimate for M3. Applying the Taylor expansion, the

Cauchy-Schwarz inequality, inverse properties (ii)-(iii) and estimates (2.5a) and
(3.5), we obtain

|M3| ≤ C

α∑
l=0

∥∂lheu∥Γh
∥φ− Phφ∥Γh

+ C∗

α∑
m=0

∥∂mh eu∥∞∥∂α−m
h eu∥Γh

∥(φ− Phφ)x∥Γh

≤ Ch2k+
3
2−

α
2 ∥φ∥k+1 + C∗h

3k+ 5
2−

α
2 ∥φ∥k+1

≤ Ch2k+
3
2−

α
2 ∥φ∥k+1. (4.11)
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According to the estimates (4.9)-(4.11), we obtain

|M | ≤ Ch2k+
3
2−

α
2 ∥φ∥k+1. (4.12)

Using a similar method to M , we have

N = H(∂αh qh, φ− Phφ) = H(∂αh f(uh), φ− Phφ)− ((∂αhuh)t, φ− Phφ).

Since ((∂αhuh)t, φ− Phφ) = 0, we have

|N | ≤ Ch2k+
3
2−

α
2 ∥φ∥k+1. (4.13)

Collecting the estimates (4.12) and (4.13), we obtain

|Σ2| ≤ Ch2k+
3
2−

α
2 ∥φ∥k+1. (4.14)

The estimate of Σ3 is given in the following lemma.

Lemma 4.3. There exists a positive constant C independent of h, such that

|Σ3| ≤ Ch2k+3−α
2 ∥φ∥k+1. (4.15)

More details of proof are given in [12]. We have completed the proof of Theorem
4.1.

5. Numerical experiments
In this section, we present some numerical results to confirm that we can indeed
improve the convergence rate of the LDG solution from k + 1 to 2k + 1 for the
nonlinear convection-diffusion equation. We consider the LDG method combined
with the third order implicit-explicit Runge-Kutta method in time. We take a small
enough time step such that the spatial errors dominate and present the results for
P 1 and P 2 polynomials only to save space. The time step is τ = 0.5h when the
linear piecewise polynomial finite element space is used. For quadratic piecewise
polynomial finite element space, the time step is set as τ = 0.1h. For numerical
initial conditions, we take the standard L2 projection of the initial condition. Uni-
form meshes are used in all experiments. Only one-dimensional scalar equations are
tested, whose theoretical results are covered in our theorems.

Example 5.1. We consider the nonlinear convection-diffusion equation on the do-
main Ω = [0, 2π], where boundary conditions are periodic. The exact solution is
u(x, t) = e−εt sinx.

ut +

(
u3

3

)
x

= εuxx + e−3εt sin2 x cosx,

u(x, 0) = sinx. (5.1)

When ε = 0.5, 0.01 and 5, we give the L2 errors at the final time T = 1 in Tables
1, 2 and 3, respectively. From Tables 1 to 3, we observe that the errors of after
post-processed are lower than before post-processed, and the orders of convergence
can be improved from k + 1 to at least 2k + 1 when ε = 0.01, but the orders of
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Table 1. L2 errors when ε = 0.5 before and after post-processed for Example 5.1

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 0.0263 - 0.0040 -
20 0.0065 2.0200 3.8153e-04 3.3901
40 0.0016 2.0051 4.0062e-05 3.2515
80 4.0369e-04 2.0013 4.4759e-06 3.1620
160 1.0056e-04 2.0002 4.8841e-07 3.1960

P 2

10 0.0013 - 4.2728e-04 -
20 1.6118e-04 3.0335 1.2214e-05 5.1305
40 1.9993e-05 3.0111 3.5850e-07 5.0905
80 3.4936e-06 3.0033 1.1302e-08 4.9873
160 3.9637e-07 3.0341 3.5302e-10 5.0007

Table 2. L2 errors when ε = 0.01 before and after post-processed for Example 5.1

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 0.0425 - 0.0112 -
20 0.0105 2.0058 0.0015 2.8706
40 0.0026 2.0040 1.9655e-04 2.9596
80 6.5914e-04 2.0019 2.4707e-05 2.9919
160 1.6471e-04 2.0006 3.0873e-06 3.0005

P 2

10 0.0023 - 4.8397e-04 -
20 5.7108e-04 2.0258 1.5138e-05 4.9986
40 9.1448e-05 2.6427 5.3028e-07 4.8353
80 1.1721e-05 2.9638 1.6125e-08 5.0393
160 1.1777e-06 3.3150 4.8117e-10 5.0667

convergence don’t achieve the desired 2k+1 order accuracy when ε = 5. The post-
processing superconvergence is very remarkale for smaller ε. Meanwhile we give the
L2 errors at the final time T = 10 and T = 100 when ε = 0.5 in Tables 4 and 5.
We find that the orders of convergence can also be improved from k + 1 to 2k + 1,
which shows that the superconvergence can be maintained for a long time.

Example 5.2. We consider the equation (5.2) on the domain Ω = [0, 2π] with
strongly nonlinear flux function, where boundary conditions are periodic. The exact
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Table 3. L2 errors when ε = 5 before and after post-processed for Example 5.1

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 0.0018 - 0.0018 -
20 4.1176e-04 2.1605 4.0711e-04 2.1774
40 7.4536e-05 2.4658 7.2452e-05 2.4903
80 1.0880e-05 2.7762 9.9203e-06 2.8685
160 1.7788e-06 2.6127 1.3817e-06 2.8439

P 2

10 0.0018 - 5.7736e-04 -
20 4.0640e-04 2.1760 6.6371e-05 3.1208
40 7.2378e-05 2.4892 5.2269e-06 3.6665
80 9.9126e-06 2.8682 2.5354e-07 4.3656
160 1.3592e-06 2.8664 1.1456e-08 4.4680

Table 4. L2 errors at final time T = 10 before and after post-processed for Example 5.1

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 2.8930e-04 - 4.4355e-05 -
20 7.1923e-05 2.0081 5.1747e-06 3.0996
40 1.7947e-05 2.0027 6.1676e-07 3.0687
80 4.4814e-06 2.0017 7.5515e-08 3.0299

P 2

10 1.3941e-05 - 4.4589e-06 -
20 1.6844e-06 3.0490 1.3812e-07 5.0127
40 2.0623e-07 3.0299 4.5538e-09 4.9227
80 2.5403e-08 3.0212 1.4134e-10 5.0098

solution is u(x, t) = e−εt sinx.

ut + (eu)x = εuxx + ee
−εt sin xe−εt cosx,

u(x, 0) = sinx. (5.2)

Taking ε = 0.5, 0.01 and 5, we give the L2 errors at the final time T = 1 in Tables
6, 7 and 8, respectively. We observe that the errors of after post-processed are lower
than before post-processed, and the orders of convergence can be improved from
k + 1 to at least 2k + 1. Meanwhile we give the L2 errors at the final time T = 10
and T = 100 as ε = 0.5 in Tables 9 and 10. We find that the orders of convergence
can also be improved from k + 1 to 2k + 1, which shows that the superconvergence
can be maintained for a long time.
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Table 5. L2errors at final time T = 100 before and after post-processed for Example 5.1

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 1.4564e-08 - 9.7895e-09 -
20 5.5464e-09 1.3928 1.6326e-09 2.5841
40 1.6566e-09 1.7433 2.3521e-10 2.7952
80 4.6565e-10 1.8309 3.1685e-11 2.8921

P 2

10 3.5406e-16 - 4.1386e-17 -
20 6.1914e-17 2.5157 2.1156e-18 4.2900
40 9.4914e-18 2.7056 7.8450e-20 4.7531
80 1.3494e-18 2.8143 2.8438e-21 4.7859

Table 6. L2 errors at ε = 0.5 before and after post-processed for Example 5.2

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 0.0261 - 0.0059 -
20 0.0065 2.0104 6.9001e-04 3.0960
40 0.0016 2.0050 8.2820e-05 3.0960
80 4.0373e-04 2.0013 9.9892e-06 3.0515
160 1.0090e-04 2.0004 1.2016e-06 3.0554

P 2

10 0.0013 - 4.2865e-04 -
20 1.6146e-04 3.0384 1.3010e-05 5.0421
40 2.0004e-05 3.0128 4.0510e-07 5.0052
80 2.4938e-06 3.0038 1.2730e-08 4.9807
160 3.1866e-07 2.9683 4.0010e-10 4.9917



Difference quotient estimates of DGM. . . 1793

Table 7. L2 errors when ε = 0.01 before and after post-processed for Example 5.2

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 0.0427 - 0.0112 -
20 0.0106 2.0058 0.0014 2.9549
40 0.0026 2.0040 1.8216e-04 2.9959
80 6.5908e-04 2.0019 2.2635e-05 3.0086
160 1.5824e-04 2.0583 2.8124e-06 3.0087

P 2

10 0.0018 - 5.0099e-04 -
20 2.0676e-04 3.1143 1.5258e-05 5.0371
40 2.5484e-05 3.0203 4.7432e-07 5.0076
80 3.1772e-06 3.0037 1.4633e-08 5.0185
160 3.9492e-07 3.0081 4.5517e-10 5.0067

Table 8. L2 errors when ε = 5 before and after post-processed for Example 5.2

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 0.0035 - 7.2737e-04 -
20 8.7726e-04 2.0128 8.1203e-05 3.1631
40 2.1870e-04 2.0040 9.5017e-06 3.0953
80 5.4633e-05 2.0011 1.1433e-06 3.0550
160 1.3652e-05 2.0007 1.3766e-07 3.0539

P 2

10 3.2047e-04 - 5.8198e-05 -
20 4.0543e-05 2.9827 1.8227e-06 4.9968
40 5.1050e-06 2.9895 4.5481e-08 5.3247
80 6.3766e-07 3.0010 1.2633e-09 5.1700
160 7.9690e-08 3.0003 3.5717e-11 5.1445
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Table 9. L2 errors at final time T = 10 before and after post-processed for Example 5.2

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 2.9571e-04 - 6.0897e-05 -
20 7.2362e-05 2.0309 8.2300e-06 2.8874
40 1.7974e-05 2.0093 1.0701e-06 2.9431
80 4.4857e-06 2.0025 1.2611e-07 3.0850

P 2

10 1.2916e-05 - 4.5149e-06 -
20 1.5713e-06 3.0391 1.5070e-07 4.9049
40 1.9444e-07 3.0146 4.9745e-09 4.9210
80 2.4134e-08 3.0102 1.5414e-10 5.0122

Table 10. L2 errors at final time T = 100 before and after post-processed for Example 5.2

Before post-processed After post-processed
N L2 error order L2 error order

P 1

10 1.2530e-08 - 2.0494e-09 -
20 4.2592e-09 1.5567 3.5507e-10 2.5290
40 1.2102e-09 1.8153 5.7485e-11 2.6268
80 3.3485e-10 1.8537 8.6766e-12 2.7280

P 2

10 9.2557e-09 - 5.0271e-10 -
20 2.1736e-09 2.0903 4.1586e-11 3.5956
40 3.2297e-10 2.7506 1.7955e-12 4.5336
80 4.5485e-11 2.8279 6.5194e-13 4.7835
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