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Abstract The aim of this paper is to present two algorithms for numerical
solving of a fixed final state control problem in connection with the leukemia
treatment strategy. In the absence of the controllability condition, our model
leads to a nonlinear integral system of Volterra type to whom explicit iterative
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control variable is expressed in terms of the state variables and the integral
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1. Introduction
Human activity in various fields often involves some control over the processes
in order to achieve the desired result. Thus, in particular, control intervenes in
medicine and is exercised in order to bring the patient to the desired parameters.

The control becomes a mathematical one as soon as a mathematical model is
generated for the investigated process by taking into account specific laws such as
conservation laws. From a mathematical point of view, the control involves a certain
modification of some parameters of the model such that the solution of the problem
satisfies a certain requirement. For such a problem, it is important to demonstrate
qualitatively the controllability of the system, i.e., the possibility of achieving the
desired goal, but just as important for the implementation of theoretical predictions
are the numerical methods designed to provide quantitative results. Therefore,
numerical approximation and calculation algorithms are especially important for
control problems. The purpose of this paper is precisely to develop computer-based
numerical algorithms for the numerical solution of a control problem related to
the treatment of chronic myeloid leukemia. Even if they are presented for a very
specific problem, these algorithms can be easily adapted for the numerical treatment
of many other classes of control problems.

1.1. Biological Background
Chronic myeloid leukemia (CML) is a slowly progressing malignancy of the blood
marrow, derived from the granulocyte cell line. Left untreated, it causes moderate
symptoms on its own, but can nonetheless progress over years to aggressive, life-
threatening forms (accelerated or blast phase) (Jabbour and Kantarjian [20]). The
molecular culprit (and hallmark) of CML is the oncoprotein BCR-ABL1, generated
by an abnormal fusion of two genes, which normally belong to distinct chromo-
somes. BCR-ABL1 has intrinsic tyrosine kinase activity and switches the molecular
machinery of cell signal transduction to an ”always on” state. This increases cell
division and proliferation, largely irrespective of stimulation by growth factors and
confers a malignant phenotype (Faderl et al. [10]).

Frontline therapy for CML relies on tyrosine kinase inhibitors (TKI). These are
targeted anticancer drugs, designed to block the BCR-ABL1 protein, specifically,
potent and selective enough to drive the leukemic cell population closer to extinc-
tion while sparing the normal granulocyte line. From the first molecule (Imatinib,
O’Brien et al. [27]), TKIs have diversified to date to the second and third generation
agents, with increased potency. All TKIs are very effective in treating CML, with
rates of major response at 10 years approaching 95% (Hochhaus et al. [16]). The
state of the disease and the response to treatment are monitored primarily by the
number of mARN copies of the BCR-ABL1 gene, as measured by qRT-PCR from
the patient’s blood, normalized to a control (Hughes et al. [19]). Presently, the life
expectancy of patients with CML approaches the average of the general population,
especially in developed countries (Deininger et al. [8]). In addition to survival, the
focus of research in CML is quality of life, the effect of comorbidities, the toxicity
profile of TKI, and the discontinuation of drugs once major treatment milestones
have been met (Hochhaus et al. [18]). These concerns are especially prominent since
the median age of CML onset is close to 70 years of age. The side effects of TKIs can
be mitigated by dose reduction (for Imatinib, from 400 mg per day to 300 mg per
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day) or a brief drug holiday. All these suggest the necessity for an optimized and
theoretically grounded dosing schedule in CML that reaches the treatment targets
in an efficient yet parsimonious way. We have explored the problem of TKI dosing
in CML by a quantitative dynamical model.

1.2. Mathematical Model and Approach
Over the years, many mathematicians and biologists have proposed and studied
different types of models and problems inspired by life phenomena, such as [2, 5, 6,
31]. From the numerous works in which there are studied optimization problems
and control problems applied to chronic myeloid leukemia (also known as chronic
myelogenous leukemia), we mention [1, 15,22,23,26].

In Mackey and Glass [21], it is introduced a mathematical model of blood pro-
duction using differential equations involving sigmoid or Hill functions, given the
fact that hematopoiesis is a self-limiting process. Based on this model in Parajdi et
al. [28] it is considered the following mathematical model

x′(t) =
ax(t)

1 + b1x(t) + b2y(t)
− cx(t)

y′(t) =
Ay(t)

1 +B (x(t) + y(t))
− Cy(t)

(1.1)

where x(t), y(t) are the normal and leukemic cell populations at time t, respectively.
Here, the parameters a,A are the growth rates; c, C are the cell death rates (or cell
turnover rates); and b1, b2, B are the sensitivity parameters that govern the self-
limiting process. For both cell populations, we assume that the growth rate is
greater than the death rate, i.e., a > c and A > C. The eventual advantage of
leukemic cells of being less sensitive to the microenvironment than normal cells is
expressed by b1 ≥ b2 > B.

The case b1 = b2, was studied by Dingli and Michor [9] (see also Cucuianu and
Precup [7]), in order to describe the time competition between normal and leukemic
hematopoietic stem cells. In this case, there exist only two non-zero steady states
(d, 0) and (0, D) of the system, where d and D represent the homeostatic amounts
of normal and leukemic (or abnormal) cells and are given by

d =
1

b1

(a
c
− 1

)
and D =

1

B

(
A

C
− 1

)
.

The case b1 > b2, was introduced and studied in [28, 29]. In this case, there could
also exists a third steady state (x∗, y∗), where

x∗ =
b1

b1 − b2
d− b2

b1 − b2
D and y∗ =

b1
b1 − b2

(D − d).

We can observe that under the assumption b1 > b2, both x∗ and y∗ are positive if
and only if d < D < (b1/b2)d. The case when D < d corresponds to the normal
hematologic state, the case d < D < (b1/b2)d corresponds to the chronic phase of
the disease, and the case (b1/b2)d < D stands for the acute/blast phase. In the
first case (normal state), system (1.1) has the unique stable equilibrium (d, 0), in
the second case (the chronic phase) the stable equilibrium is of the form (x∗, y∗),
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where both x∗ and y∗ are positive, and in the third case (the acute/blast phase)
the stable equilibrium is (0, D).

In this paper, we give two numerical methods for solving a nonlinear system of
integral equations of mixed Volterra–Fredholm type, arising from a control problem
related to myeloid leukemia. This system of integral equations, presented in Section
2, is related to the control problem where the control is a constant λ (connected to a
constant drug dose) intended to decrease the growth rate A of malignant cells. The
model could be related to targeted therapies. This control problem was introduced
and studied in Haplea et al. [14] and its analysis, reproduced in Section 2, is based on
a new method for the controllability of abstract fixed point equations. The stability
of the control problem is also reminded. In Section 3, we introduce and describe
two algorithms that are used to approximate numerically the solution of the integral
system. In this context, by Theorem 3.1, it is proved the continuous dependence
of the solution on the control parameter, and by Theorem 3.2, the convergence of
our first algorithm. Numerical simulations and error analysis are then performed
to illustrate the theoretical results and prove their applicability. Finally, in Section
4, we discuss the biological significance of our theoretical and numerical results.

2. A Control Problem for the Normal-Leukemic Sys-
tem

The control problem that is considered in this paper is inspired from hematology,
more exactly from the treatment of the chronic phase of chronic myeloid leukemia
(CML). It was introduced and studied in Haplea et al. [14] and directly folds on
the general control problem for differential systems as stated in (Barbu [3], see page
34). In this section, we recall the general problem of control theory, the general
controllability principle and a result about the stability of the control problem. All
these notions and results are stated in terms of fixed point theory.

2.1. A General Controllability Principle
Consider a general control problem that consists in finding a solution (w, λ) of the
following system {

w = N (w, λ)

w ∈ W, λ ∈ Λ, (w, λ) ∈ D
(2.1)

where w is the state variable, λ denotes the control variable, W is the domain of
the states, Λ represents the domain of controls and D is the controllability domain,
usually given by means of some condition imposed to w, or to both w and λ.
Therefore we take into consideration a general formulation of the control problem,
only in terms of sets, since W, Λ and D ⊂ W × Λ are not necessarily structured
sets and N is any mapping from W × Λ to W .

We say that the equation w = N(w, λ) is controllable in W × Λ with respect to
D, if problem (2.1) has a solution. Let Σ be the set of all possible solutions (w, λ)
of the fixed point equation and Σ1 be the set of all w that are the first components
of some solutions of the fixed point equation, that is

Σ = {(w, λ) ∈ W × Λ : w = N (w, λ)} ,
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Σ1 = {w ∈ W : ∃λ ∈ Λ with (w, λ) ∈ Σ} .

Obviously, the set of all solutions of the control problem (2.1) is given by Σ ∩D.
Consider the set-valued map F : Σ1 → Λ defined as

F (w) = {λ ∈ Λ : w = N(w, λ) and (w, λ) ∈ D}.

We have the following general principle for solving the control problem (2.1).

Proposition 2.1. If for some extension F̃ : W → Λ of F from Σ1 to W, there
exists a fixed point w ∈ W of the set-valued map

Ñ (w) := N
(
w, F̃ (w)

)
,

i.e.,
w = N (w, λ) ,

for some λ ∈ F̃ (w) , then the couple (w, λ) is a solution of control problem (2.1).

For the proof of Proposition 2.1, see the paper of Haplea et al. [14].

Remark 2.1. In particular, F and F̃ can be single-valued maps. The above general
principle of controllability can be applied to control problems related to the normal-
leukemic system.

2.2. A Control Problem for the Normal-Leukemic System
Consider as a condition of controllability, the decrease to a certain acceptable level
of the malignant cell population and as a control variable, the factor of decreasing
the proliferation rate of cancer cells. Therefore, we consider

x′(t) =
ax(t)

1 + b1x(t) + b2y(t)
− cx(t)

y′(t) =
λAy(t)

1 +B (x(t) + y(t))
− Cy(t)

x(0) = x0, y(0) = y0

(2.2)

where λ > 0 represents the control parameter.
Let us change the variables as follows:

u := lnx and v := ln y

and denote
u0 = u(0) = lnx(0) and v0 = v(0) = ln y(0).

Dividing the first equation by x and the second equation by y and then integrating,
we obtain the integral system equivalent to the initial value problem (2.2), namely

u (t) = u0 − ct+

∫ t

0

a

1 + b1eu(s) + b2ev(s)
ds

v (t) = v0 − Ct+ λ

∫ t

0

A

1 +B
(
eu(s) + ev(s)

) ds. (2.3)
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This is our fixed point equation w = N(w, λ), where w = (u, v), N = (N1, N2) and

N1 (u, v) (t) = u0 − ct+

∫ t

0

a

1 + b1eu(s) + b2ev(s)
ds,

N2 (u, v, λ) (t) = v0 − Ct+ λ

∫ t

0

A

1 +B
(
eu(s) + ev(s)

) ds.
The objective condition associated to the integral system (2.3) is

v(T ) = vT , (2.4)

where vT is the expected level of leukemic cells after a period of time T .
Biological interpretation: the system (2.2) extends the basic system (1.1) by

adding the effect of the treatment. We have assumed that TKIs, being a targeted
drug, acts exclusively on the malignant cell (absolute specificity), and solely by
decreasing the proliferation rate of malignant cells (from A to λA, where λ is a
positive subunit quantity, Michor et al. [24]). A smaller value for λ translates to a
more efficient treatment (a higher dose or a more potentdrug). The parameter λ
stands for the effect of TKI on the growth rate of malignant cells, rather than the
actual drug dosage; λ is completely determined by the drug dosage but relates to
it in a nontrivial way. As a simplification, we have assumed a dosing scheme that
maintains the drug effect λ constant, for the whole duration of the treatment; as
such, all pharmacokinetic details could be safely excluded from the analysis. The
goal of the optimization procedure is to reach the desired (very low) number of
malignant cells, after a given treatment time T , v(T ) = vT . This is qualitatively
in line with current clinical guidelines, which prescribe that BCR-ABL1 transcript
levels should be reduced strongly after 12 months of treatment (major molecular
response, MMR) and, in the long run, be brought next to or below detection levels
(deep molecular remission, DMR) (the ESMO Clinical Practice Guidelines: [17]).

Compared with the abstract general controllability principle from the previous
subsection, here we have

W = C
(
[0, T ],R2

)
, Λ = R+, D = {(u, v, λ) ∈ C

(
[0, T ],R2

)
× R+ : v(T ) = vT }

and (2.3) stands for the fixed point equation w = N(w, λ), with w = (u, v).
We recall the following controllability result obtained using Proposition 2.1. This

result shows the solvability of control problem (2.3)-(2.4).

Theorem 2.1. For each number vT with max {0, v0 − CT} < vT < v0, the control
problem (2.3)-(2.4) has a solution (u, v, λ) ∈ C

(
[0, T ] ,R2

)
× (0,+∞) .

Proof. Let (u, v) ∈ Σ1, that is (u, v) ∈ C
(
[0, T ] ,R2

)
which solves (2.3) for some

λ ∈ R+. From the second equation of (2.3) and using the controllability condition
(2.4), we obtain

λ =
vT − v0 + CT∫ T

0

A

1 +B(eu(s) + ev(s))
ds

. (2.5)

We consider a function F : Σ1 → R+ given by

F (u, v) =
1∫ T

0

A

1 +B(eu(s) + ev(s))
ds

(vT − v0 + CT ) .
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Next, we can extend this function F from Σ1 to C
(
[0, T ] ,R2

)
by using the same

expression, namely

F̃ (u, v) =
1∫ T

0

A

1 +B(eu(s) + ev(s))
ds

(vT − v0 + CT )

for (u, v) ∈ C
(
[0, T ] ,R2

)
. We note that F and F̃ are single-valued maps.

Thus, our fixed point equation w = Ñ(w), with Ñ(w) = N(w, F̃ (w)), becomes
u (t) = u0 − ct+

∫ t

0

a

1 + b1eu(s) + b2ev(s)
ds

v (t) = v0 − Ct+ vT−v0+CT∫ T

0

A

1 +B(eu(s) + ev(s))
ds

∫ t

0

A

1 +B
(
eu(s) + ev(s)

)ds, (2.6)

which is a system of mixed Volterra–Fredholm type integral equations, where

Ñ1 (u, v) (t) = u0 − ct+

∫ t

0

a

1 + b1eu(s) + b2ev(s)
ds,

Ñ2 (u, v) (t) = v0 − Ct+
vT − v0 + CT∫ T

0

A

1 +B(eu(s) + ev(s))
ds

∫ t

0

A

1 +B
(
eu(s) + ev(s)

)ds.
The existence of a fixed point w of Ñ can be guaranteed by using Schauder’s fixed
point theorem (Precup [30], see page 33). Indeed, the operator Ñ is completely
continuous, as follows immediately from the Arzelà–Ascoli theorem (Precup [30],
see pages 2, 3 and 15). On the other hand, we have

u0 − cT ≤ Ñ1 (u, v) (t) ≤ u0 + aT,

v0 − CT ≤ Ñ2 (u, v) (t) ≤ vT + CT.

Consequently, there are numbers R1, R2 > 0 with∥∥∥Ñ1 (u, v)
∥∥∥
∞

≤ R1,
∥∥∥Ñ2 (u, v)

∥∥∥
∞

≤ R2

for all u, v ∈ C [0, T ] . Hence, Ñ (S) ⊂ S, where

S := {(u, v) ∈ C
(
[0, T ] ,R2

)
: ∥u∥∞ ≤ R1, ∥v∥∞ ≤ R2}.

Thus, Schauder’s fixed point theorem applies and guarantees the existence in S of a
fixed point w = (u, v) of Ñ . Finally, the control λ is calculated using formula (2.5)
with u and v thus determined.

Remark 2.2. Since (2.3) is a Volterra system with Lipschitz continuous nonlin-
earities, for any given λ, it has a unique solution (u, v) . In particular, for the value
λ corresponding to a solution (u, v, λ) of the control problem, the trajectory (u, v)
is unique. We may interpret this fact in the following way: for a prescribed drug
dose, the patient’s evolution is uniquely determined.
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2.3. Stability of the Control Problem
Let us also mention the following stability result of the control problem.

Theorem 2.2. Let (u, v, λ) be a solution of the control problem (2.3)-(2.4). For
a given λ ∈ R+, denote by (u, v) the corresponding solution of system (2.3) and
vT := v (T ) . Then, for any small ε > 0, we have that∣∣λ− λ

∣∣ ≤ ε

AT
e−(a+λA)T =: δ implies |vT − vT | ≤ ε.

In its proof, see the paper of Haplea et al. [14], there are used Lipschitz properties
and Gronwall’s inequality in order to obtain the estimate

|u (t)− u (t)|+ |v (t)− v (t)| ≤ ATδe(a+λA)t, (2.7)

which in view of the expression of δ, immediately implies |vT − vT | ≤ ε.

Remark 2.3. Estimate (2.7) shows us that for a treatment λ close enough to the
prescribed treatment λ, the patient’s evolution (u, v) remains in the vicinity of the
prescribed evolution (u, v).

Note that, due to this stability result, the actual administration of only an
approximate dose leads, however, to a result close to the expected one. The level
of freedom to choose an approximate dose is exactly established in terms of model
parameters.

3. Numerical Algorithms
In this section, we introduce our numerical algorithms for solving problem (2.3)-
(2.4) which can be put under the form of the Volterra-Fredholm integral system
(2.6). At any step of each one of the two algorithms, we need to solve numer-
ically a Volterra type integral system and this is done with the Picard-Lindelöf
iteration technique (Hairer et al. [12]) combined with the successive approximation
method. The description of the algorithms is followed by some implementation de-
tails. Finally, some numerical results in the form of tables and figures are given,
and their biological interpretation is the subject of the discussion section, Section 4.
All numerical simulations were carried out on the Kotys HPC (High Performance
Computing) infrastructure of ”Babeş–Bolyai” University of Cluj-Napoca (Bufnea et
al. [4]), using MATLAB software.

3.1. The First Algorithm
Here we introduce our first algorithm. The proof of its convergence is then given
based on a continuous dependence result which makes use of the notion of a Bielecki
norm and of a result about matrices with a spectral radius less than one. These
are presented for reader’s convenience, before stating the algorithm and proving its
convergence.

Definition 3.1. For any number θ > 0, the Bielecki norm || · ||θ on the space
C([0, T ],R) is given by

||f ||θ = max
t∈[0,T ]

(
|f(t)|e−θt

)
.
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Lemma 3.1. Let M be a square matrix with nonnegative entries. The following
statements are equivalent: (i) ρ(M) < 1. (ii) Mk → 0 as k → ∞ (componentwise,
where 0 is the zero matrix). (iii) The matrix I −M is nonsingular and its inverse
(I −M)−1 has nonnegative entries. Here I is the identity matrix of the same size
as M and ρ(M) = max {|λ| : λ is an eigenvalue of matrix M}.

For more details, we refer the reader to Precup [30]. Now we can state and prove
the theorem about the continuous dependence of the solution on the parameter.

Theorem 3.1. The solution (u, v) of system (2.3) depends continuously on λ.

Proof. We denote by S1(λ) and S2(λ) the components u and v of the solution that
corresponds to λ. From the integral system, using the Lipschitz continuity of the
nonlinearities and the Volterra property of the equations, we deduce the estimates

∥S1(λ)− S1(µ)∥θ ≤ α11∥S1(λ)− S1(µ)∥θ + α12∥S2(λ)− S2(µ)∥θ

and

∥S2(λ)− S2(µ)∥θ ≤ α21∥S1(λ)− S1(µ)∥θ + α22∥S2(λ)− S2(µ)∥θ + β|λ− µ|.

Here ∥ · ∥θ denotes the Bielecki norm on C[0, T ] with respect to a sufficiently large
θ > 0. Moreover, β > 0 represents some constant and the spectral radius ρ(M) of
matrix M := [αij ]1≤i,j≤2 is subunitary, i.e., ρ(M) < 1. It follows that∥S1(λ)− S1(µ)∥θ

∥S2(λ)− S2(µ)∥θ

 ≤ (I2 −M)−1

 0

β|λ− µ|


or, equivalently,

∥S1(λ)− S1(µ)∥θ ≤ βγ12|λ− µ|, ∥S2(λ)− S2(µ)∥θ ≤ βγ22|λ− µ|,

where γij are the entries of the matrix (I2−M)−1. Clearly, from these inequalities,
we may conclude the Lipschitz continuity on λ of the solution.

Next, we assume that the following conditions hold

v(T ) < vT for λ = 0 and v(T ) ≥ vT for λ = 1.

From a biological point of view, this is a rational assumption meaning that the
target value vT for the leukemic level is chosen below the level that would occur in
the absence of any control and is above the level corresponding to a hypothetical
zero growth rate of leukemia cells.

Taking into account the above arguments, we define the following iterative algo-
rithm. It is aimed to bring us as close as possible to a value of λ that corresponds
to a solution of the control problem.

Step. 1.1. We initialize λ0 := 0, λ0 := 1

Step. 1.2. At any iteration k ≥ 1, we define λk :=
λk−1 + λk−1

2
and solve system

(2.3) for λ := λk. We obtain the numerical solution (uk, vk) = (S1(λk), S2(λk)),
where S1 and S2 are given in the proof of Theorem 3.1.
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If vk(T ) < vT , then λk = λ, λk = λk−1, otherwise, we take λk = λk−1, λk = λ.
Step. 1.3. The algorithm stops if

|vk(T )− vT | < δ,

where 0 < δ ≪ 1. Otherwise, it continues with Step 1.2.
Concerning the above algorithm, we have the following convergence result.

Theorem 3.2. The iterative algorithm Step 1.1–Step 1.3 is convergent to a solution
of the control problem (2.3)-(2.4).

Proof. For k ≥ 1 we have the solution (uk, vk) corresponding to λ = λk. More-
over, we have vk = S2(λk) if vk(T ) < vT or vk = S2(λk) if vk(T ) ≥ vT , where S1

and S2 are the operators defined in the proof of Theorem 3.1. Therefore, we ob-
tain an increasing sequence (λk) and a decreasing sequence (λk) with the following
properties

S2(λk)(T ) < vT , S2(λk)(T ) ≥ vT (3.1)
and

λk − λk =
1

2k
. (3.2)

The two sequences being monotone and bounded are convergent. Moreover, from
(3.2) they have the same limit λ∗. Using the continuity of S2 with respect to λ and
(3.1) we deduce that

S2(λ
∗)(T ) = vT . (3.3)

Finally, we use again the continuity of the operators S1 and S2 with respect to λ
to obtain S1(λ

∗) = u∗ and S2(λ
∗) = v∗ . These together with (3.3) show that

(u∗, v∗, λ∗) is a solution of the control problem (2.3)-(2.4).
Further, we provide some computational details concerning the implementation

of this algorithm. More exactly, we consider the following n-point discretization

∆n = {0 = t1 < t2 < . . . < tn−1 < tn = T}

and we define the following subsets ∆i = {t1, t2, . . . , ti} ⊆ ∆n, i = 1, n. We mention
that at Step 1.2 we must solve, for each k ≥ 1, a system of nonlinear Volterra integral
equations, namely

uk(t) = u0 − ct+

∫ t

0

a

1 + b1euk(s) + b2evk(s)
ds

vk(t) = v0 − Ct+ λk

∫ t

0

A

1 +B
(
euk(s) + evk(s)

) ds.
To this end, we introduce the notation Q(f,∆i) for a general quadrature formula

that uses the nodes from ∆i, i.e.,
∫ ti

0

f(s) ds ≈
i∑

j=1

αjf(tj), where f : [0, T ] → R+

and αj ∈ R represent the coefficients. Moreover, we denote by (ui
k, v

i
k) the numerical

approximations of (uk, vk) at the point ti ∈ ∆n, i = 1, n , where u1
k := u0 and

v1k := v0. They are the solutions of the nonlinear systemsui
k = u1

k − cti +Q( a
1+b1eu+b2ev

,∆i)

vik = v1k − Cti + λkQ( A
1+B(eu+ev) ,∆i)

i = 2, n.
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In the case of trapezoidal rule for equidistant nodes, the systems take the form
X = Const1(u, v, i) +

h
2

a

1 + b1eX + b2eY

Y = Const2(u, v, i) +
h
2

λkA

1 +B(eX + eY )

(3.4)

where

Const1(u, v, i) = u1
k − cti +

h

2

a

1 + b1eu
1
k + b2ev

1
k

+ h

i−1∑
j=2

a

1 + b1eu
j
k + b2ev

j
k

Const2(u, v, i) = v1k − Cti +
h

2

λkA

1 +B(eu
1
k + ev

1
k)

+ h

i−1∑
j=2

λkA

1 +B(eu
j
k + ev

j
k)

and h denotes the constant length between the discretization points, i.e., h =
ti − ti−1, i = 2, n. To solve the nonlinear systems (3.4) we can use a specific
numerical method, such as the method of successive approximations.

3.2. The Second Algorithm
In this subsection, we propose a second algorithm that has the following structure.

Step. 2.1. We consider two start functions u, v : [0, T ] → R+ satisfying

u(0) = u0, , v(0) = v0, , v(T ) = vT .

Step 2.2. Using (2.5) we compute

λ :=
vT − v0 + CT∫ T

0

A

1 +B(eu(s) + ev(s))
ds

.

Step 2.3. We solve (2.3) for λ = λ and obtain its solution (u, v).
Step 2.4. The algorithm stops if the following conditions are satisfied

∥u− u∥∞ < δ, ∥v − v∥∞ < δ,

where 0 < δ ≪ 1. Otherwise, there are performed Steps 2.2−2.3 for u := u, v := v.

3.3. Numerical Results
We finish this section with some numerical results which are illustrated in the figures
below and whose biological analysis is given in the next section. The numerical
results are obtained using a grid ∆n with equidistant points. We use the trapezoidal
method, we take δ = 10−12 in stop condition and the parameters (Haplea et al. [14]):

a=5, A=7, b1 = 0.75× 10−5, b2 = 0.38× 10−5, B = 0.19× 10−5, c = 0.05,

C=0.2, u0=ln(7× 106), v0 = ln(107), T = 2000 and 11.1181 ≤ vT ≤ 15.6181.
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Figure 1. Graph of u for vT ∈
{11.11, 14.01, 15.61}.

Figure 2. Graph of v for vT ∈
{11.11, 14.01, 15.61}.

Figs. 1-2 give the graphs of the functions u and v for vT ∈ {11.11, 14.01, 15.61}.
Notice the asymptotic behavior of these functions and their inverse monotony with
respect to vT . Indeed, at any time t, the value v(t) decreases and the value u(t)
increases as the target value vT decreases. Fig. 3 shows the variation of the control
parameter λ with respect to vT . Figs. 4-6 have the role to give some details about
the efficiency of the algorithm Step 1.1-Step 1.3. Thus, the histogram in Fig. 4 shows
the frequency of the number of iterations in Step 1.2 necessary to solve the nonlinear
integral system, in the case when vT takes 46 equidistant values in the interval
[11.1181, 15.6181], that is when the difference between two consecutive values of vT
is constant and equal with 0.1. It is observed that around 45 − 49 iterations are
necessary to reach the desired error, i.e., |v(T )− vT | < 10−12. Figs. 5 and 6 show
the behavior of the error lg|v(T ) − vT | with respect to the number of iterations,
for vT = 11.1181 and vT = 15.6181. In Figs. 7 and 8, there are represented the
graphs of functions x = eu and y = ev. Some biological considerations about them
are given in the next section. Finally, we mention that similar results are obtained
using the second algorithm Step 2.1 -Step 2.4. In this case, the number of iterations
strongly depends on the start functions taken in Step 2.1. Also, the approximation
of λ in Step 2.2 increases the complexity of the algorithm. However, in contrast to
the first algorithm, the error decreases in a monotone manner.

4. Discussion
The results of the numerical simulations (Figs. 2 and 8) agree with the data of CML
cases treated with TKIs ( [24], [25] ); malignant cell counts decrease monotonically
in time, with a sharp decline for the first 150 to 200 time units (days of treatment),
followed by a slower phase that eventually plateaus out. Normal cells expand in
compensation (Figs. 1 and 7). As expected, the more stringent the target (a lower
vT ), the longer it takes to approach and converge to it (Fig. 8). To answer the
question: what drug effect is required to suppress the malignant population down to
a given level, we have explored numerically the relationship between λ and vT (Fig.
3). We have found a monotonic relationship, where λ increases faster than linearly
with vT , and in consequence incrementally larger drug loads are required for every
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Figure 3. Variation of λ with respect to vT . Figure 4. Frequency of number of iterations
for 46 equidistant values of vT from 11.11 to
15.61.

Figure 5. The behavior of the error for vT =
11.1181.

Figure 6. The behavior of the error for vT =
15.6181.

Figure 7. Graph of x for vT ∈
{11.11, 14.01, 15.61}.

Figure 8. Graph of y for vT ∈
{11.11, 14.01, 15.61}.
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additional log unit of reduction in the malignant cell population. This confirms that
hematological cure by dose escalations alone can be prohibitively costly in terms of
drug toxicity for unresponsive patients, and alternative management (like switching
to an alternative TKI) is best considered in such cases.

Normal and leukemic cell populations are internally structured, with subpopu-
lations of stem, progenitor and variably differentiated cells. We have collated all the
cell subtypes within a single normal cell phenotype and another single malignant
cell phenotype. Also, myeloid leukemias develop functionally in two compartments,
the hematopoietic bone marrow and the peripheral blood. While the bone marrow
(the production compartment) is severely space constrained, the more compliant
circulatory blood can accommodate massive increases in myeloid cell counts. These
increases range from severalfold (physiologically) to almost two orders of magnitude
(pathologically) (Gong et al. [11]). In our model, we have compacted the generative
central (medullary) compartment and the transit peripheral (blood) compartment
in a single compartment. This amounts to assuming constant rates of cell transport
between compartments. While the numbers of modeled cells, normal and malignant,
need not add up to a constant (x+y can vary in time), there is an implicit pressure
in the model toward lower counts through allo- and hetero feedback. This is in
qualitative accord with actual biology, as even the bone marrow has some margin
for variable cell density (histologically, it can be of ”higher” or ”lower cellularity”).

In current hematology practice, the CML state is assessed by the ratio of BCR-
ABL1 transcripts to ABL1 transcripts, rather than by the absolute levels of BCR-
ABL1. We have departed from this standard, as we have chosen for the goal of
the optimization, the absolute number of leukemic cells exp(vT ). This makes our
method more general, as it is readily extendable to solid malignancies where absolute
cell counts can be derived from imaging studies. The goal of CML treatment with
TKIs is to achieve long-term molecular remission. Earlier evaluations at shorter
terms (3 and 6 months of treatment) serve only to predict the long-term response
(Hanfstein et al. [13]), but otherwise have no clinical utility on their own. If the
treatment fails to lower BCR-ABL1% enough at three months, the patient is clas-
sified as a nonresponder and switched to an alternative, likely more efficient TKI.
Imatinib (a first-generation molecule) is the agent most often used as a first-line for
CML, while the more potent second and third-generation TKIs may be withheld
due to the cost and toxicity profile. A direction for future research is to model the
treatment with different TKIs in succession, each with its specific λ value, and to
identify the optimal time points of the switch from one drug to the other, in view
of some goal of persistent remission.

In Haplea et al. [14] we have also optimized the (modeled) treatment of acute
leukemia, using as a control objective the whole timecourse of the disease under
treatment (i.e., the leukemic cells should decrease along a predefined curve), which
reflects the need to monitor tightly an acute disease. For chronic leukemia, it ap-
pears reasonable to use solely the long-term endpoint as a goal. Nonetheless, as the
existence of the solution (u, v, λ) has been proved for the chronic form, the endpoint
will be reached, in every case, along a single uniquely determined curve. It would
be of interest to check the form of the so-established curve against the intermediate
targets from clinical guidelines. Our model may predict that the final target can be
attained even if early targets are not met. Both coincidence or disparity between
the model and reality would lead to some insight.
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