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PERIODIC DYNAMICS AND MEAN-SQUARE
EXPONENTIAL CONVERGENCE OF

NONLOCAL STOCHASTIC FUZZY
BIDIRECTIONAL ASSOCIATIVE MEMORY

LATTICE NEURAL NETWORKS∗

Yuntao Liu1 and Tianwei Zhang2,†

Abstract This paper firstly establishes the lattice model for nonlocal stochas-
tic fuzzy bidirectional associative memory neural networks with reaction diffu-
sions by employing a mix of the finite difference and Mittag-Leffler time Euler
difference techniques. Secondly, the existence of a unique bounded periodic
sequence solution in distribution and global mean-square exponential conver-
gence to the achieved difference model are investigated. Some illustrative
example is used to show the feasible of the works of the current paper.
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1. Introduction
Bidirectional associative memory (BAM) neural network model is a specific type of
repetitive neural network that can store bipolar sub pairs. It consists of two layers
of neurons and the neurons in a single layer are fully connected to the neurons
in the next layer. In real world, BAM neural networks (BAMNNs) provide strong
information processing ability and a few excellent applied domains, like informa-
tion associative memory, image processing, artificial intelligence, etc. On the other
hand, Yang and Yang [23] in 1996 proposed a novel fuzzy cellular neural network,
which incorporates fuzzy logic into the architecture of a cellular neural network.
Fuzzy neural networks possess fuzzy logic for template inputs and/or outputs, in
addition to summation of product operations. For the past decades, fuzzy neural
networks have received more and more attention because of their superiority in
image processing and pattern recognition, see [1–4,19,20,24].

In biologically based neural systems, the concentration of constituents is not
uniform, resulting in diffusion of cytoplasm from higher to lower concentrations. It is
said to be diffusion. Since neural systems can be build by scaling down and modeling
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biological neural networks, diffusion ought to be inserted to neural network patterns.
Accordingly, reaction diffusion neural networks were formulated and have shown
significant prospects for spatio-temporal pattern storage and matching. Recently,
stochastic neural networks have been broadly investigated since they are commonly
found in people’s daily lives. Stochastic perturbations in neural networks not only
separate neural networks from deterministic neural networks, but also can bring
about substantial modifications in dynamic actions of neural networks. In general,
the behavior of stochastic systems is highly reliant on time and spatial dependence.
Consequently, reaction diffusion is necessary to be taken into account, and this
induces the investigations of stochastic reaction diffusion BAMNNs [5, 15, 17, 18],
concretely see the researching topics on the Markovian jumping impulsive models
[15] and exponential stability [18], etc.

During the last two decades, a number of real problems are portrayed in terms of
fractional-order systems of dynamics [6,16,25,26]. Further, discrete-time neural net-
works are better fitted for real-time implementations. Firstly, appropriate technol-
ogy can be used to implement digital controllers rather than analog ones. Secondly,
the synthesized controller is directly implemented in a digital processor. Therefore,
control methodologies developed for discrete-time nonlinear systems can be imple-
mented in real systems more effectively [7–10,27–29]. Thirdly, many processes have
a certain regularity, so the study of periodic sequence has been a significant and in-
teresting topic in the field of difference equations owing to the intensive evolution of
the theories of difference equations and the applications in the areas of science and
engineering. For all the authors know, up to now, there are few papers focusing on
the study of periodic sequences to discrete-time BAMNNs in literatures [11,14,30].
However, almost no paper discusses periodic oscillations of discrete-time BAMNNs
with stochastic perturbations or reaction diffusions. Therefore, this paper is con-
centrated on the discussion of nonlocal stochastic fuzzy BAMNNs with reaction
diffusions.

By employing a mix of the finite difference methods and Mittag-Leffler Eu-
ler time difference techniques, the objective of the current paper is to achieve the
discrete-time and discrete-space schemes corresponding to Eqs. (2.1)-(2.2). And on
this basis, the existence of a unique bounded periodic sequence solution in distri-
bution and global exponential stability in the mean-square sense are investigated.
Compared with the previous literatures, the distinct characteristics of this arti-
cle are narrated as follows: 1) Based on the finite difference and Mittag-Leffler
Euler difference techniques, a novel stochastic lattice models for Eqs. (2.1)-(2.2) is
introduced. 2) The existence of a unique bounded periodic sequence solution in
distribution is discussed. 3) Global exponential convergence in the mean-square
sense is considered. 4) The research findings in this article extend and complement
the works in literatures [10,11,14,28–30].

The organization of the rest is as follows. In Section 2, a stochastic lattice
BAMNNs for Eqs. (2.1)-(2.2) is achieved by using the finite difference methods and
Mittag-Leffler Euler difference techniques. The existence of a unique bounded pe-
riodic sequence solution in distribution and global exponential convergence in the
mean-square sense are discussed in Sections 3-4. In Section 5, an illustrative exam-
ple and some numerical simulations are employed to visually expound the current
research findings. The conclusions and future works of this paper are presented in
Section 6.

Symbols: Rn denotes the space of n-dimensional real vectors; Z is the field of
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integral numbers; N0 = {0, 1, 2, . . .}; N = N0 \ {0}; Nb
a = {a, a + 1, . . . , b} for any

a, b ∈ Z; IJ = I ∩J , ∀I, J ⊆ R. Let A1, A2, . . . , AN be some sets, x1 ∈ A1, x2 ∈ A2,
. . ., xN ∈ AN ⇔ (x1, x2, . . . , xN ) ∈ (A1, A2, . . . , AN ).

2. Stochastic lattice networks
In this paper, we deal with nonlocal stochastic fuzzy BAMNNs with reaction diffu-
sions in the shape of

cDαi
tp ui(t, x) =

N∑
q=1

∂

∂xq

[
Diq

∂ui(t, x)

∂xq

]
− ci(x)ui(t, x) +

n∑
j=1

aij(t, x)

×fj(vj(t, x)) +
n∧

j=1

γij(t, x)fj(vj(t, x)) +

n∨
j=1

ηij(t, x)fj(vj(t, x))

+Ii(t, x) +

n∑
j=1

µij(t, x)Hij(vj(t, x))
dW1j(t)

dt
, (2.1)

cD
βj

tp vj(t, x) =

N∑
q=1

∂

∂xq

[
Kjq

∂vj(t, x)

∂xq

]
− dj(x)vj(t, x) +

m∑
i=1

eji(t, x)

×gi(ui(t, x)) +
m∧
i=1

εji(t, x)gi(ui(t, x)) +

m∨
i=1

ϑji(t, x)gi(ui(t, x))

+Jj(t, x) +

m∑
i=1

ςji(t, x)Lji(ui(t, x))
dW2i(t)

dt
, (2.2)

where (t, x) ∈ (Ip,Ω), Ip = (tp, tp+1], t0 = 0, limp→±∞ tp = ±∞, tp ≤ tp+1, p ∈ Z,
Ω = {x = (x1, x2, . . . , xN )T ∈ RN : r1q < xq < r2q, r1q, r2q ∈ R, q = 1, 2, . . . ,N};
cDαi

∗ and cDβj
∗ denote Caputo fractional-order derivatives from initial point 0,

αi, βj ∈ (0, 1], ui and vj are the neural states, ci and dj are the self-inhibitions,
aij and eji are the synaptic connection strengths, fj and gi are the feedback func-
tions, Ii and Jj denote the external inputs; γij , εji, ηij and ϑji are the elements
of fuzzy feedback MIN template and fuzzy feedback MAX template, respectively;
D := (Diq)m×N ≥ 0 and K := (Kiq)n×N ≥ 0 stand for the transmission diffu-
sion matrixes; W1j and W2i denote the Brownian motion on a complete probability
space, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

The corresponding initial boundary conditions of Eqs. (2.1)-(2.2) are depicted
by 

ui(0, x) = φi(x), ∀x ∈ Ω; ui(t, x)
∣∣∣
x∈∂Ω

= ϕi(t, x),

vj(0, x) = φ̃j(x), ∀x ∈ Ω; vj(t, x)
∣∣∣
x∈∂Ω

= ϕ̃j(t, x),

(2.3)

where t ∈ R, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Let us introduce the relative conception of fractional calculus in literature [12].

The α-order Caputo fractional derivative of x ∈ Cn([a, b],Rn) is defined by

cDα
ax(t) =

1

Γ(n− α)

∫ t

a

x(n)(s)

(t− s)α−n+1
ds, ∀t ∈ [a, b],
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where 0 < n− 1 < α < n, n ∈ Z0. Let α > 0 and x ∈ C1([a, b],R). Then

(1) limα→0+
cDα

ax(t) = x(t)− x(a).
(2) limα→n

cDα
ax(t) = x(n)(t), n ∈ N.

The Riemann-Liouville fractional integral of x ∈ C([a, b],R) is given by

Iαax(t) =
1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds, ∀t ∈ [a, b],

where α > 0. Let α ∈ (n− 1, n], n ∈ N. Then

(1) If x ∈ C([a, b],R), then cDα
a I

α
ax(t) = x(t).

(2) If x ∈ Cn([a, b],R), then

lim
α→n

Iαa
cDα

ax(t) = x(t)−
n−1∑
k=0

x(k)(a)

k!
(t− a)k, ∀t ∈ [a, b].

The Mittag-Leffler functions are described as

Eα(z) :=

∞∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)
,

where z, β ∈ R and α > 0.

Lemma 2.1 ( [12]). d

dz
[zαEα,α+1(λz

α)] = zα−1Eα,α(λz
α), where α, λ, z ∈ R.

Lemma 2.2 ( [26]). If α ∈ (0, 1] and λ ∈ R, then

(1) Eα(0) = 1, Eα,α(0) =
1

Γ(α)
.

(2) Eα(λt
α) ∈ (0, 1) for λ < 0 and Eα(λt

α) ∈ (1,+∞) for λ > 0, ∀t > 0.
(3) Eα(λt

α
1 ) > Eα(λt

α
2 ) and Eα,α(λt

α
1 ) > Eα,α(λt

α
2 ) for λ < 0 and t1 < t2.

(4) Eα(λt
α
1 ) < Eα(λt

α
2 ) and Eα,α(λt

α
1 ) < Eα,α(λt

α
2 ) for λ > 0 and t1 < t2.

Let hq =
r2q−r1q

Nq
for some Nq ∈ N, q = 1, 2, . . . ,N . Define xℓqq = r1q + ℓqhq for

all (ℓq, q) ∈ (NNq

0 ,NN
1 ). Set ∂Ωd = Ω̄d\Ωd, where

Ω̄d =
{
xℓ = (xℓ11 , . . . , x

ℓN
N )T ∈ RN : xℓqq = r1q + ℓqhq, (ℓq, q) ∈ (NNq

0 ,NN
1 )

}
,

Ωd =
{
xℓ = (xℓ11 , . . . , x

ℓN
N )T ∈ RN : xℓqq = r1q + ℓqhq, (ℓq, q) ∈ (NNq−1

1 ,NN
1 )

}
.

Based on the derivation in Appendix A, it obtains the lattice equations of
Eqs. (2.1)-(2.2) below

ux
ℓ

i (k + 1) = λx
ℓ

αi
(k)ux

ℓ

i (l) +

k∑
l=µk

θx
ℓ

αi
(k − l, k)

[
Fi(u

xℓ

i (l)) +

n∑
j=1

ax
ℓ

ij (l)

×fj(vx
ℓ

j (l)) +

n∧
j=1

γx
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∨
j=1

ηx
ℓ

ij (l)fj(v
xℓ

j (l))
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+Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)Hij(v
xℓ

j (l))h−1∆hW1j(l)

]
, (2.4)

vx
ℓ

j (k + 1) = λx
ℓ

βj
(k)vx

ℓ

j (l) +

k∑
l=µk

θx
ℓ

βj
(k − l, k)

[
Gj(v

xℓ

j (l)) +

m∑
i=1

ex
ℓ

ji (l)

×gi(ux
ℓ

i (l)) +

m∧
i=1

εx
ℓ

ji (l)gi(u
xℓ

i (l)) +

m∨
i=1

ϑx
ℓ

ji (l)gi(u
xℓ

i (l)) +

+Jxℓ

j (l) +

m∑
i=1

ςx
ℓ

ji (l)Lji(u
xℓ

i (l))h−1∆hW2i(l)

]
(2.5)

with boundary conditions

ux
ℓ

i (k)

∣∣∣∣
xℓ∈∂Ωd

= ϕx
ℓ

i,k := ϕi(kh, x
ℓ), vx

ℓ

j (k)

∣∣∣∣
xℓ∈∂Ωd

= ϕ̃x
ℓ

j,k := ϕ̃j(kh, x
ℓ),

where µk = max
p∈Z

{Qp : Qp ≤ k}, νk = k − µk,

ux
ℓ

i (k) = ui(kh, x
ℓ), vx

ℓ

j (k) = vj(kh, x
ℓ), Fi(u

xℓ

i (k)) = Fi(kh, u
xℓ

i (k)),

Gj(v
xℓ

j (k)) = Gj(kh, v
xℓ

j (k)), ax
ℓ

ij (k) = aij(kh, x
ℓ), γx

ℓ

ij (k) = γij(kh, x
ℓ),

ηx
ℓ

ij (k) = ηij(kh, x
ℓ), Ix

ℓ

i (k) = Ii(kh), µxℓ

ij (k) = µij(kh, x
ℓ),

W1j(k) = W1j(kh), εx
ℓ

ji (k) = εji(kh, x
ℓ),

ϑx
ℓ

ji (k) = ϑji(kh, x
ℓ), Jxℓ

j (k) = Jj(kh, x
ℓ), ex

ℓ

ji (k) = eji(kh, x
ℓ),

ςx
ℓ

ji (k) = ςji(kh, x
ℓ), W2i(k) = W2i(kh), wxℓ

αi
(−1) = wxℓ

βj
(−1) = 0,

λx
ℓ

αi
(k) =

Eαi
[−c∗i (xℓ)(νkh+ h)αi ]

Eαi
[−c∗i (xℓ)(νkh)αi ]

, λx
ℓ

βj
(k) =

Eβj [−d∗j (xℓ)(νkh+ h)βj ]

Eβj
[−d∗j (xℓ)(νkh)βj ]

,

θx
ℓ

αi
(l+, k) =

1

c∗i (x
ℓ)

[
wxℓ

αi
(l+)− λx

ℓ

αi
(k)wxℓ

αi
(l+ − 1)

]
,

θx
ℓ

βj
(l+, k) =

1

d∗j (x
ℓ)

[
wxℓ

βj
(l+)− λx

ℓ

βj
(k)wxℓ

βj
(l+ − 1)

]
,

wxℓ

αi
(l+) = Eαi [−c∗i (xℓ)(l+h)αi ]−Eαi [−c∗i (xℓ)(l+h+ h)αi ],

wxℓ

βj
(l+) = Eβj

[−d∗j (xℓ)(l+h)βj ]−Eβj
[−d∗j (xℓ)(l+h+ h)βj ]

for all (xℓ, l+, k, i, j) ∈ (Ω̄d,N0,Z,Nm
1 ,Nn

1 ). The initial conditions of Eqs. (2.4)-(2.5)
can be rewritten as

ux
ℓ

i (0) = φi(x
ℓ) := φxℓ

i , v
xℓ

j (0) = φ̃j(x
ℓ) := φ̃xℓ

j , ∀(xℓ, i, j) ∈ (Ωd,Nm
1 ,Nn

1 ). (2.6)

Remark 2.1. Let αi = βj = 1, Diq = Kjq = 0 for (i, j, q) ∈ (Nm
1 ,Nn

1 ,NN
1 ), and

removing the space variable xℓ in Eqs. (2.4)-(2.5), it is reduced into the exponential
difference models in literature [10] of the form

ui(k + 1) = e−ci(k)ui(k) +
1− e−ci(k)

ci(k)

[ n∑
j=1

aij(k)fj(vj(k)) +

n∧
j=1

γij(k)fj(vj(k))
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+

n∨
j=1

ηij(k)fj(vj(k)) + Ii(k) +

n∑
j=1

µij(k)Hij(vj(k))h
−1∆hW1j(k)

]
,

vj(k + 1) = e−dj(k)vj(k) +
1− e−dj(k)

dj(k)

[ m∑
i=1

eji(k)gi(ui(k)) +

m∧
i=1

εji(k)gi(ui(k))

+

m∨
i=1

ϑji(k)gi(ui(k)) + Jj(k) +

m∑
i=1

ςji(k)Lji(ui(k))∆hW2j(k)

]
for all (k, i, j) ∈ (Z,Nm

1 ,Nn
1 ). Obviously, Eqs. (2.4)-(2.5) is an expansion of discrete

analogues in paper [10]. Thus the current work extends the works in paper [10].

Remark 2.2. Huang et al. [8, 9] researched the almost periodic sequence solution
of a class of general neural networks

ui(k + 1) = e−ci(k)ui(k) +
1− e−ci(k)

ci(k)

[ n∑
j=1

aij(k)fj(vj(k)) + Ii(k)

]
,

vj(k + 1) = e−dj(k)vj(k) +
1− e−dj(k)

dj(k)

[ m∑
i=1

eji(k)gi(ui(k)) + Jj(k)

]
for all (k, i, j) ∈ (Z,Nm

1 ,Nn
1 ). The above equations are simple versions of Eqs. (2.4)-

(2.5) and the work in this paper is an extension of articles [8, 9].

From Lemma 2.3 in literature [29], the lemma below holds.

Lemma 2.3. Eqs. (2.4)-(2.5) can be transformed into

ux
ℓ

i (k) =

k−1∏
s=k0

λx
ℓ

αi
(s)ux

ℓ

i (k0) +

k−1∑
q=k0

k−1∏
s=q+1

λx
ℓ

αi
(s)

q∑
l=µq

θx
ℓ

αi
(q − l, q)

[
Fi(u

xℓ

i (l))

+

n∑
j=1

ax
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∧
j=1

γx
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∨
j=1

ηx
ℓ

ij (l)fj(v
xℓ

j (l))

+Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)Hij(v
xℓ

j (l))h−1∆hW1j(l)

]
, (2.7)

vx
ℓ

j (k) =
k−1∏
s=k0

λx
ℓ

βj
(s)vx

ℓ

j (k0) +
k−1∑
q=k0

k−1∏
s=q+1

λx
ℓ

βj
(s)

q∑
l=µq

θx
ℓ

βj
(q − l, q)

[
Gj(v

xℓ

j (l))

+

m∑
i=1

ex
ℓ

ji (l)gi(u
xℓ

i (l)) +

m∧
i=1

εx
ℓ

ji (l)gi(u
xℓ

i (l)) +

m∨
i=1

ϑx
ℓ

ji (l)gi(u
xℓ

i (l))

+Jxℓ

j (l) +

m∑
i=1

ςx
ℓ

ji (l)Lji(u
xℓ

i (l))h−1∆hW2i(l)

]
, ∀xℓ ∈ Ωd, (2.8)

where k0∈Z, uxℓ

i (k)
∣∣∣
xℓ∈∂Ωd

=ϕx
ℓ

i,k, v
xℓ

j (k)
∣∣∣
xℓ∈∂Ωd

= ϕ̃x
ℓ

j,k, ∀(k, i, j)∈([k0,+∞)Z,Nm
1 ,Nn

1 ).

Let Q∗ = supp∈Z(Qp+1 −Qp),

λ̄αi
= sup

k∈Z,xℓ∈Ωd

λx
ℓ

αi
(k), λ̄βj

= sup
k∈Z,xℓ∈Ωd

λx
ℓ

βj
(k),
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c∗i = inf
xℓ∈Ωd

c∗i (x
ℓ), d∗j = inf

xℓ∈Ωd

d∗j (x
ℓ), ∀(i, j) ∈ (Nm

1 ,Nn
1 ).

It easily gets the lemma below.

Lemma 2.4. If Q∗ < +∞, αi, βj ∈ (0, 1] and c∗i , d∗j > 0, one has

0 < λx
ℓ

αi
(k) ≤ λ̄αi

< 1, 0 < λx
ℓ

βj
(k) ≤ λ̄βj

< 1,

Q∗∑
l=0

|θx
ℓ

αi
(l, k)| ≤ 2

c∗i
,

Q∗∑
l=0

|θx
ℓ

βj(l, k)| ≤
2

d∗j
,

for all (xℓ, k, i, j) ∈ (Ω̄d,Z,Nm
1 ,Nn

1 ).

3. Periodic sequence
Let E(·) be the expectation under a complete probability space (Λ,F ,P) and W =
(W11, . . . ,W1m,W21, . . . ,W2n)

T be a two-sided standard (m+n)-dimensional Brow-
nian motion defined on (Λ,F ,P). Set Ft = σ{W(s) : s ≤ t} for t ∈ R. Further,
L2(Λ,Rm+n) denotes the family of all square integrable Rm+n-valued random vari-
ables and X = B(Z×Ω̄d, L

2(Λ,Rm+n)) stands for the set of all functions from Z×Ω̄d

to L2(Λ,Rm+n) endowed with the norm

∥Z∥X = sup
k∈Z

max
1≤i≤m,1≤i≤n,xℓ∈Ω̄d

max

{[
E
∣∣∣uxℓ

i (k)
∣∣∣2]1/2 , [E ∣∣∣vxℓ

j (k)
∣∣∣2]1/2} ,

where Z = (u1, . . . , um, v1, . . . , vn)
T ∈ X. Obviously, (X, ∥ · ∥X) becomes a Banach

space. In the whole paper, φxℓ

i , φ̃
xℓ

i are F0-adapted and ϕx
ℓ

i (k), ϕ̃x
ℓ

i (k) are Fk-
adapted, ∀(xℓ, k, i, j) ∈ (Ω̄d,Z,Nm

1 ,Nn
1 ).

Definition 3.1. A discrete-time stochastic process Z = (u1, . . . , um, v1, . . . , vn)
T ∈

X is called the solution of Eqs. (2.4)-(2.5) if it is Ft-adapted and meets Eqs. (2.7)-
(2.8).

Definition 3.2. Let ω ∈ R. A discrete-time stochastic process Z ∈ X is called
ω-periodic in distribution if the law of Z(·+ ω) is the same as that of Z(·).

Lemma 3.1. ( [13]) (Minkowski inequality) If f, g ∈ L2(Λ,R), then[
E(f + g)2

] 1
2 ≤

(
Ef2

) 1
2 +

(
Eg2

) 1
2 .

Lemma 3.2. ( [13]) (Hölder inequality) Let p > 1 and ak, bk : Z → R. Then

∑
k

|akbk| ≤
[∑

k

|ak|
]1−1/p[∑

k

|ak||bk|p
]1/p

.

Lemma 3.3. ( [29]) Let {f(k)}k∈Z ⊆ L2(Λ,R) and {W(t)}t∈R be a two-sided stan-
dard one dimensional Brownian motion. Then

E |f(k)∆hW(k)|2 ≤ 4hE|f(k)|2,

where ∆hW(k) = W(kh+ h)−W(kh), ∀k ∈ Z.
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Here, we needs the following assumptions.

(H1) {νk} is a ω-periodic sequence, ω ∈ Z, i.e., νk+ω = νk, ∀k ∈ Z.
(H2) a

xℓ

ij (k), γx
ℓ

ij (k), ηx
ℓ

ij (k), Ix
ℓ

i (k), µxℓ

ij (k), ex
ℓ

ji (k), εx
ℓ

ji (k), ϑx
ℓ

ji (k), Jxℓ

j (k) and
ςx

ℓ

ji (k) are ω-periodic sequences with respect to variable k ∈ Z, (xℓ, i, j) ∈
(Ωd,Nm

1 ,Nn
1 ).

(H3) It exists positive numbers LF
i , Lf

j , LH
ij , LG

j , Lg
i , LL

ji such that

|Fi(x)− Fi(y)| ≤ LF
i |x− y|, |fj(x)− fj(y)| ≤ Lf

j |x− y|,
|Hij(x)−Hij(y)| ≤ LH

ij |x− y|, |Gj(x)−Gj(y)| ≤ LG
j |x− y|,

|gi(x)− gi(y)| ≤ Lg
i |x− y|, |Lji(x)− Lji(y)| ≤ LL

ji|x− y|

for any x, y ∈ R, (i, j) ∈ (Nm
1 ,Nn

1 ).

Define f̄ = sup
k∈Z,s∈Ωd

|f(k, s)|, which f := Z × Ωd → R is a sequence. Let

D∗
i = 2

∑N
q=1

Diq

h2
q
, K∗

j = 2
∑N

q=1
Kjq

h2
q
, (i, j) ∈ (Nm

1 ,Nn
1 ); σ0 = σ2

1−σ1
, where

σ1 = max
1≤i≤m,1≤j≤n

{
2

c∗i (1− λ̄αi
)

[
D∗

i +

n∑
j=1

(āij + γ̄ij + η̄ij)Lf
j + 2h−

1
2

n∑
j=1

µ̄ijLH
ij

]
,

2

d∗j (1− λ̄βj
)

[
K∗

j +

m∑
i=1

(ēji + ε̄ji + ϑ̄ji)Lg
i + 2h−

1
2

m∑
i=1

ς̄jiLL
ji

]}

σ2 =sup
k∈Z

max
1≤i≤m,1≤j≤n

{[
E
∣∣φxℓ

i,k

∣∣2] 1
2

,

[
E
∣∣φ̃xℓ

j,k

∣∣2] 1
2

,

2

c∗i (1− λ̄αi
)

[( n∑
j=1

āij +

n∧
j=1

γ̄ij +

n∨
j=1

η̄ij

)
|fj(0)|+ Īi + 2h−

1
2

n∑
j=1

µ̄ij |Hij(0)|
]
,

2

d∗j (1− λ̄βj
)

[( m∑
i=1

ēji +

m∧
i=1

ε̄ji +

m∨
i=1

ϑ̄ji

)
|gi(0)|+ J̄j + 2h−

1
2

m∑
i=1

ς̄ji|Lji(0)|
]}
.

Let Z0 = {Z ∈ X : ∥Z∥X ≤ σ0}. In accordance with Eqs. (2.7), define a mapping
Ψ : Z0 → X as

ΨZ =
(
(Ψu)1, (Ψu)2, . . . , (Ψu)m, (Ψv)1, (Ψv)2, . . . , (Ψv)n

)T

where

(Ψu)x
ℓ

i,k =

k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

q∑
l=µq

θx
ℓ

αi
(q − l, q)

[
Fi(u

xℓ

i (l)) +

n∑
j=1

ax
ℓ

ij (l)fj(v
xℓ

j (l))

+

n∧
j=1

γx
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∨
j=1

ηx
ℓ

ij (l)fj(v
xℓ

j (l)) + Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)

×Hij(v
xℓ

j (l))h−1∆hW1j(l)

]
, (3.1)

(Ψv)x
ℓ

j,k =

k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

βj
(s)

q∑
l=µq

θx
ℓ

βj
(q − l, q)

[
Gj(v

xℓ

j (l)) +

m∑
i=1

ex
ℓ

ji (l)gi(u
xℓ

i (l))



Nonlocal stochastic fuzzy BAM lattice neural networks 1821

+

m∧
i=1

εx
ℓ

ji (l)gi(u
xℓ

i (l)) +

m∨
i=1

ϑx
ℓ

ji (l)gi(u
xℓ

i (l)) + Jxℓ

j (l) +

m∑
i=1

ςx
ℓ

ji (l)

× Lji(u
xℓ

i (l))h−1∆hW2i(l)

]
, xℓ ∈ Ωd; (3.2)

(Ψu)x
ℓ

i,k

∣∣∣∣
xℓ∈∂Ωd

= φxℓ

i (k), (Ψv)x
ℓ

j,k

∣∣∣∣
xℓ∈∂Ωd

= φ̃xℓ

j (k),∀(k, i, j) ∈ (Z,Nm
1 ,Nn

1 ).

Proposition 3.1. Ψ is well defined and maps Z0 to Z0 if (H3) and (H4) below
hold.
(H4) σ1 < 1.
Proof. Suppose that Z = (u1, . . . , um, v1, . . . , vn)

T ∈ Z0. Based on Eqs. (3.1),
Lemmas 3.1, 3.2 and 3.3, it gets[

E
∣∣∣(Ψu)xℓ

i,k

∣∣∣2] 1
2

=

{
E
[ k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

q∑
l=µq

θx
ℓ

αi
(q − l, q)

(
Fi(u

xℓ

i (l))

+

n∑
j=1

ax
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∧
j=1

γx
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∨
j=1

ηx
ℓ

ij (l)

×fj(vx
ℓ

j (l)) + Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)Hij(v
xℓ

j (l))h−1∆hW1j(l)

)]2} 1
2

≤

{
E
{[ k−1∑

q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

] 1
2
{ k−1∑

q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

×
[ q∑
l=µq

θx
ℓ

αi
(q − l, q)

(
Fi(u

xℓ

i (l)) +

n∑
j=1

ax
ℓ

ij (l)fj(v
xℓ

j (l))

+

n∧
j=1

γx
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∨
j=1

ηx
ℓ

ij (l)fj(v
xℓ

j (l)) + Ix
ℓ

i (l)

+
n∑

j=1

µxℓ

ij (l)Hij(v
xℓ

j (l))h−1∆hW1j(l)

)]2} 1
2
}2

} 1
2

≤
k−1∑

q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

{
E
[ q∑
l=µq

θx
ℓ

αi
(q − l, q)

(
Fi(u

xℓ

i (l))

+

n∑
j=1

ax
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∧
j=1

γx
ℓ

ij (l)fj(v
xℓ

j (l)) +

n∨
j=1

ηx
ℓ

ij (l)

×fj(vx
ℓ

j (l)) + Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)Hij(v
xℓ

j (l))h−1∆hW1j(l)

)]2} 1
2

≤ 2

c∗i (1− λ̄αi
)

{[
D∗

i +

n∑
j=1

(āij + γ̄ij + η̄ij)Lf
j

]
∥Z∥X
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+

( n∑
j=1

āij +

n∧
j=1

γ̄ij +

n∨
j=1

η̄ij

)
|fj(0)|+ Īi + 2h−

1
2

n∑
j=1

µ̄ij

×|Hij(0)|+
n∑

j=1

µ̄ijLH
ij

[
E
∣∣∣vxℓ

j (l)h−1∆hW1j(l)
∣∣∣2] 1

2
}

≤ 2

c∗i (1− λ̄αi
)

[
D∗

i +

n∑
j=1

(āij + γ̄ij + η̄ij)Lf
j + 2h−

1
2

n∑
j=1

µ̄ijLH
ij

]

×∥Z∥X +
2

c∗i (1− λ̄αi
)

[( n∑
j=1

āij +

n∧
j=1

γ̄ij +

n∨
j=1

η̄ij

)
|fj(0)|

+Īi + 2h−
1
2

n∑
j=1

µ̄ij |Hij(0)|
]

≤ σ1σ0 + σ2, ∀(Z, xℓ, k, i, j) ∈ (Z0,Ωd,Z,Nm
1 ,Nn

1 ).

Similarly, it yields from (3.2) that[
E
∣∣∣(Ψv)xℓ

j,k

∣∣∣2] 1
2

=

{
E
[ k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

βj
(s)

q∑
l=µq

θx
ℓ

βj
(q − l, q)

(
Gj(v

xℓ

j (l))

+

m∑
i=1

ex
ℓ

ji (l)gi(u
xℓ

i (l)) +

m∧
i=1

εx
ℓ

ji (l)gi(u
xℓ

i (l)) +

m∨
i=1

ϑx
ℓ

ji (l)

×gi(ux
ℓ

i (l)) + Jxℓ

j (l) +

m∑
i=1

ςx
ℓ

ji (l)Lji(u
xℓ

i (l))h−1∆hW2i(l)

)]2} 1
2

≤ 2

d∗j (1− λ̄βj )

[
K∗

j +

m∑
i=1

(ēji + ε̄ji + ϑ̄ji)Lg
i + 2h−

1
2

m∑
i=1

ς̄jiLL
ji

]

×∥Z∥X +
2

d∗j (1− λ̄βj
)

[( m∑
i=1

ēji +

m∧
i=1

ε̄ji +

m∨
i=1

ϑ̄ji

)
|gi(0)|

+J̄j + 2h−
1
2

m∑
i=1

ς̄ji|Lji(0)|
]

≤ σ1σ0 + σ2, ∀(Z, xℓ, k, i, j) ∈ (Z0,Ωd,Z,Nm
1 ,Nn

1 ).

Summarizing the above analyses, it leads to ∥ΨZ∥X ≤ σ1σ0+σ2 = σ0, ∀Z ∈ Z0.
Therefore, Ψ is well defined and maps Z0 to Z0. The proof is achieved.

Remark 3.1. In order to ensure the validity of condition (H4) in Proposition 3.1,
we should pay attention to the following aspects in application.
(i) As for the coefficients of BAMNNs (2.1)-(2.2), except for ci and dj , it is bet-

ter to choose smaller constants, inversely, ci, dj should be chosen the larger
positive constants for any (i, j) ∈ (Nm

1 ,Nn
1 ).

(ii) It is best to choose small positive constants for the time-space discrete step
lengths h and hq.
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(iii) The activation functions Fi, fj , Hij , Gj , gi and Lji of BAMNNs (2.1)-(2.2)
are best to select some small enough positive constants LF

i , Lf
j , LH

ij , LG
j , Lg

i ,
LL
ji for any (i, j) ∈ (Nm

1 ,Nn
1 ).

Proposition 3.2. Eqs. (2.4)-(2.5) admits a unique solution in Z0 if (H3)-(H4)
hold.

Proof. By Proposition 3.1, Ψ : Z0 → Z0. Assume that

Z = (u1, . . . , um, v1, . . . , vn)
T , Z̃ = (ũ1, . . . , ũm, ṽ1, . . . , ṽn)

T ∈ Z0,

it derives from Eqs. (3.1)-(3.2) that[
E
∣∣∣(Ψu)xℓ

i,k − (Ψũ)x
ℓ

i,k

∣∣∣2] 1
2

≤
{
E
∣∣∣∣ k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

q∑
l=µq

θx
ℓ

αi
(q − l, q)

[ ∣∣∣Fi(u
xℓ

i (l))− Fi(ũ
xℓ

i (l))
∣∣∣

+

n∑
j=1

(āij + γ̄ij + η̄ij)
∣∣∣fj(vxℓ

j (l))− fj(ṽ
xℓ

j (l))
∣∣∣

+

n∑
j=1

µ̄ijh
−1|∆hW1j(l)|

∣∣∣Hij(v
xℓ

j (l))−Hij(ṽ
xℓ

j (l))
∣∣∣ ]∣∣∣∣2} 1

2

≤
k−1∑

q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

{
E
[ q∑
l=µq

∣∣θxℓ

αi
(q − l, q)

∣∣( ∣∣∣Fi(u
xℓ

i (l))− Fi(ũ
xℓ

i (l))
∣∣∣

+

n∑
j=1

(āij + γ̄ij + η̄ij)
∣∣∣fj(vxℓ

j (l))− fj(ṽ
xℓ

j (l))
∣∣∣

+

n∑
j=1

µ̄ijh
−1|∆hW1j(l)|

∣∣∣Hij(v
xℓ

j (l))−Hij(ṽ
xℓ

j (l))
∣∣∣ )]2} 1

2

≤ 2

c∗i (1− λ̄αi
)

[
D∗

i +

n∑
j=1

(āij + γ̄ij + η̄ij)Lf
j + 2h−

1
2

m∑
j=1

µ̄ijLH
ij

]
∥Z − Z̃∥X

≤ σ1∥Z − Z̃∥X, ∀(xℓ, k, i, j) ∈ (Ω̄d,Z,Nm
1 ,Nn

1 ).

Similarly,[
E
∣∣∣(Ψv)xℓ

j,k − (Ψṽ)x
ℓ

j,k

∣∣∣2] 1
2

≤ σ1∥Z − Z̃∥X, ∀(xℓ, k, i, j) ∈ (Ω̄d,Z,Nm
1 ,Nn

1 ).

So ∥ΨZ −ΨZ̃∥X ≤ σ1∥Z − Z̃∥X, ∀Z, Z̃ ∈ Z0. By (H4), Ψ is contractive and Ψ has
a unique fixed point Z = ΨZ ∈ Z0 ⊆ X solving Eqs. (2.4)-(2.5). This finishes the
proof.

Theorem 3.1. A unique ω-periodic sequence in distribution solves Eqs. (2.4)-(2.5)
if (H1)-(H4) hold.

Proof. Eqs. (2.4)-(2.5) possesses a unique solution Z in Z0 on the basis of Proposi-
tion 3.2. By Proposition 3.2, the unique solution Z = (u1, . . . , um, v1, . . . , vn)

T ∈ Z0
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of Eqs. (2.4)-(2.5) meets

uxℓ

i (k + ω) =

k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

q∑
l=µq

θx
ℓ

αi
(q − l, q)

[
Fi(uxℓ

i (l + ω)) +

n∑
j=1

ax
ℓ

ij (l)

×fj(vxℓ

j (l + ω)) +

n∧
j=1

γx
ℓ

ij (l)fj(vxℓ

j (l + ω)) +

n∨
j=1

ηx
ℓ

ij (l)fj(vxℓ

j (l + ω))

+Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)Hij(vxℓ

j (l + ω))h−1∆hW1j(l + ω)

]
,

vxℓ

j (k + ω) =

k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

βj
(s)

q∑
l=µq

θx
ℓ

βj
(q − l, q)

[
Gj(vxℓ

j (l + ω)) +

m∑
i=1

ex
ℓ

ji (l)

×gi(uxℓ

i (l + ω)) +

m∧
i=1

εx
ℓ

ji (l)gi(uxℓ

i (l + ω)) +

m∨
i=1

ϑx
ℓ

ji (l)gi(uxℓ

i (l + ω))

+Jxℓ

j (l) +

m∑
i=1

ςx
ℓ

ji (l)Lji(uxℓ

i (l + ω))h−1∆hW2i(l + ω)

]
, ∀xℓ ∈ Ωd,

uxℓ

i (k)
∣∣∣
xℓ∈∂Ωd

= ϕx
ℓ

i (k), vxℓ

j (k)
∣∣∣
xℓ∈∂Ωd

= ϕ̃x
ℓ

j (k), ∀(k, i, j) ∈ (Z,Nm
1 ,Nn

1 ).

Let us discuss the stochastic process Zω = (u1,ω, . . . , um,ω, v1,ω, . . . , vn,ω)
T below

uxℓ

i,ω(k) =

k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

αi
(s)

q∑
l=µq

θx
ℓ

αi
(q − l, q)

[
Fi(uxℓ

i,ω(l)) +

n∑
j=1

ax
ℓ

ij (l)

× fj(vxℓ

j,ω(l)) +

n∧
j=1

γx
ℓ

ij (l)fj(vxℓ

j,ω(l)) +

n∨
j=1

ηx
ℓ

ij (l)fj(vxℓ

j,ω(l))

+ Ix
ℓ

i (l) +

n∑
j=1

µxℓ

ij (l)Hij(vxℓ

j,ω(l))h
−1∆hW1j(l)

]
,

vxℓ

j,ω(k) =

k−1∑
q=−∞

k−1∏
s=q+1

λx
ℓ

βj
(s)

q∑
l=µq

θx
ℓ

βj
(q − l, q)

[
Gj(vxℓ

j,ω(l)) +

m∑
i=1

ex
ℓ

ji (l)

× gi(uxℓ

i,ω(l)) +

m∧
i=1

εx
ℓ

ji (l)gi(uxℓ

i,ω(l)) +

m∨
i=1

ϑx
ℓ

ji (l)gi(uxℓ

i,ω(l))

+ Jxℓ

j (l) +

m∑
i=1

ςx
ℓ

ji (l)Lji(uxℓ

i,ω(l))h
−1∆hW2i(l)

]
, ∀xℓ ∈ Ωd,

uxℓ

i,ω(k)
∣∣∣
xℓ∈∂Ωd

= ϕx
ℓ

i (k), vxℓ

j,ω(k)
∣∣∣
xℓ∈∂Ωd

= ϕ̃x
ℓ

j (k),∀(k, i, j) ∈ (Z,Nm
1 ,Nn

1 ).

Similar to Z, Zω is unique and bounded in Z0. Noting that ∆hW1j(k + ω)
and ∆hW2i(k + ω) have the same laws as ∆hW1j(k) and ∆hW2i(k), respectively,
∀(k, i, j) ∈ (Z,Nm

1 ,Nn
1 ). Then Zω(·) has the same distribution as Z(·+ ω).

Resembling the derivation in Proposition 3.2, it calculates[
E
∣∣∣uxℓ

i,ω(k)− uxℓ

i (k)
∣∣∣2] 1

2

≤ σ1∥Zω − Z∥X,
[
E
∣∣∣vxℓ

j,ω(k)− vxℓ

j (k)
∣∣∣2] 1

2

≤ σ1∥Zω − Z∥X,
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where (xℓ, k, i, j) ∈ (Ω̄d,Z,Nm
1 ,Nn

1 ). Together with assumption (H4), it leads to
∥Zω − Z∥X = 0. So the law of Zω is equal to that of Z. Recalling that Zω(·) has the
same distribution as Z(·+ω). Then Z(·+ω) has the same distribution as Z(·). This
finishes the proof.

Remark 3.2. In literatures [11, 14, 30], the authors discussed the periodic oscil-
lations to various discrete-time BAMNNs. However, almost no paper regards the
study of periodic sequences of discrete-time stochastic lattice BAMNNs. Thus the
current work extends the works in papers [11,14,30].

4. Global mean-square λ-exponential convergence
Let Z = (u1, . . . , um, v1, . . . , vn)

T and Z̃ = (ũ1, . . . , ũm, ṽ1, . . . , ṽn)
T be any two

solutions of Eqs. (2.4)-(2.5) with initial boundary conditions

ux
ℓ

i (0)=ψxℓ

i , ũx
ℓ

i (0)= ψ̃xℓ

i , ∀xℓ ∈ Ωd, u
xℓ

i (k)
∣∣∣
xℓ∈∂Ωd

= ũx
ℓ

i (k)
∣∣∣
xℓ∈∂Ωd

= ϕx
ℓ

i (k),

vx
ℓ

j (0) = φxℓ

j , ṽx
ℓ

j (0) = φ̃xℓ

j , ∀xℓ ∈ Ωd, v
xℓ

j (k)
∣∣∣
xℓ∈∂Ωd

= ṽx
ℓ

j (k)
∣∣∣
xℓ∈∂Ωd

= ϕ̃x
ℓ

j (k)

for all (k, i, j) ∈ (N0,Nm
1 ,Nn

1 ).

Set Y = (u1, . . . ,um,v1, . . . ,vn)
T with uxℓ

i (k) = ux
ℓ

i (k)− ũx
ℓ

i (k) and vxℓ

j (k) =

vx
ℓ

j (k) − ṽx
ℓ

j (k) for all (xℓ, k, i, j) ∈ (Ωd,Z,Nm
1 ,Nn

1 ). Eqs. (2.4)-(2.5) is said to be
globally mean-square λ-exponential convergent if it exists M > 0 and 0 < κ < 1
such that

∥Y(k)∥Ωd
≤M∥ψ∥Ωd

λκk, ∀k ≥ 0, λ = max
1≤i≤m,1≤j≤n

{λ̄αi
, λ̄βj

} ∈ (0, 1),

where

∥Y(k)∥Ωd
= max

1≤i≤m,1≤j≤n,xℓ∈Ωd

{
∥uxℓ

i (k)∥Ωd
, ∥vxℓ

j (k)∥Ωd

}
,

∥uxℓ

i (k)∥Ωd
=

[
E
∣∣uxℓ

i (k)
∣∣2] 1

2

, ∥vxℓ

j (k)∥Ωd
=

[
E
∣∣vxℓ

j (k)
∣∣2] 1

2

,

(i, j) ∈ (Nm
1 ,Nn

1 ), and

∥ψ∥Ωd
= max

1≤i≤m,1≤j≤n,xℓ∈Ωd

{[
E
∣∣ψxℓ

i − ψ̃xℓ

i

∣∣2] 1
2

,

[
E
∣∣φxℓ

j − φ̃xℓ

j

∣∣2] 1
2
}
.

Here, κ is called the convergent rate of Eqs. (2.4)-(2.5).

Theorem 4.1. Eqs. (2.4)-(2.5) is globally mean-square λ-exponentially convergent
if (H3)-(H4) hold.

Proof. By Eqs. (2.7)-(2.8), it achieves

|uxℓ

i (k)| ≤
k−1∏
s=0

λx
ℓ

αi
(s)|ψxℓ

i − ψ̃xℓ

i |+
k−1∑
q=0

k−1∏
s=q+1

λx
ℓ

αi
(s)

×
νq∑
l=0

|θx
ℓ

αi
(l, q)|

[ ∣∣∣Fi(u
xℓ

i (q − l))− Fi(ũ
xℓ

i (q − l))
∣∣∣
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+

n∑
j=1

(āij + γ̄ij + η̄ij)
∣∣∣fj(vxℓ

j (q − l))− fj(ṽ
xℓ

j (q − l))
∣∣∣

+

n∑
j=1

h−1µ̄ij

∣∣∣Hij(v
xℓ

j (q − l))−Hij(ṽ
xℓ

j (q − l))
∣∣∣ |∆hW1j(q − l)|

]

≤ λ̄kαi
|ψxℓ

i − ψ̃xℓ

i |+
k−1∑
q=0

λ̄k−q−1
αi

νq∑
l=0

|θx
ℓ

αi
(l, q)|

×
[
D∗

i |uxℓ

i (q − l)|+
n∑

j=1

(āij + γ̄ij + η̄ij)Lf
j |v

xℓ

j (q − l)|

+

m∑
j=1

µ̄ijLH
ijh

−1|vxℓ

j (q − l)||∆hW1j(q − l)|
]

for all (xℓ, k, i, j) ∈ (Ωd,N0,Nm
1 ,Nn

1 ). Thus, it derives

∥uxℓ

i (k)∥Ωd
≤ λ̄k∥ψ∥Ωd

+

k−1∑
q=0

λ̄k−q−1
αi

νq∑
l=0

|θx
ℓ

αi
(l, q)|

×
[
D∗

i +

n∑
j=1

(āij+γ̄ij+η̄ij)Lf
j +2h−

1
2

m∑
j=1

µ̄ijLH
ij

]
∥Y(q − l)∥Ωd

, (4.1)

where (xℓ, k, i, j) ∈ (Ωd,N0,Nm
1 ,Nn

1 ).
Similarly, it gets

∥vxℓ

j (k)∥Ωd
≤ λ̄k∥ψ∥Ωd

+

k−1∑
q=0

λ̄k−q−1
βj

νq∑
l=0

|θx
ℓ

βj
(l, q)|

×
[
K∗

j +

m∑
i=1

(ēji+ε̄ji+ϑ̄ji)Lg
i +2h−

1
2

m∑
j=1

ς̄jiLL
ji

]
∥Y(q − l)∥Ωd

, (4.2)

where (xℓ, k, i, j) ∈ (Ωd,N0,Nm
1 ,Nn

1 ).
Owing to (H4), it has M > 1 and 0 < κ < 1 ensuring
1

M
+ max

1≤i≤m

2λ̄
−κ(Q∗+1)
αi

c∗i (1− λ̄1−κ
αi )

[
D∗

i +

n∑
j=1

(āij + γ̄ij + η̄ij)Lf
j + 2h−

1
2

m∑
j=1

µ̄ijLH
ij

]
< 1,

1

M
+ max

1≤j≤n

2λ̄
−κ(Q∗+1)
βj

d∗j (1− λ̄1−κ
βj

)

[
K∗

j +

m∑
i=1

(ēji + ε̄ji + ϑ̄ji)Lg
i + 2h−

1
2

m∑
j=1

ς̄jiLL
ji

]
< 1.

Supposing that ∥Y(k)∥Ωd
≤ M∥ψ∥Ωd

λ̄κk for all k ∈ N0. If not, there must be
one of the following cases holds.

(1) It exists i0 ∈ Nm
1 and k0 ∈ N causing

∥uxℓ

i0 (k0)∥Ωd
> M∥ψ∥Ωd

λ̄κk0 ; ∥Y(k)∥Ωd
≤M∥ψ∥Ωd

λ̄κk, ∀k ∈ [0, k0)Z.

(2) It exists j0 ∈ Nn
1 and k1 ∈ N causing

∥vxℓ

j0 (k1)∥Ωd
> M∥ψ∥Ωd

λ̄κk1 ; ∥Y(k)∥Ωd
≤M∥ψ∥Ωd

λ̄κk, ∀k ∈ [0, k1)Z.
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In the light of (4.1), it results in

∥uxℓ

i0 (k0)∥Ωd

≤ λ̄k0∥ψ∥Ωd
+

k0−1∑
q=0

λ̄k0−q−1
αi0

νq∑
l=0

|θx
ℓ

αi0
(l, q)|

×
[
D∗

i0 +

n∑
j=1

(āi0j + γ̄i0j + η̄i0j)L
f
j + 2h−

1
2

m∑
j=1

µ̄i0jLH
i0j

]
∥Y(q − l)∥Ωd

≤ λ̄k0∥ψ∥Ωd
+

k0−1∑
q=0

λ̄(1−κ)(k0−q−1)
αi0

νq∑
l=0

|θx
ℓ

αi0
(l, q)|

×
[
D∗

i0 +

n∑
j=1

(āi0j + γ̄i0j + η̄i0j)L
f
j + 2h−

1
2

m∑
j=1

µ̄i0jLH
i0j

]
M∥ψ∥Ωd

λ̄κ(q−l)

≤ λ̄k0∥ψ∥Ωd
+

2λ̄
−κ(Q∗+1)
αi0

c∗i0(1− λ̄1−κ
αi0

)

×
[
D∗

i0 +

n∑
j=1

(āi0j + γ̄i0j + η̄i0j)L
f
j + 2h−

1
2

m∑
j=1

µ̄i0jLH
i0j

]
M∥ψ∥Ωd

λ̄κk0

≤
{

1

M
λ̄(1−κ)k0 +

2λ̄
−κ(Q∗+1)
αi0

c∗i0(1− λ̄1−κ
αi0

)

×
[
D∗

i0 +

n∑
j=1

(āi0j + γ̄i0j + η̄i0j)L
f
j + 2h−

1
2

m∑
j=1

µ̄i0jLH
i0j

]}
M∥ψ∥Ωd

λ̄κk0

≤ M∥ψ∥Ωd
λ̄κk0 .

This induces a confliction with (1).
Similarly, by (4.2), it acquires

∥vxℓ

j0 (k1)∥Ωd
≤

{
1

M
λ̄(1−κ)k1 +

2λ̄
−κ(Q∗+1)
βj0

d∗j0(1− λ̄1−κ
βj0

)

×
[
K∗

j +
m∑
i=1

(ēji + ε̄ji + ϑ̄ji)Lg
i + 2h−

1
2

m∑
j=1

ς̄jiLL
ji

]}
M∥ψ∥Ωd

λ̄κk1

≤ M∥ψ∥Ωd
λ̄κk1 .

It is a confliction with (2) and ∥Y(k)∥Ωd
≤ M∥ψ∥Ωd

λ̄κk for all k ∈ N0. That is,
Eqs. (2.4)-(2.5) is globally mean-square λ-exponentially convergent. The proof is
finished.

Remark 4.1. By employing time (exponential) Euler differences, literatures [10,
11,14,30] discussed exponential convergence of discrete-time (stochastic) BAMNNs
without diffusions. Apparently, the achieved difference models in literatures [10,
11, 14, 30] can be viewed as a special case of model (2.4)-(2.5) to some extent.
Thus, the work of this article supplements and extends the corresponding results
in [10,11,14,30].
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5. Illustrative example
Considering the following nonlocal stochastic BAMNNs with reaction diffusions in
the form of

cD0.6
5p u1(t, x) = 0.12

∂2u1(t, x)

∂x2
− 16u1(t, x) + 0.3 sin(ιt+

√
7x)f1(v(t, x))

+0.2 cos(ιt+ x) + 5H11(v(t, x))
dW11(t)

dt
, (5.1)

cD0.4
5p u2(t, x) = 0.08

∂2u2(t, x)

∂x2
− 21u2(t, x) + 0.5 cos(ιt+

√
5x)f1(v(t, x))

+0.1 sin(ιt+ x) + 2H21(v(t, x))
dW12(t)

dt
, (5.2)

cD0.7
5p v(t, x) = 0.15

∂2v(t, x)

∂x2
− 19v(t, x)

+0.2 sin(ιt+
√
7x)

∧{
g1(u1(t, x)), g2(u2(t, x))

}
+0.3 cos(ιt+

√
3x)

∨{
g1(u1(t, x)), g2(u2(t, x))

}
+0.2 sin(ιt+

√
11x) + 2L11(u1(t, x))

dW21(t)

dt
, (5.3)

where (t, x) ∈ ((5p, 5p + 5], (0, 5)), p ∈ Z0, ι = 2
5π, f1(x) = H11(x) = H21(x) =

0.01| sinx|, g1(x) = g2(x) = L11(x) =
0.01|x|
1+|x| for x ∈ R. The corresponding initial

boundary conditions are depicted as u1(0, x) = u2(0, x) = 0.5 sin(x(x− 5)), v(0, x) = 0.1 sin(x(x− 5)), ∀x ∈ (0, 5),

u1(t, 0) = u1(t, 5) = u2(t, 0) = u2(t, 5) = v(t, 0) = v(t, 5) = 0, t ∈ R0.

Taking h = 1 and h1 = 0.5. It obtains the lattice equations corresponding to
Eqs. (5.1)-(5.3) in the shape of

uζ1(k + 1) = λζ0.6(k)u
ζ
1(l) +

k∑
l=µk

θζ0.6(k − l, k)

[
F1(u

ζ
1(l)) + 0.3 sin(ιl +

√
7ζ)

× f1(v(l, ζ)) + 0.2 cos(ιl + ζ) + 5H11(v(l, ζ))h
−1∆hW11(ζ), (5.4)

uζ2(k + 1) = λζ0.4(k)u
ζ
2(l) +

k∑
l=µk

θζ0.4(k − l, k)

[
F2(u

ζ
2(l)) + 0.5 cos(ιl +

√
5ζ)

× f1(v(ι, ζ)) + 0.1 sin(ιl + ζ) + 2H21(v(l, ζ))h
−1∆hW12(ζ), (5.5)

vx
ℓ

(k + 1) = λζ0.7(k)v
ζ(l) +

k∑
l=µk

θζ0.7(k − l, k)

[
G1(v

ζ(l))

+ 0.2 sin(ιl +
√
7ζ)

∧{
g1(u1(l, ζ)), g2(u2(l, ζ))

}
+ 0.3 cos(ιl +

√
3ζ)

∨{
g1(u1(l, ζ)), g2(u2(l, ζ))

}
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+ 0.2 sin(ιl +
√
11ζ) + 2L11(u1(l, ζ))h

−1∆hW21(ζ)

]
(5.6)

with initial condition

uζ1(0) = uζ2(0) = 0.5 sin(ζ(ζ − 5)), vζ(0) = 0.1 sin(ζ(ζ − 5))

for ζ = 0.5ℓ, ℓ = 0, 1, . . . , 10, and boundary condition given by

uζ1(k)
∣∣∣
ζ∈{0,5}

= uζ2(k)
∣∣∣
ζ∈{0,5}

= vζ(k)
∣∣∣
ζ∈{0,5}

= 0,

νk = k − µk, µk = maxp∈Z0

{
5p : 5p ≤ k

}
, λζ0.6, θζ0.6, λζ0.4, θζ0.4, λζ0.7 and θζ0.7 are

defined as those in (2.4) with c∗1 = 16.96, c∗2 = 21.64 and d∗1 = 20.2, respectively;

F1(u
ζ
1(l)) =

0.12

0.25

[
uζ+0.5
1 (l) + uζ−0.5

1 (l)
]
,

F2(u
ζ
2(l)) =

0.08

0.25

[
uζ+0.5
2 (l) + uζ−0.5

2 (l)
]
,

G1(v
ζ(l)) =

0.15

0.25

[
vζ+0.5(l) + vζ−0.5(l)

]
, ∀l, k ∈ Z0, ζ = 0.5ℓ, ℓ = 1, . . . , 9.

By a calculation, it gets

σ1 = 0.9406 < 1, σ2 = 0.8402, Z0 = 14.1448.

Therefore, (H1)-(H4) hold and Eqs. (5.4)-(5.6) admits a unique 5-periodic sequence
solution, which is globally mean-square λ-exponentially convergent, see Figures 1-9.

5 10 15 20 25 30 35 40

time k

-0.01

-0.005

0

0.005

0.01

0.015

u 12
(k

)

5 10 15 20 25 30 35 40

time k

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

u 14
(k

)

Figure 1. Periodic motion of uζ
1(·) (ζ = 2, 4) to Eqs. (5.4)-(5.6)

5 10 15 20 25 30 35 40

time k

-5

-4

-3

-2

-1

0

1

2

3

4

5

u 22
(k

)
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5 10 15 20 25 30 35 40

time k

-4

-3

-2

-1

0

1

2

3

4

5

u 24
(k

)

10-3

Figure 2. Periodic motion of uζ
2(·) (ζ = 2, 4) to Eqs. (5.4)-(5.6)
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5 10 15 20 25 30 35 40

time k

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

v2
(k

)

5 10 15 20 25 30 35 40

time k

-10

-8

-6

-4

-2

0

2

4

6

8

v4
(k

)

10-3

Figure 3. Periodic motion of vζ(·) (ζ = 2, 4) to Eqs. (5.4)-(5.6)

Figure 4. Periodic motion of uζ
1(·) (ζ = 0, 0.5, . . . , 5) to Eqs. (5.4)-(5.6)

Figure 5. Periodic motion of uζ
2(·) (ζ = 0, 0.5, . . . , 5) to Eqs. (5.4)-(5.6)

6. Conclusions and perspectives
By employing the finite difference and Mittag-Leffler time Euler difference tech-
niques, a novel lattice model for nonlocal fuzzy stochastic BAMNNs with reaction
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Figure 6. Periodic motion of vζ(·) (ζ = 0, 0.5, . . . , 5) to Eqs. (5.4)-(5.6)

Figure 7. λ-exponential convergence of uζ
1(·) (ζ = 0, 0.5, . . . , 5) to Eqs. (5.4)-(5.6)

diffusions are set up. Furthermore, the existence of a unique global bounded pe-
riodic sequence solution in distribution and global exponential convergence in the
mean-square sense have been investigated for the achieved stochastic lattice model.
Besides, in the discussions of this article, several important inequalities, such as
Minkowski inequality and Hölder inequality, are indispensable. Remarkably, the
work in this literature will open up the researches of periodic dynamics and global
mean-square exponential convergence of nonlocal stochastic fuzzy bidirectional asso-
ciative memory lattice neural networks and it will lay both theoretical and practical
foundations for the future work in this field.

According to the works in this literature, it will be many problems worthy of
further discussion.

1. This paper only discusses αi, βj ∈ (0, 1] (i, j) ∈ (Nm
1 ,Nn

1 ) and other cases are
supposed to be studied.

2. The models with time delays should be considered in the future, see refs.
[21, 22].
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Figure 8. λ-exponential convergence of uζ
2(·) (ζ = 0, 0.5, . . . , 5) to Eqs. (5.4)-(5.6)

Figure 9. λ-exponential convergence of vζ(·) (ζ = 0, 0.5, . . . , 5) to Eqs. (5.4)-(5.6)

3. Reimann-Liouville derivatives should be studied in the further.

4. Other dynamics ought to be discussed, e.g., bifurcation, chaos and control,
etc.

A. Appendix: Derivation of Eqs. (2.4)-(2.5)

By employing the finite difference methods, it gets
∂2ui(t, x)

∂x2q

∣∣∣∣
x=xℓ

≈ ui(t, x
ℓ + hqeq)− 2ui(t, x

ℓ) + ui(t, x
ℓ − hqeq)

h2q
,

∂2vj(t, x)

∂x2q

∣∣∣∣
x=xℓ

≈
vj(t, x

ℓ
q + hqeq)− 2vj(t, x

ℓ) + vj(t, x
ℓ
q − hqeq)

h2q
,

(A.1)
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where (t, xℓ, i, j) ∈ (R,Ωd,Nm
1 ,Nn

1 ) and q ∈ NN
1 , {eq : q = 1, 2, . . . ,N} is an

orthonormal basis of RN denoted by

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , eN = (0, 0, . . . , 1)T .

Making use of (A.1), Eqs. (2.1)-(2.2) is calculated approximately by

cDαi
tp ui(t, x

ℓ) ≈ −c∗i (xℓ)ui(t, xℓ) + Fi(t, ui) +

n∑
j=1

aij(t, x
ℓ)fj(vj(t, x

ℓ))

+

n∧
j=1

γij(t, x
ℓ)fj(vj(t, x

ℓ)) +

n∨
j=1

ηij(t, x
ℓ)fj(vj(t, x

ℓ))

+Ii(t, x
ℓ) +

n∑
j=1

µij(t, x
ℓ)Hij(vj(t, x

ℓ))
dW1j(t)

dt
, (A.2)

cD
βj

tp vj(t, x
ℓ) ≈ −d∗j (xℓ)vj(t, xℓ) +Gj(t, vj) +

m∑
i=1

eji(t, x
ℓ)gi(ui(t, x

ℓ))

+

m∧
i=1

εji(t, x
ℓ)gi(ui(t, x

ℓ)) +

m∨
i=1

ϑji(t, x
ℓ)gi(ui(t, x

ℓ))

+Jj(t, x
ℓ) +

m∑
i=1

ςji(t, x
ℓ)Lji(ui(t, x

ℓ))
dW2i(t)

dt
, (A.3)

where

c∗i (x
ℓ) = ci(x

ℓ) +

N∑
q=1

2Diq

h2q
, d∗j (x

ℓ) = dj(x
ℓ) +

N∑
q=1

2Kjq

h2q
,

Fi(t, ui) =

N∑
q=1

Diq

h2q

[
ui(t, x

ℓ + hqeq) + ui(t, x
ℓ − hqeq)

]
,

Gj(t, vj) =

N∑
q=1

Kjq

h2q

[
vj(t, x

ℓ + hqeq) + vj(t, x
ℓ − hqeq)

]
for all (t, xℓ, p, i, j) ∈ (Ip,Ωd,Z,Nm

1 ,Nn
1 ). Eqs. (2.3) are approximately estimated

by 
ui(0, x

ℓ) = φi(x
ℓ), ∀xℓ ∈ Ωd; ui(t, x

ℓ)

∣∣∣∣
xℓ∈∂Ωd

= ϕi(t, x
ℓ),

vj(0, x
ℓ) = φ̃j(x

ℓ), ∀xℓ ∈ Ωd; vj(t, x
ℓ)

∣∣∣∣
xℓ∈∂Ωd

= ϕ̃j(t, x
ℓ),

(A.4)

where (t, i, j) ∈ (Ip,Nm
1 ,Nn

1 ).

Assume that it exists a set Q = {Qp ∈ Z : Q0 = 0, Qp < Qp+1, p ∈ Z} ensuring
tp+1−tp
Qp+1−Qp

≡ h for all p ∈ Z. Based on (A.2)-(A.4) and by using the exponential
time difference techniques in Ref. [7], it obtains the lattice equations (2.4)-(2.5) of
Eqs. (2.1)-(2.2).
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