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A TWO-GRID DECOUPLED FINITE
ELEMENT METHOD FOR THE STATIONARY

CLOSED-LOOP GEOTHERMAL SYSTEM∗

Haochen Liu1 and Pengzhan Huang1,†

Abstract A two-grid decoupled finite element method is proposed and an-
alyzed for the stationary closed-loop geothermal model, which is coupled by
the Navier-Stokes/Darcy equations and the heat equations with some interface
conditions. The main idea of the proposed method is to solve the nonlinear
problem on a coarse grid to obtain an initial approximation, then solve the de-
coupled, linear problem on a fine grid. Hence, the original problem is solved by
two subsystems using the two-grid technique, which will save computational
time. Moreover, the stability of the proposed method is proved, and numerical
examples are presented.
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1. Introduction
This paper addresses the numerical simulation of the closed-loop geothermal system,
which consists of a main geothermal reservoir and several closed-loop heat exchange
pipes. The governing equations of this system include two parts: the Boussinesq
equations describe fluid flow in the pipelines, and the Darcy equations and the
heat equation govern fluid flow in the porous media of the geothermal reservoir.
Besides, two flows are coupled through heat exchanging conditions and no-fluid
communication conditions on the interface. Hence, this problem is complicated to
deal with in numerical simulation because of its interface conditions and coupling
of multiple physical quantities. In fact, the system not only contains the velocity
and the pressure but also includes the temperature field in both fluid subdomains.

In [21], a decoupled stabilized finite element approach is proposed for an un-
steady closed-loop geothermal system. As a matter of fact, the decoupling method
has become a popular method for solving such a hybrid model, making existing
single-model solvers locally applicable and saving much computational cost. In
this paper, based on the decoupled strategy, we will design the two-grid method
for solving the considered model. Some details of the two-grid method can be
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found in the works of Xu [24, 25], which is further investigated and applied to the
Burger’s equation [8], the Navier-Stokes equations [12,13,18], the natural convection
system [9, 10, 27], the Stokes-Darcy model [22], the magnetohydrodynamics equa-
tions [23], the Navier-Stokes/Darcy equations [3,5], and other problems [11,14–17].
However, to the authors’ knowledge, no paper is mentioned on the two-grid method
for the stationary closed-loop geothermal model.

2. The stationary closed-loop geothermal model
Consider a bounded domain Ω ⊂ Rd (d = 2 or 3)which consists of two subdomains
Ωf and Ωp with Lipschitz continuous boundaries ∂Ωf and ∂Ωp, separated by the
interface Γ. The vectors nf and np are the unit normal vectors that point outward
from the fluid layer Ωf and porous media layer Ωp, respectively. The unit out-
ward normal vectors satisfy the condition of np = −nf on the interface Γ. Now,
we consider the stationary closed-loop geothermal model on the whole domain as
follows.

In Ωf , the fluid flow with heat transfer is governed by the Navier-Stokes equa-
tions coupled with the heat equation for the velocity uf , pressure pf and tempera-
ture θf [26]

− ν∆uf + (uf · ∇)uf +∇pf = ν2Grθfe in Ωf , (2.1)
∇ · uf = 0 in Ωf , (2.2)
− κf∆θf + uf · ∇θf = gf in Ωf . (2.3)

In Ωp, the fluid in the porous media is described by the Darcy equations coupled
with the heat equation for the velocity up, pressure pp and temperature θp [26]

ν

Da
up +∇pp = ν2Grθpe in Ωp, (2.4)

∇ · up = 0 in Ωp, (2.5)
− κp∆θp + up · ∇θp = gp in Ωp, (2.6)

where ν, Gr are the kinetic viscosity and Grashof number, respectively. Besides,
the vector e represents a unit vector in the direction of gravitational acceleration.
Da is the Darcy number of the porous media, which is assumed to be isotropic and
homogeneous. Further, κi and gi, i = f, p, refer to the thermal conductivity of fluid
and the heat sources, respectively. Here i = f denotes the function in Ωf and i = p
means the function in Ωp.

Besides, the system (2.1)-(2.6) is considered in conjunction with the following
boundary conditions on ∂Ωf and ∂Ωp

uf = 0 on ∂Ωf\Γ, θf = 0 on ΓfD,
∂θf
∂nf

= 0 on ΓfN ,

up · np = 0 on ∂Ωp\Γ, θp = 0 on ΓpD,
∂θp
∂np

= 0 on ΓpN ,

where ΓfD and ΓfN are the pipe region boundaries with ∂Ωf\Γ = ΓfN ∪ ΓfD and
denote the Dirichlet and Neumann boundary conditions, respectively, and ΓpD and
ΓpN are the porous media region boundaries with ∂Ωp\Γ = ΓpN ∪ ΓpD and denote
the Dirichlet and Neumann boundary conditions, respectively.
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Furthermore, for the closed-loop geothermal system, in order to describe heat
exchanging and no-fluid communication on the interface Γ, we utilize several critical
interface conditions as follows [21]:

up · np = 0, uf · nf = 0, (No-communication conditions); (2.7)
θf = θp, (Continuity of temperature); (2.8)

κf
∂θf
∂nf

+ κp
∂θp
∂np

= 0, (Continuity of heat flux); (2.9)

uf · τ = 0, (No-slip condition), (2.10)

where τ is the unit tangential vector along Γ.
Next, we need to introduce some notations and function spaces to establish a

variational formulation of the stationary closed-loop geothermal model. Firstly, for
1 ≤ q ≤ ∞ and m ∈ N+, we denote the Lebesgue space by Lq(Ω) and the Sobolev
space by Hm(Ω) [1]. Secondly, we denote the inner product and norm on L2(Ω)d

by (·, ·) and ∥ · ∥0, respectively. We also denote the norm ∥ · ∥m of the Sobolev space
Hm(Ω) (m ≥ 1). Finally, we define the following function spaces:

Xf :=
{
vf ∈ H1 (Ωf )

d
: vf = 0 on ∂Ωf\Γ

}
,

Xp :=
{
vp ∈ L2 (Ωp)

d
,∇ · vp ∈ L2 (Ωp) : vp · np = 0 on ∂Ωp\Γ

}
,

Yf :=
{
qf ∈ L2 (Ωf ) : (qf , 1) = 0

}
, Yp :=

{
qp ∈ L2 (Ωp) : (qp, 1) = 0

}
,

Wf :=
{
ωf ∈ H1 (Ωf ) : ωf =0 on ΓfD

}
, Wp :=

{
ωp∈H1 (Ωp) : ωp = 0 on ΓpD

}
.

Besides, we define some product spaces

X := Xf ×Xp, Y := Yf × Yp, W :=Wf ×Wp,

and
WΓ :=

{
ω = (ωf , ωp) ∈Wf ×Wp : ωf |Γ = ωp|Γ

}
.

Moreover, we list the Poincaré inequality [1] as follows. For uf ∈ Xf , we have

∥uf∥0 ≤ Cp∥∇uf∥0,

where Cp is a constant which depends only on Ω.
Now, we show the variational formulation of the considered couple model: find

(u,p,θ) ∈ X × Y ×W such that for any (v, q,ω) ∈ X × Y ×WΓ:

a(u,v)− b(v,p) + cf (uf ;uf , vf ) = ν2Gr (θe,v) , (2.11)
b(u, q) = 0, (2.12)
ā(θ,ω) + c̄(u;θ,ω)− āΓ(θf , [ω]) + āγ([θ] , [ω]) = (g,ω) , (2.13)

where

a(u,v) = af (uf , vf ) + ap(up, vp), b(v,p) = bf (vf , pf ) + bp(vp, pp),

cf (uf ;uf , vf ) = ((uf · ∇)uf , vf ), (θe,v) = (θfe, vf ) + (θpe, vp) ,

ā(θ,ω) = āf (θf , ωf ) + āp(θp, ωp), c̄(u;θ,ω) = c̄f (uf ; θf , ωf ) + c̄p(up; θp, ωp),

āΓ(θf , [ω])=κf

∫
Γ

∇θf · nf · (ωf − ωp), āγ([θ] , [ω])=
κfγ

h̃

∫
Γ

(θf−θp)(ωf−ωp).
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Here h̃ > 0 is the mesh size which will be defined in the next section, γ > 0 is the
stabilized parameter which is independent of h̃, [θ] = θf − θp and

af (uf , vf ) = ν(∇uf ,∇vf ), ap(up, vp) =
ν

Da
(up, vp), bf (vf , pf ) = (pf ,∇ · vf ),

bp(vp, pp)=(pp,∇ · vp), āf (θf , ωf )=κf (∇θf ,∇ωf ), āp(θp, ωp) = κp(∇θp,∇ωp),

c̄f (uf ; θf , ωf ) = (uf · ∇θf , ωf ), c̄p(up; θp, ωp) = (up · ∇θp, ωp).

Remark 2.1. Note that the interface terms in (2.13) appear due to the dissipative
character of Nitsche’s coupling. Unlike the penalty methods, they are consistent
with the original differential equations but ensure the stability of the finite element
method. More details are discussed in [6, 21].

Lemma 2.1 ( [4,27]). The trilinear forms cf (·; ·, ·) and c̄i(·; ·, ·), i = f or p satisfy:

(i) In view of H1(Ω) ↪→ L4(Ω), we have

|cf (uf ; vf , wf )| ≤ N∥∇uf ∥0∥∇vf ∥0∥∇wf∥0, ∀uf , vf , wf ∈ Xf ,

|c̄f (uf ; θf , ωf )| ≤ N̄∥∇uf ∥0∥∇θf ∥0∥∇ωf∥0, ∀uf ∈ Xf , θf , ωf ∈Wf ,

|c̄p(up; θp, ωp)| ≤ N̄∥up ∥1∥∇θf ∥0∥∇ωp∥0, ∀up ∈ Xp, θp, ωp ∈Wp,

where N, N̄ are the constants depending only on Ω;
(ii) Under the condition of ∇ · ui = 0, there hold that

cf (uf ; vf , vf ) = 0 ∀ uf , vf ∈ Xf ; c̄i(ui; θi, θi) = 0 ∀ ui ∈ Xi, θi ∈Wi.

3. Two-grid decoupled finite element method
We consider the regular triangulation τh̃(Ω) = {T} of Ω with mesh size h̃ (h̃ = h or
H with h≪ H) whose value is the diameter h̃T of the element T . We assume that
the triangulations τh̃ (Ωf ) and τh̃ (Ωp) induced on the sub-domains Ωf and Ωp are
compatible on the interface Γ.

Set Xh̃×Yh̃×Wh̃ ⊂ X×Y ×W be three finite element spaces. The spaces Xfh̃
and Yfh̃ are chosen to satisfy the so-called LBB condition, such as MINI element. In
particular, the Xph̃ × Yph̃ can be chosen as Raviart-Thomas element. In the whole
domain Ω for the temperatures, we choose linear Lagrangian element. Hence, the
finite element discretization applied to the problem (2.11)-(2.13) leads to a coupled
discrete problem as follows: find

(
uh̃,ph̃,θh̃

)
∈ Xh̃ × Yh̃ ×Wh̃ such that for any(

vh̃, qh̃,ωh̃

)
∈ Xh̃ × Yh̃ ×Wh̃

a(uh̃,vh̃)− b(vh̃,ph̃) + cf (uf,h̃;uf,h̃, vf,h̃) = ν2Gr
(
θh̃e,vh̃

)
, (3.1)

b(uh̃, qh̃) = 0, (3.2)
ā(θh̃,ωh̃) + c̄(uh̃;θh̃,ωh̃)− āΓ(θf,h̃,

[
ωh̃

]
) + āγ(

[
θh̃

]
,
[
ωh̃

]
) =

(
g,ωh̃

)
. (3.3)

Now, we recall the local inverse inequality [21]. For θh̃ ∈ Wh̃, there exists a
constant Cin, which depends only on the minimum angles of Th̃, such that∥∥θh̃∥∥Γ ≤ C

1/2
in h̃−1/2

∥∥θh̃∥∥0 , (3.4)

where ∥ · ∥Γ = ∥ · ∥L2(Γ).
The following theorem shows the stability of the discrete problem (3.1)-(3.3).
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Theorem 3.1. Let (uh̃,ph̃,θh̃) ∈ Xh̃ ×Yh̃ ×Wh̃ be a solution of the finite element
scheme (3.1)-(3.3). Assume the functions gp, gf ∈ L2(Ω). If γ satisfies the condition
γ ≫ Cin, then we have the stability of the finite element discretization system∥∥∥∇θf,h̃∥∥∥2

0
+
∥∥∥∇θp,h̃∥∥∥2

0
≤ η2, (3.5)∥∥∥∇uf,h̃∥∥∥2

0
+

1

Da

∥∥∥up,h̃∥∥∥2
0
≤ (νξη)2, (3.6)

where ξ = CpGrmax{Cp,
√
Da} and η =

Cp

min{κf ,κp}∥g∥0.

Proof. First, choosing ωh̃ = θh̃ in (3.3) and using Lemma 2.1 get

āf

(
θf,h̃, θf,h̃

)
+ āp

(
θp,h̃, θp,h̃

)
+
κfγ

h̃

∫
Γ

(θf,h̃ − θp,h̃)(θf,h̃ − θp,h̃)

=κf

∫
Γ

∇θf,h̃ · nf · (θf,h̃ − θp,h̃) + (gf , θf,h̃) +
(
gp, θp,h̃

)
.

(3.7)

Thanks to the Cauchy-Schwarz inequality, Young inequality, and local inverse in-
equality (3.4), we obtain

κf

∥∥∥∇θf,h̃∥∥∥2
0
+ κp

∥∥∥∇θp,h̃∥∥∥2
0
+
κfγ

h̃

∥∥∥θf,h̃ − θp,h̃

∥∥∥2
Γ

≤κfCin

2γ

∥∥∥∇θf,h̃∥∥∥2
0
+
κfγ

2h̃

∥∥∥θf,h̃ − θp,h̃

∥∥∥2
Γ

+
κf
2

∥∥∥∇θf,h̃∥∥∥2
0
+
κp
2

∥∥∥∇θp,h̃∥∥∥2
0
+

C2
p

2min {κf , κp}
∥g∥20,

which leads to

κf (1−
Cin

γ
)
∥∥∥∇θf,h̃∥∥∥2

0
+ κp

∥∥∥∇θp,h̃∥∥∥2
0
+
κfγ

h̃

∥∥∥θf,h̃ − θp,h̃

∥∥∥2
Γ
≤

C2
p

min {κf , κp}
∥g∥20.

(3.8)
Hence, if the stabilized parameter γ ≫ Cin, then one finds∥∥∥∇θf,h̃∥∥∥2

0
+
∥∥∥∇θp,h̃∥∥∥2

0
≤ η2, (3.9)

where η =
Cp

min{κf ,κp}∥g∥0.
Second, set vh̃ = uh̃, qh̃ = ph̃ in (3.1), (3.2), respectively.

af (uf,h̃, uf,h̃) + ap(up,h̃, up,h̃) = ν2Gr
(
θf,h̃e, uf,h̃

)
+ ν2Gr

(
θp,h̃e, up,h̃

)
. (3.10)

By using the Cauchy-Schwarz inequality, Poincaré inequality, and Young’s inequal-
ity, we obtain

ν
∥∥∥∇uf,h̃∥∥∥2

0
+

ν

Da

∥∥∥up,h̃∥∥∥2
0
≤C2

pν
3
C2

pGr
2

2

∥∥∥∇θf,h̃∥∥∥2
0
+
ν

2

∥∥∥∇~uf,h̃∥∥∥2
0

+ C2
pν

3DaGr
2

2

∥∥∥∇θp,h̃∥∥∥2
0
+

ν

2Da

∥∥∥~up,h̃∥∥∥2
0
.

(3.11)
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Hence, combining (3.11) with (3.9), we have the following result∥∥∥∇uf,h̃∥∥∥2
0
+

1

Da

∥∥∥up,h̃∥∥∥2
0
≤ C2

pν
2 max

{
C2

pGr
2, DaGr2

}
η2. (3.12)

To obtain the error estimates, we assume that there exist Rh̃ : X → Xh̃, Qh̃ :
Y → Yh̃ and Ph̃ :W →Wh̃ such that (see [26]): for all v ∈ X∩(H2(Ωf )

d×H1(Ωp)
d),

q ∈ Y ∩H1(Ω), and ω ∈W ∩H2(Ω)

∥∇(vf −Rh̃vf )∥0 +
∥∥vp −Rh̃vp

∥∥
0
≤ Ch̃(∥vf∥2 + ∥vp∥1),

∥q −Qh̃q∥0 + ∥∇(ω − Ph̃ω)∥0 ≤ Ch̃(∥q∥1 + ∥ω∥2).
(3.13)

Then, we consider the following error estimates for (3.1)-(3.3). For convenience, we
separate the errors into two parts,

ui − ui,h̃ = ui −Rh̃ui +Rh̃ui − ui,h̃ := χi + ψi, i = f or p.
pi − pi,h̃ = pi −Qh̃pi +Qh̃pi − pi,h̃ := ρi + πi, i = f or p.
θi − θi,h̃ = θi − Ph̃θi + Ph̃θi − θi,h̃ := φi + ϕi, i = f or p.

Theorem 3.2. Under the assumption of Theorem 3.1, suppose that the following
conditions hold

ν

2
−Nνξη −Gr2C2

pν
3 max{

3C2
p

2κf
,
Da

κp
}$f > 0,

ν

2Da
−Gr2C2

pν
3 max{

3C2
p

2κf
,
Da

κp
}$p > 0,

(3.14)

where $f = 4N̄2κ−1
f ∥∇θf∥20, $p = 4N̄2κ−1

p ∥θp∥22. Let (u,p,θ) be the solution
of coupled model (2.11)-(2.13) and (uh̃,ph̃,θh̃) be the finite element solution of
(3.1)-(3.3). Then, we have the following error estimate:

∥∇(uf − uf,h̃)∥0 + ∥up − up,h̃∥0 + ∥p− ph̃∥0 + ∥∇(θ − θh̃)∥0 ≤ Ch̃.

Proof. We have the error equation of temperatures by subtracting (2.13) from
(3.3):

ā(θ−θh̃,ω)+c̄(u;θ,ω)−c̄(uh̃;θh̃,ω)−āΓ(θf−θf,h̃, [ω])+āγ(
[
θ − θh̃

]
, [ω])=0. (3.15)

Taking ω = φ in (3.15) and arranging the terms, we have

κf∥∇ϕf∥20 + κp∥∇ϕp∥20 + κfγ(h̃
− 1

2 ∥ϕf − ϕp∥Γ)2

=− ā(ϕ,φ)− c̄(u− uh̃;θ,φ)− c̄(uh̃;ϕ,φ) + āΓ(θf − θf,h̃, [φ])− āγ([ϕ] , [φ]).

(3.16)
Now, let us bound each terms on the right-hand side of (3.16) with the help of the
Cauchy inequality, Young’s inequality, and (3.13).

| − ā(ϕ,φ)| ≤ κf∥∇φf∥0∥∇ϕf∥0 + κp∥∇φp∥0∥∇ϕp∥0

≤ κf∥∇φf∥20 +
κf
4
∥∇ϕf∥20 + κp∥∇φp∥20 +

κp
4
∥∇ϕp∥20

≤ Ch̃2 +
κf
4
∥∇ϕf∥20 +

κp
4
∥∇ϕp∥20,
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| − c̄(u− uh̃;θ,φ)− c̄(uh̃;ϕ,φ)|
≤N̄∥∇(uf − uf,h̃)∥0∥∇θf∥0∥∇ϕf∥0 + N̄∥up − up,h̃∥0∥θp∥2∥∇ϕp∥0
+ N̄∥∇uf,h̃∥0∥∇φf∥0∥∇ϕf∥0 + N̄∥up,h̃∥0∥φp∥2∥∇ϕp∥0

≤N̄2κ−1
f ∥∇(uf − uf,h̃)∥

2
0∥∇θf∥20 + N̄2κ−1

f ∥∇uf,h̃∥
2
0∥∇φf∥20 +

κf
2
∥∇ϕf∥20

+ N̄2κ−1
p ∥up − up,h̃∥

2
0∥θp∥22 + N̄2κ−1

p ∥up,h̃∥
2
0∥φp∥22 +

κp
2
∥∇ϕp∥20

≤Ch̃2 + N̄2κ−1
f ∥∇θf∥20∥∇ψf∥20 +

κf
2
∥∇ϕf∥20 + N̄2κ−1

p ∥θp∥22∥ψp∥20 +
κp
2
∥∇ϕp∥20,

|āΓ(θf − θf,h̃, [φ])− āγ([ϕ] , [φ])|

≤κfC
1
2
inh̃

− 1
2 ∥∇(θf − θf,h̃)∥0∥ϕf − ϕp∥Γ + κfγC

1
2
inh̃

− 3
2 ∥φf − φp∥0∥ϕf − ϕp∥Γ

≤κfCin

2γ
∥∇(θf − θf,h̃)∥

2
0 +

κfγCin

2
(h̃−1∥φf − φp∥0)2 + κfγ(h̃

− 1
2 ∥ϕf − ϕp∥Γ)2

≤Ch̃2 + κfCin

2γ
∥∇ϕf∥20 + κfγ(h̃

− 1
2 ∥ϕf − ϕp∥Γ)2.

Since γ ≫ Cin, the term κfCin

2γ ∥∇ϕf∥20 is pretty close to zero. Then bounding
the terms as shown above for (3.16) results in

κf∥∇ϕf∥20 + κp∥∇ϕp∥20 ≤ Ch̃2 +$f∥∇ψf∥20 +$p∥ψp∥20, (3.17)

where $f = 4N̄2κ−1
f ∥∇θf∥20, $p = 4N̄2κ−1

p ∥θp∥22.
Next, we prove the error estimate of velocity. Subtracting (3.1)-(3.2) from (2.11)-

(2.12), we arrive at

a(u− uh̃,v) + cf (uf ;uf , vf )− cf (uf,h̃;uf,h̃, vf ) = ν2Gr
(
(θ − θh̃)e,v

)
. (3.18)

Setting v = ψ in (3.18) and arranging the terms, we obtain

ν∥∇ψf∥20 +
ν

Da
∥ψp∥20

=− a(χ,ψ)− cf (uf ;χf , ψf )Ωf
− cf

(
χf ;uf,h̃, ψf

)
Ωf

− cf

(
ψf ;uf,h̃, ψf

)
Ωf

+Grν2
(
(θ − θh̃)e,ψ

)
.

(3.19)

To bound the terms on the right-hand side of (3.19), we first consider the nonlinear
terms with the help of the Cauchy-Schwarz inequality, Lemma 2.1 and Young’s
inequality

| − cf (uf ;χf , ψf )Ωf
− cf

(
χf ;uf,h̃, ψf

)
Ωf

− cf

(
ψf ;uf,h̃, ψf

)
Ωf

|

≤Cν−1∥∇uf∥20∥∇χf∥20+Cν−1∥∇χf∥20∥∇uf,h̃∥
2
0+

ν

6
∥∇ψf∥20+N∥∇uf,h̃∥0∥∇ψf∥20

≤Ch̃2 + ν

6
∥∇ψf∥20 +N∥∇uf,h̃∥0∥∇ψf∥20.
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And we have further

| − a(χ,ψ)|

≤ν∥∇χf∥0∥∇ψf∥0 +
ν

Da
∥χp∥0∥ψ∥0 ≤ Ch̃2 +

ν

6
∥∇ψf∥20 +

ν

4Da
∥ψp∥20,

|Grν2
(
(θ − θh̃)e,ψ

)
|

≤GrC2
pν

2∥∇(θf − θf,h̃)∥0∥∇ψf∥0 +GrCpν
2∥∇(θp − θp,h̃)∥0∥ψp∥0

≤
3Gr2C4

pν
3

2
∥∇(θf−θf,h̃)∥

2
0+

ν

6
∥∇ψf∥20+Gr2C2

pν
3Da∥∇(θp−θp,h)∥20+

ν

4Da
∥ψp∥20

≤Ch̃2 +
3Gr2C4

pν
3

2
∥∇ϕf∥20 +

ν

6
∥∇ψf∥20 +Gr2C2

pν
3Da∥∇ϕp∥20 +

ν

4Da
∥ψp∥20.

Combining all the terms and according to (3.17) and (3.6), we have the inequality
ν

2
∥∇ψf∥20 +

ν

2Da
∥ψp∥20

≤Ch̃2 +N∥∇uf,h̃∥0∥∇ψf∥20 +
3Gr2C4

pν
3

2
∥∇ϕf∥20 +Gr2C2

pν
3Da∥∇ϕp∥20

≤Ch̃2 +Nνξη∥∇ψf∥20 +Gr2C2
pν

3 max{
3C2

p

2κf
,
Da

κp
}(κf∥∇ϕf∥20 + κp∥∇ϕp∥20)

≤Ch̃2 +Nνξη∥∇ψf∥20 +Gr2C2
pν

3 max{
3C2

p

2κf
,
Da

κp
}$f∥∇ψf∥20

+Gr2C2
pν

3 max{
3C2

p

2κf
,
Da

κp
}$p∥ψp∥20.

Therefore, if
ν

2
−Nνξη −Gr2C2

pν
3 max{

3C2
p

2κf
,
Da

κp
}$f > 0,

ν

2Da
−Gr2C2

pν
3 max{

3C2
p

2κf
,
Da

κp
}$p > 0,

(3.20)

then we obtain the following result:

(
ν

2
−Nνξη −Gr2C2

pν
3 max{

3C2
p

2κf
,
Da

κp
}$f )∥∇ψf∥20

+ (
ν

2Da
−Gr2C2

pν
3 max{

3C2
p

2κf
,
Da

κp
}$p)∥ψp∥20 ≤ Ch̃2.

(3.21)

Finally, by using the discrete inf-sup condition and results in (3.17), we have

∥πf∥0 ≤ Ch̃+ C∥∇ψf∥0 + C∥∇ϕf∥0, ∥πp∥0 ≤ Ch̃+ C∥ψp∥0 + C∥∇ϕp∥0. (3.22)

The proof ends.
Now, based on the finite element method (3.1)-(3.3), we give a decoupled two-

grid method for solving the stationary closed-loop geothermal model.

Algorithm 1. Decoupled two-grid method.
Step 1. Solve the coupled, nonlinear closed-loop geothermal problem on a coarse

grid, i.e., find (uH ,pH ,θH) ∈ XH × YH ×WH by (3.1)-(3.3).
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Step 2. Solve the Navier-Stokes/Darcy equations by using a Newton iteration
on the fine grid as follows: find (uh,ph) ∈ Xh × Yh satisfying

a(uh,vh)− b(vh,p
h) + cf (u

h
f ;uf,H , vf,h) + cf (uf,H ;uhf , vf,h)

= ν2Gr (θHe,vh) + cf (uf,H ;uf,H , vf,h) ∀vh ∈ Xh, (3.23)
b(uh, qh) = 0 ∀qh ∈ Yh. (3.24)

Step 3. Solve a linearized heat problem in the porous media domain Ωp and
fluid domain Ωf on the fine grid as follows: find θh ∈Wh such that for all ωh ∈Wh

ā(θh,ωh) + c̄(uh;θh,ωh)− āΓ(θ
h
f , [ωh]) + āγ(

[
θh

]
, [ωh]) = (g,ωh) . (3.25)

Then, we show the stability of Algorithm 1.

Theorem 3.3. Under the assumptions of Theorem 3.1, if the condition Nξη < 1
holds, then the solution to Algorithm 1 satisfies the following bounds

(1−Nξη)∥∇uhf∥20 +
1

Da
∥uhp∥20 ≤

2ν2η2(N2ξ4η2 +Gr2C4
p)

1−Nηξ
+ ν2Gr2C2

pDaη
2,

∥∇θhf ∥20 + ∥∇θhp∥20 ≤ η2.

Proof. Setting vh = uh in (3.23), we obtain

ν∥∇uhf∥20 +
ν

Da
∥uhp∥20 =− cf (u

h
f ;uf,H , u

h
f ) + cf (uf,H ;uf,H , u

h
f )

+ ν2Gr
(
θf,He, u

h
f

)
+ ν2Gr

(
θp,He, u

h
p

)
.

(3.26)

Applying Lemma 2.1, Poincaré inequality, and Cauchy-Schwarz inequality, we have

ν∥∇uhf∥20 +
ν

Da
∥uhp∥20 ≤N∥∇uhf∥20∥∇uf,H∥0 +N∥∇uf,H∥20∥∇uhf∥0

+ ν2GrC2
p∥∇θf,H∥0∥∇uhf∥0 + ν2GrCp∥∇θp,H∥0∥uhp∥0.

(3.27)
Bound the right-hand side of (3.27) by the Young inequality and Theorem 3.1

N∥∇uhf∥20∥∇uf,H∥0 ≤ N∥∇uhf∥20νξη,

N∥∇uf,H∥20∥∇uhf∥0 ≤ (ν −Nνξη)−1N2ν4ξ4η4 +
(ν −Nνξη)

4
∥∇uhf∥20,

ν2GrC2
p∥∇θf,H∥0∥∇uhf∥0 ≤ (ν −Nνξη)−1ν4Gr2C4

pη
2 +

(ν −Nνξη)

4
∥∇uhf∥20,

ν2GrCp∥∇θp,H∥0∥uhp∥0 ≤
ν3Gr2C2

pDa

2
η2 +

ν

2Da
∥uhp∥20.

(3.28)
Then, combining (3.28) with (3.27) yields

(1−Nξη)∥∇uhf∥20 +
1

Da
∥uhp∥20 ≤ 2N2ν2ξ4η4

1−Nξη
+

2ν2Gr2C4
pη

2

1−Nξη
+ ν2Gr2C2

pDaη
2.

(3.29)
Finally, taking ωh = θh in (3.25), we derive∥∥∇θhf∥∥20 + ∥∥∇θhp∥∥20 ≤ η2, (3.30)
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with the condition γ ≫ Cin.
Note that the bound of error between the solution (u,p,θ) to the coupled model

(2.11)-(2.13) and the discretization solution (uh,ph,θh) to Algorithm 1 is not easy
to achieve O(h +H2) because of the low regularity of the Darcy velocity. In fact,
from Theorem 3.2, we just have ∥up − up,H∥0 ≤ CH. Besides, as Theorem 3.2, one
can easily get the error bound of Algorithm 1 which is bounded by O(h).

4. Numerical experiments
This section will present two examples to demonstrate the efficiency of the proposed
method in this paper. The first example with an exact solution is provided to test
the convergence rates of the finite element solutions. Besides, the second example
simulates the heat transfer in a simplified closed-loop geothermal system [21].

4.1. Investigations on exact solution
This example aims to show the relative errors and orders of convergence with the
corresponding computational time of Algorithm 1 and the one-grid method (3.1)-
(3.3) in the previous section.

Consider the closed-loop geothermal model on the domain Ω = [0, 1] × [0, 2],
where Ωp = [0, 1] × [0, 1], and Ωf = [0, 1] × [1, 2]. Choose κf = κp = 1, ν = 1,
Da = 1 and Gr = 1. The boundary condition functions and the source terms are
chosen such that the exact solution is

uf =

 10x2(x− 1)2y(y − 1)(2y − 1)

−10x(x− 1)(2x− 1)y2(y − 1)2

 , pf = 10(2x− 1)(2y − 1),

up =

 2π sin2(πx) sin(πy) cos(πy)

−2π sin(πx) sin2(πy) cos(πx)

 , pp = cos(πx) cos(πy),

θf = x(1− x)(1− y), θp = x(1− x)
(
y − y2

)
.

The finite element spaces we chosen are the well-known MINI element (P1b−P1)
for the Navier-Stokes equations in the domain Ωf , the Raviart-Thomas (RT0) el-
ement [19] for the Darcy velocity up and the piecewise constant element (P0) for
Darcy pressure pp in the domain Ωp. Besides, for the temperature in the whole
domain Ω, we use the Lagrangian element (P1). In this case, the orders of conver-
gence of flow fluid velocity in H1 norm, porous media velocity in L2 norm, pressure
in L2 norm, and temperature in H1 norm will be 1.

Set the stopping criteria 10−6 and the stabilized parameter γ = 105. Choose
the coarse mesh size H and the fine mesh size h = H2. We denote the errors
euζ,h

= uζ,h−uζ , eθζ,h = θζ,h−θζ , epζ,h
= pζ,h−pζ and euh

ζ
= uhζ −uζ , eθh

ζ
= θhζ −θζ ,

eph
ζ
= phζ − pζ , where ζ = f or p.
The errors of the velocity, pressure, and temperature for the one-grid method

and the two-grid method for different values of h are tabulated in Table 1, 2, and 3,
respectively. Table 1-3 show that both methods work well and get almost the same
relative errors.
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Table 1. Comparisons of the one-grid method and two-gird method in velocities.

H−1 h−1 ∥euf,h
∥0 order ∥∇euf,h

∥0 order ∥eup,h
∥0 order

- 9 9.457e-02 - 2.746 - 4.889e-01 -
- 16 2.992e-02 1.99 1.452 1.10 2.7944e-01 0.97
- 25 1.222e-02 2.00 9.044e-01 1.06 1.796e-01 0.99
- 36 5.884e-03 2.00 6.196e-01 1.03 1.249e-01 0.99
- 49 3.172e-03 2.00 4.518e-01 1.02 9.186e-02 0.99
- 64 1.857e-03 2.00 3.444e-01 1.01 7.035e-02 0.99

H−1 h−1 ∥euh
f
∥0 order ∥∇euh

f
∥0 order ∥euh

p
∥0 order

3 9 9.465e-02 - 2.748 - 4.889e-01 -
4 16 2.993e-02 2.00 1.453 1.10 2.794e-01 0.97
5 25 1.222e-02 2.00 9.048e-01 1.06 1.796e-01 0.99
6 36 5.887e-03 2.00 6.197e-01 1.03 1.249e-01 0.99
7 49 3.177e-03 2.00 4.519e-01 1.02 9.186e-02 0.99
8 64 1.863e-03 1.99 3.444e-01 1.01 7.035e-02 0.99

Table 2. Comparisons of the one-grid method and two-gird method in pressures.

H−1 h−1 ∥epf,h
∥0 order ∥epp,h

∥0 order
- 9 3.907 - 5.831e-02 -
- 16 1.45 1.72 3.277e-02 1.00
- 25 6.545e-01 1.78 2.097e-02 1.00
- 36 3.423e-01 1.77 1.456e-02 1.00
- 49 1.985e-01 1.76 1.069e-02 1.00
- 64 1.245e-01 1.74 8.190e-03 1.00
H−1 h−1 ∥eph

f
∥0 order ∥eph

p
∥0 order

3 9 3.907 - 5.831e-02 -
4 16 1.45 1.72 3.277e-02 1.00
5 25 6.545e-01 1.78 2.097e-02 1.00
6 36 3.423e-01 1.77 1.456e-02 1.00
7 49 1.985e-01 1.76 1.069e-02 1.00
8 64 1.245e-01 1.74 8.190e-03 1.00

The CPU time for both methods is tabulated in Table 4. As expected, the two-
grid method spends less computing time than the one-grid method under nearly
the same accuracy.

4.2. Simulation for a closed-loop geothermal system
This example simulates heat transfer in a simplified closed-loop geothermal system,
which is studied in [21]. As shown in [21], the computational domain consists of a
U-shape heat transfer pipeline and a geothermal reservoir, where the cold fluid is
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Table 3. Comparisons of the one-grid method and two-gird method in temperatures.

H−1 h−1 ∥eθf,h∥0 order ∥∇eθf,h∥0 order ∥eθp,h∥0 order ∥∇eθp,h∥0 order
- 9 1.492e-03 - 5.227e-02 - 1.146e-03 - 2.686e-02 -
- 16 4.715e-04 2.00 2.944e-02 0.99 3.667e-04 1.98 1.518e-02 0.99
- 25 1.915e-04 2.00 1.885e-02 0.99 1.506e-04 1.99 9.728e-03 0.99
- 36 9.326e-05 1.99 1.309e-02 0.99 7.274e-05 1.99 6.759e-03 0.99
- 49 4.995e-05 1.99 9.619e-03 0.99 3.928e-05 1.99 4.966e-03 0.99
- 64 2.936e-05 1.99 7.365e-03 0.99 2.303e-05 1.99 3.803e-03 0.99
H−1 h−1 ∥eθh

f
∥0 order ∥∇eθh

f
∥0 order ∥eθh

p
∥0 order ∥∇eθh

p
∥0 order

3 9 1.489e-03 - 5.227e-02 - 1.145e-03 - 2.686e-02 -
4 16 4.688e-04 2.00 2.944e-02 0.99 3.657e-04 1.98 1.518e-02 0.99
5 25 1.932e-04 1.99 1.885e-02 0.99 1.498e-04 1.99 9.728e-03 0.99
6 36 9.241e-05 1.99 1.309e-02 0.99 7.202e-05 2.00 6.759e-03 0.99
7 49 5.036e-05 1.99 9.619e-03 0.99 3.866e-05 2.01 4.966e-03 0.99
8 64 2.953e-05 1.99 7.365e-03 0.99 2.248e-05 2.02 3.803e-03 0.99

Table 4. Comparisons of the one-grid method with the two-grid method in CPU time.

method One Two One Two One Two One Two One Two One Two
H−1 - 3 - 4 - 5 - 6 - 7 - 8
h−1 9 9 16 16 25 25 36 36 49 49 64 64
CPU time 0.28 0.19 0.89 0.46 2.34 1.03 5.30 2.09 11.29 3.83 22.54 6.94

injected through the left side pipeline, the hot fluid is pumped out from the right
side pipeline, and source of heat comes from the geothermal reservoir.

On the left pipeline, the inflow boundary condition is imposed on the top bound-
ary ∂Ω in = {(x, y): y = 4, 0 ⩽ x ⩽ 0.2} with Ux = 0 and Uy = −2048x(0.2 − x).
The boundary condition for temperature is assumed as θf = 20. On the right
pipeline, the top boundary ∂Ωout = {(x, y) : y = 4, 3.8 ⩽ x ⩽ 4} is given as the
free outflow boundary conditions

(−pf + ν∇uf ) · nf = 0, nf · κf∇θf = 0 on ∂Ωout.

On the other boundaries of the closed-loop pipe {(x, y) : x = 0, 1 ⩽ y ⩽ 4} ⊂ ∂Ωf ,
{(x, y) : x = 0.2, 1.2 ⩽ y ⩽ 4} ⊂ ∂Ωf , {(x, y) : y = 1.2, 0.2 ⩽ x ⩽ 3.8} ⊂ ∂Ωf ,
{(x, y) : x = 3.8, 1.2 ⩽ y ⩽ 4} ⊂ ∂Ωf , and {(x, y) : x = 4, 1 ⩽ y ⩽ 4} ⊂ ∂Ωf ,
we impose the no-slip boundary condition for velocity and the insulated boundary
condition for temperature:

uf = 0, nf · κf∇θf = 0 on ∂Ωf\Γ.

Besides, on the interface Γ = {(x, y) : y = 1, 0 ⩽ x ⩽ 4}, the interface condi-
tions (2.7)-(2.10), which are proposed for the model, are utilized. The geothermal
reservoir domain is Ωp = [0, 4]× [0, 1]. We impose the no-flow boundary condition
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up · np = 0 on ∂Ωp\Γ. The homogeneous Neumann boundary condition is consid-
ered for the temperature on the left and right walls of Ωp. At the bottom of the
reservoir, we consider a hot wall θp = 100.

For the simulation, the parameters are chosen as κf = 0.6, κp = 1, ν = 1,
Da = 10−6, Gr = 100, and γ = 1. The external body forces gf , gp are imposed as
zero. Figure 1 shows the temperature distribution for the different Darcy numbers.
From this figure, we can see that as the Darcy number increases, the permeability
of the porous media increases, and then the porous media flow becomes faster,
resulting in increasing heat transfer efficiency from the bottom of Ωp to the region
around the interface. Hence, the geothermal reservoir with a larger Darcy number
has better heat transfer.
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Figure 1. Temperature distribution with different Darcy numbers. Left: Da = 10−6; Middle: Da =
10−4; Right: Da = 10−2.

Next, we investigate and show the effect of different horizontal lengths. From
Figure 2, the production temperature is much lower when the horizontal pipeline
is shorter due to less heat flux transfer across the interface. This work will help us
select the horizontal pipeline length to save construction costs.
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Figure 2. Temperature distribution with different horizontal pipelines. Left: length =4; Middle: length
=2; Right: length =1.

In the end, Figure 3 shows the effect of different injection temperatures. As ex-
pected, the higher injection temperature provides a higher production temperature
on the left pipeline.
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Figure 3. Temperature distribution with different injection temperatures. Left: injection temperature
θf = 0; Middle: injection temperature θf = 20; Right: injection temperature θf = 40.
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