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Abstract In this paper, we study value distribution of meromorphic func-
tions concerning difference polynomials and solve an open problem posed by
Zheng and Chen [J. Math. Anal. Appl. 397 (2013)]. By using different meth-
ods, we improve and extend some results due to Zheng and Chen [J. Math.
Anal. Appl. 397 (2013)], Zhang and Huang [Chinese Ann. Math. Ser. A 40
(2019)].
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1. Introduction and main results
In this paper, we assume that the reader is familiar with the basic notions of Nevan-
linna’s value distribution theory, see [14,16,22,23]. In the following, a meromorphic
function always means meromorphic in the whole complex plane. By S(r, f), we
denote any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞ possible outside of an
exceptional set E with finite logarithmic measure

∫
E
dr/r < ∞. A meromorphic

function α is said to be a small function of f if it satisfies T (r, α) = S(r, f).
Let f be a nonconstant meromorphic function. The order of f is defined by

ρ(f) = lim
r→∞

log+ T (r, f)

log r
.

Let f be a nonconstant meromorphic function, and let α be a small function of
f . The exponent of convergence of zeros of f − α is defined by

λ(f − α) = lim
r→∞

log+ N
(
r, 1

f−α

)
log r

.

If
λ(f − α) < ρ(f)
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for ρ(f) > 0; and N
(
r, 1

f−α

)
= O(log r) for ρ(f) = 0, then α is called a Borel

exceptional function of f . If α is a constant, then α is called a Borel exceptional
value of f .

In 1959, Hayman [13] proved the following theorem.

Theorem 1.1. Let f be a transcendental entire (meromorphic) function, let a(̸=
0), c be two finite complex numbers, and let n be a positive integer. If n ≥ 3 (n ≥ 5),
then f ′ − afn − c has infinitely many zeros.

Recently, value distribution in difference analogue of meromorphic functions has
become a subject of some interests, see [1, 3, 5, 6, 9–12,15,17,18,21,24,26,27].

In 2013, Zheng and Chen [27] proved:

Theorem 1.2. Let f be a transcendental entire function of finite order, let m,n
be two distinct positive integers, let a, c be two nonzero complex numbers, let
c1, c2, · · · , cm be complex numbers such that at least one of them is nonzero, and let
φ(z) = f(z + c1)f(z + c2) · · · f(z + cm)− afn(z). If N

(
r, 1

f

)
= S(r, f), then

(i) for |n−m| = 1, φ has infinitely many zeros;
(ii) for min{n,m} = d ≥ 2, φ− c has infinitely many zeros.

Theorem 1.3. Let f be a transcendental entire function of finite order with a Borel
exceptional value b, let m,n be two distinct positive integers, let a(̸= 0), c( ̸= bm−abn)
be two complex numbers, let c1, c2, · · · , cm be complex numbers such that at least
one of them is nonzero, and let φ(z) = f(z+ c1)f(z+ c2) · · · f(z+ cm)− afn(z). If
n > m ≥ 1, then φ− c has infinitely many zeros and λ(φ− c) = ρ(f).

In [27], Zheng and Chen posed the following problem.

Problem 1.1. Whether Theorem 1.2 is valid or not for n = m and whether The-
orem 1.3 is valid or not for n ≤ m?

In this paper, we give a positive answer to Problem 1.1 and prove:

Theorem 1.4. Let f be a transcendental meromorphic function of finite order, let
m,n be two positive integers, let b be a complex number, let α(̸≡ 0), c(̸≡ bm − αbn)
be two small functions of f , let cj(j = 1, 2, · · · ,m) be complex numbers such that at
lest one of them is nonzero, and let φ(z) = f(z+c1)f(z+c2) · · · f(z+cm)−αfn(z).

If N(r, f) +N
(
r, 1

f−b

)
= S(r, f) and φ ̸≡ bm − αbn, then

(i) for n ̸= m, φ has infinitely many zeros and λ(φ) = ρ(f);
(ii) φ− c has infinitely many zeros and λ(φ− c) = ρ(f).

The following examples show that φ ̸≡ bm − αbn is necessary in Theorem 1.4.

Example 1.1. Let b = 0, let f = ez, and let m = n = 2, α = 1, c1 = 5π
4 i, c2 = 3π

4 i,
then φ(z) ≡ 0 ̸= c. Hence φ− c does not have zeros.

Example 1.2. Let b = 2, let f = e2z + 2, and let m = n = 2, α = 1, c1 = πi,
c2 = 2πi, then φ(z) ≡ 0 ̸= c. Hence φ− c does not have zeros.

Example 1.3. Let b = 2, let f = ez + 2, and let m = n = 1, α = −1, c = 1,
c1 = πi, then φ(z) ≡ 4 ̸= 1. Hence φ− 1 does not have zeros.
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Corollary 1.1. Let f be a transcendental entire function of finite order, let m,n be
two distinct positive integers, let a( ̸= 0), c be two complex numbers, let c1, c2, · · · , cm
be complex numbers such that at least one of them is nonzero, and let φ(z) =

f(z + c1)f(z + c2) · · · f(z + cm) − afn(z). If N
(
r, 1

f

)
= S(r, f), then φ − c has

infinitely many zeros and λ(φ− c) = ρ(f).

Corollary 1.2. Let f be a transcendental entire function of finite order with a Borel
exceptional value b, let m,n be two distinct positive integers, let a(̸= 0), c( ̸= bm−abn)
be two complex numbers, let c1, c2, · · · , cm be complex numbers such that at least
one of them is nonzero, and let φ(z) = f(z + c1)f(z + c2) · · · f(z + cm) − afn(z).
Then φ− c has infinitely many zeros and λ(φ− c) = ρ(f).

Remark 1.1. Corollary 1.1 improves Theorem 1.2, Corollary 1.2 improves Theo-
rem 1.3.

In 1959, Hayman [13] proved the following theorem.

Theorem 1.5. Let f be a transcendental entire (meromorphic) function, let a be
a nonzero finite complex number, and let n be a positive integer. If n ≥ 2 (n ≥ 3),
then fnf ′ − a has infinitely many zeros.

Clunie [7, 8], Mues [20], Bergweiler and Eremenko [2], Chen and Fang [4], Zal-
cman [25] proved:

Theorem 1.6 ( [2,4]). Let f be a transcendental meromorphic function, let a be a
nonzero finite complex number. Then fnf ′ − a has infinitely many zeros.

In 2007, Laine and Yang [17] obtained the difference analogue to Theorem 1.6
and proved:

Theorem 1.7. Let f be a transcendental entire function of finite order, let a, c be
two nonzero finite complex numbers, and let n be a positive integer. If n ≥ 2, then
fn(z)f(z + c)− a has infinitely many zeros.

In 2011, Liu et al. [18] considered the case of meromorphic function and proved
the following result.

Theorem 1.8. Let f be a transcendental meromorphic function of finite order, let
α(̸≡ 0) be a small function of f , let c be a nonzero finite complex number, and let n
be a positive integer. If n ≥ 2, then fn(z)f(z+ c)−α(z) has infinitely many zeros.

The following example shows that Theorem 1.7 and Theorem 1.8 do not valid if
n = 1.

Example 1.4. Let f = ez+1, and let n = 1, α = 1, c = πi, then f(z)f(z+πi)−1 =
−e2z. Hence fn(z)f(z + c)− 1 does not have zeros.

In 2019, Zhang and Huang [26] proved:

Theorem 1.9. Let f be a transcendental meromorphic function of finite order, let
c be a nonzero complex number, let n be a positive integer, let a, b be two distinct
Borel exceptional values of f on extend complex plane, and let α(̸≡ 0) be a small
function of f . If n ≥ 2 and one of the following conditions is satisfied:

(i) a, b ∈ C, an+1 − α ̸≡ 0 and bn+1 − α ̸≡ 0;

(ii) a ∈ C, b = ∞, an+1 − α ̸≡ 0,
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then fn(z)f(z + c)− α(z) has infinitely many zeros.

According to the above theorems and Example 1.4, we naturally pose the fol-
lowing problem.

Problem 1.2. Whether Theorem 1.9 is valid or not for n = 1?

In this paper, we give a positive answer to Problem 1.2 and prove the following
result.

Theorem 1.10. Let f be a transcendental meromorphic function of finite order, let
c be a nonzero complex number, let a, b be two distinct Borel exceptional values of f
on extend complex plane, let n be a positive integer, let α( ̸≡ 0) be a small function
of f , and let φ1(z) = fn(z)f(z + c). If one of the following conditions is satisfied:

(i) a, b ∈ C, an+1 − α ̸≡ 0 and bn+1 − α ̸≡ 0;

(ii) a ∈ C, b = ∞, an+1 − α ̸≡ 0,

then φ1 − α has infinitely many zeros and λ(φ1 − α) = ρ(f).

2. Some Lemmas
Lemma 2.1 ( [5, 9] ). Let f be a trancendental meromorphic function of finite
order, and let c be a nonzero complex number. Then

m

(
r,
f(z + c)

f(z)

)
= S(r, f).

Lemma 2.2 ( [5, 11] ). Let f be a trancendental meromorphic function of finite
order, and let c be a nonzero complex number. Then

N(r, f(z + c)) = N(r, f(z)) + S(r, f),

N

(
r,

1

f(z + c)

)
= N

(
r,

1

f(z)

)
+ S(r, f).

Lemma 2.3 ( [14] ). Let f be a trancendental meromorphic function, and let α, β
be two distinct small functions of f . Then

T (r, f) ≤ N(r, f) +N

(
r,

1

f − α

)
+N

(
r,

1

f − β

)
+ S(r, f).

Lemma 2.4 ( [19] ). Let f be a nonconstant meromorphic function and R(f) =

P (f)
Q(f) , where P (f) =

p∑
i=0

αif
i and Q(f) =

q∑
j=0

βjf
j are two mutually prime poly-

nomials in f . If the coefficients {αi(z)}, {βj(z)} are small functions of f and
αp(z) ̸≡ 0, βq(z) ̸≡ 0, then

T (r,R(f)) = max{p, q} · T (r, f) + S(r, f).

Lemma 2.5 ( [22] ). Let f be a trancendental meromorphic function with ρ(f) > 0,
and let a, b be two distinct Borel exceptional values of f . Then

N

(
r,

1

f − a

)
= S(r, f), N

(
r,

1

f − b

)
= S(r, f).

Remark 2.1. For ρ(f) = 0, Lemma 2.5 is still valid.
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3. Proof of Theorem 1.4
We consider two cases.

Case 1. b = 0. Then we obtain

N(r, f) +N

(
r,

1

f

)
= S(r, f). (3.1)

Now, we consider three subcases.
Case 1.1. m = n. Then we have

φ(z) =

[
f(z + c1)

f(z)

f(z + c2)

f(z)
· · · f(z + cn)

f(z)
− α(z)

]
fn(z) = A(z)fn(z), (3.2)

where A(z) = f(z+c1)
f(z)

f(z+c2)
f(z) · · · f(z+cn)

f(z) − α(z).
Since α is a small function of f , then by (3.1), Lemma 2.1 and Lemma 2.2, we

obtain

T (r,A) ≤T

(
r,
f(z + c1)

f(z)
· · · f(z + cn)

f(z)

)
+ T (r, α) + S(r, f)

≤N

(
r,
f(z + c1)

f(z)

f(z + c2)

f(z)
· · · f(z + cn)

f(z)

)
+ S(r, f)

≤
n∑

i=1

N(r, f(z + ci)) + nN

(
r,

1

f(z)

)
+ S(r, f)

≤nN(r, f) + nN

(
r,

1

f

)
+ S(r, f) ≤ S(r, f). (3.3)

Hence, A is a small function of f .
It follows from (3.2), (3.3) and Lemma 2.4 that

T (r, φ) = nT (r, f) + S(r, f). (3.4)

Let c(̸≡ 0) be a small function of f , then by (3.4), we know that c is a small
function of φ. Hence, by (3.1), (3.2), (3.3) and Lemma 2.3, we have

T (r, φ) ≤N(r, φ) +N

(
r,

1

φ

)
+N

(
r,

1

φ− c

)
+ S(r, φ)

≤N

(
r,

1

φ− c

)
+ S(r, φ). (3.5)

It follows that φ− c has infinitely many zeros.
By (3.4) and (3.5), we obtain

T (r, f) ≤ 1

n
N

(
r,

1

φ− c

)
+ S(r, f).

Hence, we obtain λ(φ− c) = ρ(f).
Case 1.2. m > n. Then, we have

φ(z) =

[
f(z + c1)

f(z)

f(z + c2)

f(z)
· · · f(z + cm)

f(z)

]
fm(z)− α(z)fn(z)
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=B(z)fm(z)− α(z)fn(z), (3.6)

where B(z) = f(z+c1)
f(z)

f(z+c2)
f(z) · · · f(z+cm)

f(z) .
Obviously, B ̸≡ 0. Since α is a small function of f , then by (3.1), Lemma 2.1

and Lemma 2.2, we obtain

T (r,B) = m(r,B) +N(r,B)

≤ N

(
r,
f(z + c1)

f(z)

f(z + c2)

f(z)
· · · f(z + cm)

f(z)

)
+ S(r, f)

≤
m∑
i=1

N(r, f(z + ci)) +mN

(
r,

1

f(z)

)
+ S(r, f)

≤ mN(r, f) +mN

(
r,

1

f

)
+ S(r, f) ≤ S(r, f). (3.7)

Thus, B is a small function of f .
By (3.6), (3.7) and Lemma 2.4, we obtain

T (r, φ) = mT (r, f) + S(r, f). (3.8)

Now, we prove conclusion (i). By (3.6), we have

φ(z) = fn(z)(B(z)fm−n(z)− α(z)). (3.9)

It follows from (3.1), (3.9), Lemma 2.3 and Lemma 2.4 that

(m− n)T (r, f) = T (r, fm−n) + S(r, f)

≤ N(r, fm−n) +N

(
r,

1

fm−n

)
+N

(
r,

1

fm−n − α
B

)
+ S(r, f)

≤ N

(
r,

1

fm−n − α
B

)
+ S(r, f) ≤ N

(
r,

1

φ

)
+ S(r, f). (3.10)

By (3.8) and (3.10), we obtain

T (r, φ) = mT (r, f) ≤ m

m− n
N

(
r,

1

φ

)
+ S(r, f).

It follows that φ has infinitely many zeros and λ(φ) = ρ(f).
Thus, conclusion (i) is proved for Case 1.2. Next, we prove conclusion (ii).
Let c(̸≡ 0) be a small function of f , then by (3.8), we know that c is a small

function of φ. Hence, by (3.1), (3.6) and Lemma 2.3, we have

T (r, φ) ≤N(r, φ) +N

(
r,

1

φ

)
+N

(
r,

1

φ− c

)
+ S(r, φ)

≤N

(
r,

1

Bfm − αfn

)
+N

(
r,

1

φ− c

)
+ S(r, φ)

≤N

(
r,

1

fn(Bfm−n − α)

)
+N

(
r,

1

φ− c

)
+ S(r, φ)

≤(m− n)T (r, f) +N

(
r,

1

φ− c

)
+ S(r, φ). (3.11)
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By (3.8) and (3.11), we have

T (r, φ) ≤ m

n
N

(
r,

1

φ− c

)
+ S(r, φ). (3.12)

It follows that φ− c has infinitely many zeros.
By (3.8) and (3.12), we have

T (r, f) ≤ 1

n
N

(
r,

1

φ− c

)
+ S(r, f).

Hence, we obtain λ(φ− c) = ρ(f).
Case 1.3. m < n. By using the same argument as used in Case 1.2, we prove

that Theorem 1.4 is valid for this case.
Case 2. b ̸= 0. Then we have

φ(z) =f(z + c1)f(z + c2) · · · f(z + cm)− α(z)fn(z)

=[(f(z + c1)− b) + b] · · · [(f(z + cm)− b) + b]− α(z)[(f(z)− b) + b]n

=[f(z + c1)− b] · · · [f(z + cm)− b] + · · ·+
m∑
i=1

bm−1 (f(z + ci)− b) + bm

− α(z)[(f(z)− b)n + nb(f(z)− b)n−1 + · · ·+ nbn−1(f(z)− b) + bn].
(3.13)

Set
g(z) = f(z)− b. (3.14)

Thus, we have
T (r, f) = T (r, g) + S(r, g). (3.15)

It follows from N(r, f) +N
(
r, 1

f−b

)
= S(r, f) that

N(r, g) +N

(
r,
1

g

)
= S(r, g). (3.16)

By (3.13) and (3.14), we have

φ(z) =g(z + c1)g(z + c2) · · · g(z + cm)

+ b

(
m∑
i=1

g(z + c1)g(z + c2) · · · g(z + cm)

g(z + ci)

)

+ · · ·+ bm−1

(
m∑
i=1

g(z + ci)

)
+ bm

− α(z)(gn(z) + nbgn−1(z) + · · ·+ nbn−1g(z) + bn)

=gm(z)

(
g(z + c1)g(z + c2) · · · g(z + cm)

gm(z)

)
+ bgm−1(z)

(
m∑
i=1

g(z + c1)g(z + c2) · · · g(z + cm)

g(z + ci)gm−1(z)

)
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+ · · ·+ bm−1g(z)

(
m∑
i=1

g(z + ci)

g(z)

)
+ bm

− α(z)(gn(z) + nbgn−1(z) + · · ·+ nbn−1g(z) + bn)

=b0(z)g
m(z) + b1(z)g

m−1(z) + · · ·+ bm−1(z)g(z) + bm

− α(z)(gn(z) + nbgn−1(z) + · · ·+ nbn−1g(z) + bn), (3.17)

where b0(z) =
g(z+c1)g(z+c2)···g(z+cm)

gm(z) , · · · , bm−2(z) =
∑

i≠j b
m−2 g(z+ci)g(z+cj)

g2(z) ,
bm−1(z) =

∑m
i=1 b

m−1 g(z+ci)
g(z) (i, j = 1, 2, · · · ,m).

By (3.16), Lemma 2.1 and Lemma 2.2, we obtain

T (r, b0) = m(r, b0) +N(r, b0)

≤ N

(
r,
g(z + c1)

g(z)

g(z + c2)

g(z)
· · · g(z + cm)

g(z)

)
+ S(r, g)

≤
m∑
i=1

N(r, g(z + ci)) +mN

(
r,

1

g(z)

)
+ S(r, g)

≤ mN(r, g) +mN

(
r,
1

g

)
+ S(r, g) ≤ S(r, g). (3.18)

Thus, b0 is a small function of g. Similarly, we deduce that bj(j = 1, 2, · · · ,m− 1)
are small functions of g.

Since φ ̸≡ bm − αbn, then by (3.17) and (3.18), we have

φ(z) =

s∑
i=1

di(z)g
mi(z) + bm − α(z)bn, (3.19)

where s(≤ max{m,n}) is a positive integer, mi(i = 1, 2, · · · , s) are positive integers
with m1 < m2 < · · · < ms, and di(z)( ̸≡ 0)(i = 1, 2, · · · , s) are small functions of f
such that

∑s
i=1 di(z)g

mi(z) ̸≡ 0.
By (3.19) and Lemma 2.4, we obtain

T (r, φ) = msT (r, g) + S(r, g). (3.20)

Next, we prove conclusion (i). It follows from n ̸= m that 2 ≤ s ≤ max{m,n}.
In the following, we consider two subcases.

Case 2.1 bm − α(z)bn ≡ 0. By (3.19), we have

φ(z) =

s∑
i=1

di(z)g
mi(z)

=gm1(z)(ds(z)g
ms−m1(z) + · · ·+ d2(z)g

m2−m1 + d1(z)). (3.21)

It follows from (3.21), Lemma 2.3 and Lemma 2.4 that

(ms −m1)T (r, g)

=T (r, dsg
ms−m1 + · · ·+ d2g

m2−m1 + d1)

≤N(r, dsg
ms−m1 + · · ·+ d2g

m2−m1 + d1)
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+N

(
r,

1

dsgms−m1 + · · ·+ d2gm2−m1 + d1 − d1

)
+N

(
r,

1

dsgms−m1 + · · ·+ d2gm2−m1 + d1

)
+ S(r, g)

≤N

(
r,

1

gm2−m1(dsgms−m2 + · · ·+ d2)

)
+N

(
r,

1

dsgms−m1 + · · ·+ d2gm2−m1 + d1

)
+ S(r, g)

≤(ms −m2)T (r, g) +N

(
r,

1

dsgms−m1 + · · ·+ d2gm2−m1 + d1

)
+ S(r, g)

≤(ms −m2)T (r, g) +N

(
r,

1

φ

)
+ S(r, g). (3.22)

By (3.15), (3.20) and (3.22), we have

T (r, φ) = msT (r, f) + S(r, f) ≤ ms

m2 −m1
N

(
r,

1

φ

)
+ S(r, f).

It follows from m2 > m1 that φ has infinitely many zeros and λ(φ) = ρ(f).
Case 2.2. bm − α(z)bn ̸≡ 0. It follows from (3.19) and Lemma 2.4 that

msT (r, g) =T

(
r,

s∑
i=1

dig
mi + bm − αbn

)

≤N

(
r,

s∑
i=1

dig
mi + bm − αbn

)
+N

(
r,

1∑s
i=1 dig

mi + bm − αbn

)
+N

(
r,

1∑s
i=1 dig

mi + bm − αbn − (bm − αbn)

)
+ S(r, g)

≤(ms −m1)T (r, g) +N

(
r,

1∑s
i=1 dig

mi + bm − αbn

)
+ S(r, g)

≤(ms −m1)T (r, g) +N

(
r,

1

φ

)
+ S(r, g). (3.23)

By (3.15), (3.20) and (3.23), we have

T (r, φ) ≤ msT (r, f) + S(r, f) ≤ ms

m1
N

(
r,

1

φ

)
+ S(r, f).

It follows that φ has infinitely many zeros and λ(φ) = ρ(f).
Thus, conclusion (i) is proved for Case 2. Next, we prove conclusion (ii).
Let c( ̸≡ bm −αbn) be a small function of f , then by (3.15) and (3.20), we know

that c is a small function of φ. Hence, by (3.16), (3.19) and Lemma 2.3, we have

T (r, φ) ≤ N(r, φ) +N

(
r,

1

φ− (bm − αbn)

)
+N

(
r,

1

φ− c

)
+ S(r, φ)

≤ N

(
r,

1

d1gm1 + d2gm2 + · · ·+ dsgms

)
+N

(
r,

1

φ− c

)
+ S(r, φ)
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≤ N

(
r,

1

gm1(d1+d2gm2−m1+· · ·+dsgms−m1)

)
+N

(
r,

1

φ− c

)
+S(r, φ)

≤ (ms −m1)T (r, g) +N

(
r,

1

φ− c

)
+ S(r, φ). (3.24)

By (3.20) and (3.24), we have

T (r, φ) ≤ ms

m1
N

(
r,

1

φ− c

)
+ S(r, φ). (3.25)

It follow that φ− c has infinitely many zeros.
By (3.15), (3.20) and (3.25), we have

T (r, f) ≤ 1

m1
N

(
r,

1

φ− c

)
+ S(r, f).

Hence, we obtain λ(φ− c) = ρ(f). Thus the conclusion (ii) is proved.
This completes the proof of Theorem 1.4.

4. Proof of Theorem 1.10
Now, we prove the case of n = 1.

We assume that a, b ∈ C, a2 − α ̸≡ 0 and b2 − α ̸≡ 0.
Since a, b are two distinct Borel exceptional values of f , then by Lemma 2.5, we

obtain
N

(
r,

1

f − a

)
= S(r, f), N

(
r,

1

f − b

)
= S(r, f). (4.1)

Set
H(z) =

f(z)− a

f(z)− b
. (4.2)

By (4.2), we obtain

f(z) =
a− bH(z)

1−H(z)
. (4.3)

Thus, we have
T (r, f) = T (r,H) + S(r,H). (4.4)

Obviously, H ̸≡ 0, 1,∞. It follows from (4.1), (4.2) and (4.4) that

N(r,H) = S(r,H), N

(
r,

1

H

)
= S(r,H). (4.5)

By (4.3), we have

φ1(z)− α(z) =
a− bH(z)

1−H(z)

a− bH(z + c)

1−H(z + c)
− α(z)

=
(b2 − α(z))A(z)H2(z)− (ab− α(z))(A(z) + 1)H(z) + a2 − α(z)

A(z)H2(z)− (A(z) + 1)H(z) + 1
,

(4.6)
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where A(z) = H(z+c)
H(z) . By Lemma 2.1 and (4.5), we obtain that A is a small function

of H.
Next, we consider two cases.
Case 1. (b2 − α(z))A(z)H2(z) − (ab − α(z))(A(z) + 1)H(z) + a2 − α(z) and

A(z)H2(z)− (A(z) + 1)H(z) + 1 are two mutually prime polynomials.
By (4.6) and Lemma 2.4, we have

T (r, φ1) = T

(
r,
b2AH2 − ab(A+ 1)H + a2

AH2 − (A+ 1)H + 1

)
= 2T (r,H) + S(r,H). (4.7)

Since b2 ̸≡ α, a2 ̸≡ α, then by (4.5), Lemma 2.3 and Lemma 2.4, we obtain

2T (r,H) =T
(
r, (b2 − α)AH2 − (ab− α)(A+ 1)H + a2 − α

)
+ S(r,H)

≤N(r, (b2 − α)AH2 − (ab− α)(A+ 1)H + a2 − α)

+N

(
r,

1

(b2 − α)AH2 − (ab− α)(A+ 1)H + a2 − α− (a2 − α)

)
+N

(
r,

1

(b2 − α)AH2 − (ab− α)(A+ 1)H + a2 − α

)
+ S(r,H)

≤N

(
r,

1

H [(b2 − α)AH − (ab− α)(A+ 1)]

)
+N

(
r,

1

(b2 − α)AH2 − (ab− α)(A+ 1)H + a2 − α

)
+ S(r,H)

≤T (r,H)+N

(
r,

1

(b2−α)AH2−(ab−α)(A+1)H+a2−α

)
+S(r,H)

≤T (r,H) +N

(
r,

1

φ1 −α

)
+ S(r,H). (4.8)

By (4.7) and (4.8), we have

T (r, φ1) ≤ 2N

(
r,

1

φ1 − α

)
+ S(r, φ1).

It follows that φ1 − α has infinitely many zeros.
By (4.4) and (4.8), we obtain

T (r, f) ≤ N

(
r,

1

φ1 − α

)
+ S(r, f).

Hence, we obtain λ(φ1 − α) = ρ(f).
Case 2. [b2 − α(z)]A(z)H2(z) − [(ab − α)(A(z) + 1)]H(z) + [a2 − α(z)] and

A(z)H2(z)− (A(z) + 1)H(z) + 1 have common factor γ(z).
In the following, we consider two subcases.
Case 2.1. γ is a polynomial of H with deg γ = 1.
By (4.6), we have

φ1(z)− α(z) =
C1(z)H(z) +D1(z)

A1(z)H(z) +B1(z)
, (4.9)

where A1, B1, C1, D1 are small functions of H.
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Since a2 ̸≡ α, then by (4.6) and (4.9), we deduce that D1 ̸≡ 0. Similarly, we
obtain C1 ̸≡ 0. By using the same argument as used in Case 1, we prove that φ1−α
has infinitely many zeros and λ(φ1 − α) = ρ(f).

Case 2.2. γ is a polynomial of H with deg γ = 2.
By (4.6), we obtain

φ1(z)− α(z) = B(z), (4.10)
where B is a small function of H.

It follows
φ1(z) = B2(z), (4.11)

where B2 = B + α is a small function of H.
We claim that B2 ̸≡ 0. Otherwise, it follows from (4.10) that f ≡ 0, a contra-

diction.
By (4.3), we have

φ1(z) =
a2 − abH(z)− abH(z + c) + b2H(z)H(z + c)

1−H(z)−H(z + c) +H(z)H(z + c)
. (4.12)

It follows from (4.11) and (4.12) that

a2 −
(
ab+ ab

H(z + c)

H(z)

)
H(z) + b2

H(z + c)

H(z)
H2(z)

=B2(z)−
(
B2(z) +B2(z)

H(z + c)

H(z)

)
H(z) +B2(z)

H(z + c)

H(z)
H2(z). (4.13)

Thus, we obtain

a2 = B2(z), (4.14)
ab = B2(z), (4.15)
b2 = B2(z). (4.16)

By (4.14) and (4.15), we have a = b, a contradiction. Hence we prove that
Theorem 1.10 is valid for a, b ∈ C, a2 − α ̸≡ 0 and b2 − α ̸≡ 0.

Next, we assume that a ∈ C, b = ∞, a2 − α ̸≡ 0. Then, we have

φ1(z) = [(f(z)− a) + a][(f(z + c)− a) + a]. (4.17)

Set
g(z) = f(z)− a. (4.18)

Thus, we obtain
T (r, f) = T (r, g) + S(r, g). (4.19)

Since a,∞ are two distinct Borel exceptional values of f , then by Lemma 2.5,
we obtain

N

(
r,
1

g

)
= S(r, g), N(r, g) = S(r, g). (4.20)

By (4.17) and (4.18), we have

φ1(z) = [g(z) + a][g(z + c) + a]

= g(z)g(z + c) + ag(z) + ag(z + c) + a2
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=
g(z + c)

g(z)
g2(z) + a

(
g(z + c)

g(z)
+ 1

)
g(z) + a2. (4.21)

It follows from (4.20), Lemma 2.1 and Lemma 2.2 that

T

(
r,
g(z + c)

g(z)

)
= m

(
r,
g(z + c)

g(z)

)
+N

(
r,
g(z + c)

g(z)

)
≤ S(r, g). (4.22)

By (4.21) and (4.22), we have

φ1(z) = α2(z)g
2(z) + α1(z)g(z) + α0, (4.23)

where α2(z) = g(z+c)
g(z) , α1(z) = a

(
g(z+c)
g(z) + 1

)
, α0(z) = a2 are small functions of

g(z).
By (4.23) and Lemma 2.4, we obtain

T (r, φ1) = 2T (r, g) + S(r, g). (4.24)

Since α ̸≡ a2, then by (4.20), (4.23) and Lemma 2.3, we obtain

T (r, φ1) ≤ N(r, φ1) +N

(
r,

1

φ1 − α0

)
+N

(
r,

1

φ1 − α

)
+ S(r, φ1)

≤ N

(
r,

1

α2g2 + α1g

)
+N

(
r,

1

φ1 − α

)
+ S(r, φ1)

≤ N

(
r,

1

g (α2g + α1)

)
+N

(
r,

1

φ1 − α

)
+ S(r, φ1)

≤ T (r, g) +N

(
r,

1

φ1 − α

)
+ S(r, φ1). (4.25)

By (4.24) and (4.25), we have

T (r, φ1) ≤ 2N

(
r,

1

φ1 − α

)
+ S(r, φ1). (4.26)

Thus, we deduce that φ1 − α has infinitely many zeros.
By (4.19), (4.24) and (4.26), we obtain

T (r, f) ≤ N

(
r,

1

φ1 − α

)
+ S(r, f).

It follow λ(φ1 − α) = ρ(f). Hence we prove that Theorem 1.10 is valid for a ∈
C, b = ∞, a2 − α ̸≡ 0.

Similarly, we prove that Theorem 1.10 is valid for n ≥ 2.
This completes the proof of Theorem 1.10.
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