SOME RESULTS ON VALUE DISTRIBUTION OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENCE POLYNOMIALS*

Zhiying He^{1}, Jinyu Fan ${ }^{1}$ and Mingliang Fang ${ }^{1, \dagger}$

Abstract

In this paper, we study value distribution of meromorphic functions concerning difference polynomials and solve an open problem posed by Zheng and Chen [J. Math. Anal. Appl. 397 (2013)]. By using different methods, we improve and extend some results due to Zheng and Chen [J. Math. Anal. Appl. 397 (2013)], Zhang and Huang [Chinese Ann. Math. Ser. A 40 (2019)].

Keywords Meromorphic function, Borel exceptional value, hyper-order, difference.

MSC(2010) 30D35.

1. Introduction and main results

In this paper, we assume that the reader is familiar with the basic notions of Nevanlinna's value distribution theory, see $[14,16,22,23]$. In the following, a meromorphic function always means meromorphic in the whole complex plane. By $S(r, f)$, we denote any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ possible outside of an exceptional set E with finite logarithmic measure $\int_{E} d r / r<\infty$. A meromorphic function α is said to be a small function of f if it satisfies $T(r, \alpha)=S(r, f)$.

Let f be a nonconstant meromorphic function. The order of f is defined by

$$
\rho(f)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} T(r, f)}{\log r}
$$

Let f be a nonconstant meromorphic function, and let α be a small function of f. The exponent of convergence of zeros of $f-\alpha$ is defined by

$$
\lambda(f-\alpha)=\varlimsup_{r \rightarrow \infty} \frac{\log ^{+} N\left(r, \frac{1}{f-\alpha}\right)}{\log r} .
$$

If

$$
\lambda(f-\alpha)<\rho(f)
$$

[^0]for $\rho(f)>0$; and $N\left(r, \frac{1}{f-\alpha}\right)=O(\log r)$ for $\rho(f)=0$, then α is called a Borel exceptional function of f. If α is a constant, then α is called a Borel exceptional value of f.

In 1959, Hayman [13] proved the following theorem.
Theorem 1.1. Let f be a transcendental entire (meromorphic) function, let $a(\neq$ $0), c$ be two finite complex numbers, and let n be a positive integer. If $n \geq 3(n \geq 5)$, then $f^{\prime}-a f^{n}-c$ has infinitely many zeros.

Recently, value distribution in difference analogue of meromorphic functions has become a subject of some interests, see [1, 3, 5, 6, 9-12, 15, 17, 18, 21, 24, 26, 27].

In 2013, Zheng and Chen [27] proved:
Theorem 1.2. Let f be a transcendental entire function of finite order, let m, n be two distinct positive integers, let a, c be two nonzero complex numbers, let $c_{1}, c_{2}, \cdots, c_{m}$ be complex numbers such that at least one of them is nonzero, and let $\varphi(z)=f\left(z+c_{1}\right) f\left(z+c_{2}\right) \cdots f\left(z+c_{m}\right)-a f^{n}(z)$. If $N\left(r, \frac{1}{f}\right)=S(r, f)$, then
(i) for $|n-m|=1, \varphi$ has infinitely many zeros;
(ii) for $\min \{n, m\}=d \geq 2, \varphi-c$ has infinitely many zeros.

Theorem 1.3. Let f be a transcendental entire function of finite order with a Borel exceptional value b, let m, n be two distinct positive integers, let $a(\neq 0), c\left(\neq b^{m}-a b^{n}\right)$ be two complex numbers, let $c_{1}, c_{2}, \cdots, c_{m}$ be complex numbers such that at least one of them is nonzero, and let $\varphi(z)=f\left(z+c_{1}\right) f\left(z+c_{2}\right) \cdots f\left(z+c_{m}\right)-a f^{n}(z)$. If $n>m \geq 1$, then $\varphi-c$ has infinitely many zeros and $\lambda(\varphi-c)=\rho(f)$.

In [27], Zheng and Chen posed the following problem.
Problem 1.1. Whether Theorem 1.2 is valid or not for $n=m$ and whether Theorem 1.3 is valid or not for $n \leq m$?

In this paper, we give a positive answer to Problem 1.1 and prove:
Theorem 1.4. Let f be a transcendental meromorphic function of finite order, let m, n be two positive integers, let b be a complex number, let $\alpha(\not \equiv 0), c\left(\not \equiv b^{m}-\alpha b^{n}\right)$ be two small functions of f, let $c_{j}(j=1,2, \cdots, m)$ be complex numbers such that at lest one of them is nonzero, and let $\varphi(z)=f\left(z+c_{1}\right) f\left(z+c_{2}\right) \cdots f\left(z+c_{m}\right)-\alpha f^{n}(z)$. If $N(r, f)+N\left(r, \frac{1}{f-b}\right)=S(r, f)$ and $\varphi \not \equiv b^{m}-\alpha b^{n}$, then
(i) for $n \neq m, \varphi$ has infinitely many zeros and $\lambda(\varphi)=\rho(f)$;
(ii) $\varphi-c$ has infinitely many zeros and $\lambda(\varphi-c)=\rho(f)$.

The following examples show that $\varphi \not \equiv b^{m}-\alpha b^{n}$ is necessary in Theorem 1.4.
Example 1.1. Let $b=0$, let $f=e^{z}$, and let $m=n=2, \alpha=1, c_{1}=\frac{5 \pi}{4} i, c_{2}=\frac{3 \pi}{4} i$, then $\varphi(z) \equiv 0 \neq c$. Hence $\varphi-c$ does not have zeros.

Example 1.2. Let $b=2$, let $f=e^{2 z}+2$, and let $m=n=2, \alpha=1, c_{1}=\pi i$, $c_{2}=2 \pi i$, then $\varphi(z) \equiv 0 \neq c$. Hence $\varphi-c$ does not have zeros.

Example 1.3. Let $b=2$, let $f=e^{z}+2$, and let $m=n=1, \alpha=-1, c=1$, $c_{1}=\pi i$, then $\varphi(z) \equiv 4 \neq 1$. Hence $\varphi-1$ does not have zeros.

Corollary 1.1. Let f be a transcendental entire function of finite order, let m, n be two distinct positive integers, let $a(\neq 0)$, c be two complex numbers, let $c_{1}, c_{2}, \cdots, c_{m}$ be complex numbers such that at least one of them is nonzero, and let $\varphi(z)=$ $f\left(z+c_{1}\right) f\left(z+c_{2}\right) \cdots f\left(z+c_{m}\right)-a f^{n}(z)$. If $N\left(r, \frac{1}{f}\right)=S(r, f)$, then $\varphi-c$ has infinitely many zeros and $\lambda(\varphi-c)=\rho(f)$.
Corollary 1.2. Let f be a transcendental entire function of finite order with a Borel exceptional value b, let m, n be two distinct positive integers, let $a(\neq 0), c\left(\neq b^{m}-a b^{n}\right)$ be two complex numbers, let $c_{1}, c_{2}, \cdots, c_{m}$ be complex numbers such that at least one of them is nonzero, and let $\varphi(z)=f\left(z+c_{1}\right) f\left(z+c_{2}\right) \cdots f\left(z+c_{m}\right)-a f^{n}(z)$. Then $\varphi-c$ has infinitely many zeros and $\lambda(\varphi-c)=\rho(f)$.

Remark 1.1. Corollary 1.1 improves Theorem 1.2, Corollary 1.2 improves Theorem 1.3.

In 1959, Hayman [13] proved the following theorem.
Theorem 1.5. Let f be a transcendental entire (meromorphic) function, let a be a nonzero finite complex number, and let n be a positive integer. If $n \geq 2(n \geq 3)$, then $f^{n} f^{\prime}-a$ has infinitely many zeros.

Clunie [7, 8], Mues [20], Bergweiler and Eremenko [2], Chen and Fang [4], Zalcman [25] proved:

Theorem 1.6 ($[2,4])$. Let f be a transcendental meromorphic function, let a be a nonzero finite complex number. Then $f^{n} f^{\prime}-a$ has infinitely many zeros.

In 2007, Laine and Yang [17] obtained the difference analogue to Theorem 1.6 and proved:
Theorem 1.7. Let f be a transcendental entire function of finite order, let a, c be two nonzero finite complex numbers, and let n be a positive integer. If $n \geq 2$, then $f^{n}(z) f(z+c)-a$ has infinitely many zeros.

In 2011, Liu et al. [18] considered the case of meromorphic function and proved the following result.

Theorem 1.8. Let f be a transcendental meromorphic function of finite order, let $\alpha(\not \equiv 0)$ be a small function of f, let c be a nonzero finite complex number, and let n be a positive integer. If $n \geq 2$, then $f^{n}(z) f(z+c)-\alpha(z)$ has infinitely many zeros.

The following example shows that Theorem 1.7 and Theorem 1.8 do not valid if $n=1$.

Example 1.4. Let $f=e^{z}+1$, and let $n=1, \alpha=1, c=\pi i$, then $f(z) f(z+\pi i)-1=$ $-e^{2 z}$. Hence $f^{n}(z) f(z+c)-1$ does not have zeros.

In 2019, Zhang and Huang [26] proved:
Theorem 1.9. Let f be a transcendental meromorphic function of finite order, let c be a nonzero complex number, let n be a positive integer, let a, b be two distinct Borel exceptional values of f on extend complex plane, and let $\alpha(\not \equiv 0)$ be a small function of f. If $n \geq 2$ and one of the following conditions is satisfied:
(i) $a, b \in \mathbb{C}, a^{n+1}-\alpha \not \equiv 0$ and $b^{n+1}-\alpha \not \equiv 0$;
(ii) $a \in \mathbb{C}, b=\infty, a^{n+1}-\alpha \not \equiv 0$,
then $f^{n}(z) f(z+c)-\alpha(z)$ has infinitely many zeros.
According to the above theorems and Example 1.4, we naturally pose the following problem.
Problem 1.2. Whether Theorem 1.9 is valid or not for $n=1$?
In this paper, we give a positive answer to Problem 1.2 and prove the following result.

Theorem 1.10. Let f be a transcendental meromorphic function of finite order, let c be a nonzero complex number, let a, b be two distinct Borel exceptional values of f on extend complex plane, let n be a positive integer, let $\alpha(\not \equiv 0)$ be a small function of f, and let $\varphi_{1}(z)=f^{n}(z) f(z+c)$. If one of the following conditions is satisfied:
(i) $a, b \in \mathbb{C}, a^{n+1}-\alpha \not \equiv 0$ and $b^{n+1}-\alpha \not \equiv 0$;
(ii) $a \in \mathbb{C}, b=\infty, a^{n+1}-\alpha \not \equiv 0$,
then $\varphi_{1}-\alpha$ has infinitely many zeros and $\lambda\left(\varphi_{1}-\alpha\right)=\rho(f)$.

2. Some Lemmas

Lemma 2.1 ($[5,9]$). Let f be a trancendental meromorphic function of finite order, and let c be a nonzero complex number. Then

$$
m\left(r, \frac{f(z+c)}{f(z)}\right)=S(r, f)
$$

Lemma 2.2 ($[5,11])$. Let f be a trancendental meromorphic function of finite order, and let c be a nonzero complex number. Then

$$
\begin{aligned}
& N(r, f(z+c))=N(r, f(z))+S(r, f) \\
& N\left(r, \frac{1}{f(z+c)}\right)=N\left(r, \frac{1}{f(z)}\right)+S(r, f)
\end{aligned}
$$

Lemma 2.3 ([14]). Let f be a trancendental meromorphic function, and let α, β be two distinct small functions of f. Then

$$
T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-\alpha}\right)+\bar{N}\left(r, \frac{1}{f-\beta}\right)+S(r, f)
$$

Lemma 2.4 ([19]). Let f be a nonconstant meromorphic function and $R(f)=$ $\frac{P(f)}{Q(f)}$, where $P(f)=\sum_{i=0}^{p} \alpha_{i} f^{i}$ and $Q(f)=\sum_{j=0}^{q} \beta_{j} f^{j}$ are two mutually prime polynomials in f. If the coefficients $\left\{\alpha_{i}(z)\right\},\left\{\beta_{j}(z)\right\}$ are small functions of f and $\alpha_{p}(z) \not \equiv 0, \beta_{q}(z) \not \equiv 0$, then

$$
T(r, R(f))=\max \{p, q\} \cdot T(r, f)+S(r, f)
$$

Lemma 2.5 ([22]). Let f be a trancendental meromorphic function with $\rho(f)>0$, and let a, b be two distinct Borel exceptional values of f. Then

$$
N\left(r, \frac{1}{f-a}\right)=S(r, f), N\left(r, \frac{1}{f-b}\right)=S(r, f)
$$

Remark 2.1. For $\rho(f)=0$, Lemma 2.5 is still valid.

3. Proof of Theorem 1.4

We consider two cases.
Case 1. $b=0$. Then we obtain

$$
\begin{equation*}
N(r, f)+N\left(r, \frac{1}{f}\right)=S(r, f) \tag{3.1}
\end{equation*}
$$

Now, we consider three subcases.
Case 1.1. $m=n$. Then we have

$$
\begin{equation*}
\varphi(z)=\left[\frac{f\left(z+c_{1}\right)}{f(z)} \frac{f\left(z+c_{2}\right)}{f(z)} \cdots \frac{f\left(z+c_{n}\right)}{f(z)}-\alpha(z)\right] f^{n}(z)=A(z) f^{n}(z) \tag{3.2}
\end{equation*}
$$

where $A(z)=\frac{f\left(z+c_{1}\right)}{f(z)} \frac{f\left(z+c_{2}\right)}{f(z)} \ldots \frac{f\left(z+c_{n}\right)}{f(z)}-\alpha(z)$.
Since α is a small function of f, then by (3.1), Lemma 2.1 and Lemma 2.2, we obtain

$$
\begin{align*}
T(r, A) & \leq T\left(r, \frac{f\left(z+c_{1}\right)}{f(z)} \cdots \frac{f\left(z+c_{n}\right)}{f(z)}\right)+T(r, \alpha)+S(r, f) \\
& \leq N\left(r, \frac{f\left(z+c_{1}\right)}{f(z)} \frac{f\left(z+c_{2}\right)}{f(z)} \cdots \frac{f\left(z+c_{n}\right)}{f(z)}\right)+S(r, f) \\
& \leq \sum_{i=1}^{n} N\left(r, f\left(z+c_{i}\right)\right)+n N\left(r, \frac{1}{f(z)}\right)+S(r, f) \\
& \leq n N(r, f)+n N\left(r, \frac{1}{f}\right)+S(r, f) \leq S(r, f) \tag{3.3}
\end{align*}
$$

Hence, A is a small function of f.
It follows from (3.2), (3.3) and Lemma 2.4 that

$$
\begin{equation*}
T(r, \varphi)=n T(r, f)+S(r, f) \tag{3.4}
\end{equation*}
$$

Let $c(\not \equiv 0)$ be a small function of f, then by (3.4), we know that c is a small function of φ. Hence, by (3.1), (3.2), (3.3) and Lemma 2.3, we have

$$
\begin{align*}
T(r, \varphi) & \leq \bar{N}(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \\
& \leq \bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \tag{3.5}
\end{align*}
$$

It follows that $\varphi-c$ has infinitely many zeros.
By (3.4) and (3.5), we obtain

$$
T(r, f) \leq \frac{1}{n} \bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, f)
$$

Hence, we obtain $\lambda(\varphi-c)=\rho(f)$.
Case 1.2. $m>n$. Then, we have

$$
\varphi(z)=\left[\frac{f\left(z+c_{1}\right)}{f(z)} \frac{f\left(z+c_{2}\right)}{f(z)} \cdots \frac{f\left(z+c_{m}\right)}{f(z)}\right] f^{m}(z)-\alpha(z) f^{n}(z)
$$

$$
\begin{equation*}
=B(z) f^{m}(z)-\alpha(z) f^{n}(z) \tag{3.6}
\end{equation*}
$$

where $B(z)=\frac{f\left(z+c_{1}\right)}{f(z)} \frac{f\left(z+c_{2}\right)}{f(z)} \ldots \frac{f\left(z+c_{m}\right)}{f(z)}$.
Obviously, $B \not \equiv 0$. Since α is a small function of f, then by (3.1), Lemma 2.1 and Lemma 2.2, we obtain

$$
\begin{align*}
T(r, B) & =m(r, B)+N(r, B) \\
& \leq N\left(r, \frac{f\left(z+c_{1}\right)}{f(z)} \frac{f\left(z+c_{2}\right)}{f(z)} \cdots \frac{f\left(z+c_{m}\right)}{f(z)}\right)+S(r, f) \\
& \leq \sum_{i=1}^{m} N\left(r, f\left(z+c_{i}\right)\right)+m N\left(r, \frac{1}{f(z)}\right)+S(r, f) \\
& \leq m N(r, f)+m N\left(r, \frac{1}{f}\right)+S(r, f) \leq S(r, f) \tag{3.7}
\end{align*}
$$

Thus, B is a small function of f.
By (3.6), (3.7) and Lemma 2.4, we obtain

$$
\begin{equation*}
T(r, \varphi)=m T(r, f)+S(r, f) \tag{3.8}
\end{equation*}
$$

Now, we prove conclusion (i). By (3.6), we have

$$
\begin{equation*}
\varphi(z)=f^{n}(z)\left(B(z) f^{m-n}(z)-\alpha(z)\right) \tag{3.9}
\end{equation*}
$$

It follows from (3.1), (3.9), Lemma 2.3 and Lemma 2.4 that

$$
\begin{align*}
(m-n) T(r, f) & =T\left(r, f^{m-n}\right)+S(r, f) \\
& \leq \bar{N}\left(r, f^{m-n}\right)+\bar{N}\left(r, \frac{1}{f^{m-n}}\right)+\bar{N}\left(r, \frac{1}{f^{m-n}-\frac{\alpha}{B}}\right)+S(r, f) \\
& \leq \bar{N}\left(r, \frac{1}{f^{m-n}-\frac{\alpha}{B}}\right)+S(r, f) \leq \bar{N}\left(r, \frac{1}{\varphi}\right)+S(r, f) \tag{3.10}
\end{align*}
$$

By (3.8) and (3.10), we obtain

$$
T(r, \varphi)=m T(r, f) \leq \frac{m}{m-n} \bar{N}\left(r, \frac{1}{\varphi}\right)+S(r, f)
$$

It follows that φ has infinitely many zeros and $\lambda(\varphi)=\rho(f)$.
Thus, conclusion (i) is proved for Case 1.2. Next, we prove conclusion (ii).
Let $c(\not \equiv 0)$ be a small function of f, then by (3.8), we know that c is a small function of φ. Hence, by (3.1), (3.6) and Lemma 2.3, we have

$$
\begin{align*}
T(r, \varphi) & \leq \bar{N}(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \\
& \leq \bar{N}\left(r, \frac{1}{B f^{m}-\alpha f^{n}}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \\
& \leq \bar{N}\left(r, \frac{1}{f^{n}\left(B f^{m-n}-\alpha\right)}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \\
& \leq(m-n) T(r, f)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \tag{3.11}
\end{align*}
$$

By (3.8) and (3.11), we have

$$
\begin{equation*}
T(r, \varphi) \leq \frac{m}{n} \bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \tag{3.12}
\end{equation*}
$$

It follows that $\varphi-c$ has infinitely many zeros.
By (3.8) and (3.12), we have

$$
T(r, f) \leq \frac{1}{n} \bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, f)
$$

Hence, we obtain $\lambda(\varphi-c)=\rho(f)$.
Case 1.3. $m<n$. By using the same argument as used in Case 1.2, we prove that Theorem 1.4 is valid for this case.

Case 2. $b \neq 0$. Then we have

$$
\begin{align*}
\varphi(z)= & f\left(z+c_{1}\right) f\left(z+c_{2}\right) \cdots f\left(z+c_{m}\right)-\alpha(z) f^{n}(z) \\
= & {\left[\left(f\left(z+c_{1}\right)-b\right)+b\right] \cdots\left[\left(f\left(z+c_{m}\right)-b\right)+b\right]-\alpha(z)[(f(z)-b)+b]^{n} } \\
= & {\left[f\left(z+c_{1}\right)-b\right] \cdots\left[f\left(z+c_{m}\right)-b\right]+\cdots+\sum_{i=1}^{m} b^{m-1}\left(f\left(z+c_{i}\right)-b\right)+b^{m} } \\
& -\alpha(z)\left[(f(z)-b)^{n}+n b(f(z)-b)^{n-1}+\cdots+n b^{n-1}(f(z)-b)+b^{n}\right] . \tag{3.13}
\end{align*}
$$

Set

$$
\begin{equation*}
g(z)=f(z)-b \tag{3.14}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
T(r, f)=T(r, g)+S(r, g) \tag{3.15}
\end{equation*}
$$

It follows from $N(r, f)+N\left(r, \frac{1}{f-b}\right)=S(r, f)$ that

$$
\begin{equation*}
N(r, g)+N\left(r, \frac{1}{g}\right)=S(r, g) \tag{3.16}
\end{equation*}
$$

By (3.13) and (3.14), we have

$$
\begin{aligned}
\varphi(z)= & g\left(z+c_{1}\right) g\left(z+c_{2}\right) \cdots g\left(z+c_{m}\right) \\
& +b\left(\sum_{i=1}^{m} \frac{g\left(z+c_{1}\right) g\left(z+c_{2}\right) \cdots g\left(z+c_{m}\right)}{g\left(z+c_{i}\right)}\right) \\
& +\cdots+b^{m-1}\left(\sum_{i=1}^{m} g\left(z+c_{i}\right)\right)+b^{m} \\
& -\alpha(z)\left(g^{n}(z)+n b g^{n-1}(z)+\cdots+n b^{n-1} g(z)+b^{n}\right) \\
= & g^{m}(z)\left(\frac{g\left(z+c_{1}\right) g\left(z+c_{2}\right) \cdots g\left(z+c_{m}\right)}{g^{m}(z)}\right) \\
& +b g^{m-1}(z)\left(\sum_{i=1}^{m} \frac{g\left(z+c_{1}\right) g\left(z+c_{2}\right) \cdots g\left(z+c_{m}\right)}{g\left(z+c_{i}\right) g^{m-1}(z)}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\cdots+b^{m-1} g(z)\left(\sum_{i=1}^{m} \frac{g\left(z+c_{i}\right)}{g(z)}\right)+b^{m} \\
& -\alpha(z)\left(g^{n}(z)+n b g^{n-1}(z)+\cdots+n b^{n-1} g(z)+b^{n}\right) \\
= & b_{0}(z) g^{m}(z)+b_{1}(z) g^{m-1}(z)+\cdots+b_{m-1}(z) g(z)+b^{m} \\
& -\alpha(z)\left(g^{n}(z)+n b g^{n-1}(z)+\cdots+n b^{n-1} g(z)+b^{n}\right), \tag{3.17}
\end{align*}
$$

where $b_{0}(z)=\frac{g\left(z+c_{1}\right) g\left(z+c_{2}\right) \cdots g\left(z+c_{m}\right)}{g^{m}(z)}, \cdots, \quad b_{m-2}(z)=\sum_{i \neq j} b^{m-2} \frac{g\left(z+c_{i}\right) g\left(z+c_{j}\right)}{g^{2}(z)}$, $b_{m-1}(z)=\sum_{i=1}^{m} b^{m-1} \frac{g\left(z+c_{i}\right)}{g(z)}(i, j=1,2, \cdots, m)$.

By (3.16), Lemma 2.1 and Lemma 2.2, we obtain

$$
\begin{align*}
T\left(r, b_{0}\right) & =m\left(r, b_{0}\right)+N\left(r, b_{0}\right) \\
& \leq N\left(r, \frac{g\left(z+c_{1}\right)}{g(z)} \frac{g\left(z+c_{2}\right)}{g(z)} \cdots \frac{g\left(z+c_{m}\right)}{g(z)}\right)+S(r, g) \\
& \leq \sum_{i=1}^{m} N\left(r, g\left(z+c_{i}\right)\right)+m N\left(r, \frac{1}{g(z)}\right)+S(r, g) \\
& \leq m N(r, g)+m N\left(r, \frac{1}{g}\right)+S(r, g) \leq S(r, g) . \tag{3.18}
\end{align*}
$$

Thus, b_{0} is a small function of g. Similarly, we deduce that $b_{j}(j=1,2, \cdots, m-1)$ are small functions of g.

Since $\varphi \not \equiv b^{m}-\alpha b^{n}$, then by (3.17) and (3.18), we have

$$
\begin{equation*}
\varphi(z)=\sum_{i=1}^{s} d_{i}(z) g^{m_{i}}(z)+b^{m}-\alpha(z) b^{n}, \tag{3.19}
\end{equation*}
$$

where $s(\leq \max \{m, n\})$ is a positive integer, $m_{i}(i=1,2, \cdots, s)$ are positive integers with $m_{1}<m_{2}<\cdots<m_{s}$, and $d_{i}(z)(\not \equiv 0)(i=1,2, \cdots, s)$ are small functions of f such that $\sum_{i=1}^{s} d_{i}(z) g^{m_{i}}(z) \not \equiv 0$.

By (3.19) and Lemma 2.4, we obtain

$$
\begin{equation*}
T(r, \varphi)=m_{s} T(r, g)+S(r, g) . \tag{3.20}
\end{equation*}
$$

Next, we prove conclusion (i). It follows from $n \neq m$ that $2 \leq s \leq \max \{m, n\}$. In the following, we consider two subcases.

Case $2.1 b^{m}-\alpha(z) b^{n} \equiv 0$. By (3.19), we have

$$
\begin{align*}
\varphi(z) & =\sum_{i=1}^{s} d_{i}(z) g^{m_{i}}(z) \\
& =g^{m_{1}}(z)\left(d_{s}(z) g^{m_{s}-m_{1}}(z)+\cdots+d_{2}(z) g^{m_{2}-m_{1}}+d_{1}(z)\right) . \tag{3.21}
\end{align*}
$$

It follows from (3.21), Lemma 2.3 and Lemma 2.4 that

$$
\begin{aligned}
& \left(m_{s}-m_{1}\right) T(r, g) \\
= & T\left(r, d_{s} g^{m_{s}-m_{1}}+\cdots+d_{2} g^{m_{2}-m_{1}}+d_{1}\right) \\
\leq & \bar{N}\left(r, d_{s} g^{m_{s}-m_{1}}+\cdots+d_{2} g^{m_{2}-m_{1}}+d_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\bar{N}\left(r, \frac{1}{d_{s} g^{m_{s}-m_{1}}+\cdots+d_{2} g^{m_{2}-m_{1}}+d_{1}-d_{1}}\right) \\
& +\bar{N}\left(r, \frac{1}{d_{s} g^{m_{s}-m_{1}}+\cdots+d_{2} g^{m_{2}-m_{1}}+d_{1}}\right)+S(r, g) \\
\leq & \bar{N}\left(r, \frac{1}{g^{m_{2}-m_{1}}\left(d_{s} g^{m_{s}-m_{2}}+\cdots+d_{2}\right)}\right) \\
& +\bar{N}\left(r, \frac{1}{d_{s} g^{m_{s}-m_{1}}+\cdots+d_{2} g^{m_{2}-m_{1}}+d_{1}}\right)+S(r, g) \\
\leq & \left(m_{s}-m_{2}\right) T(r, g)+\bar{N}\left(r, \frac{1}{d_{s} g^{m_{s}-m_{1}}+\cdots+d_{2} g^{m_{2}-m_{1}}+d_{1}}\right)+S(r, g) \\
\leq & \left(m_{s}-m_{2}\right) T(r, g)+\bar{N}\left(r, \frac{1}{\varphi}\right)+S(r, g) \tag{3.22}
\end{align*}
$$

By (3.15), (3.20) and (3.22), we have

$$
T(r, \varphi)=m_{s} T(r, f)+S(r, f) \leq \frac{m_{s}}{m_{2}-m_{1}} \bar{N}\left(r, \frac{1}{\varphi}\right)+S(r, f)
$$

It follows from $m_{2}>m_{1}$ that φ has infinitely many zeros and $\lambda(\varphi)=\rho(f)$.
Case 2.2. $b^{m}-\alpha(z) b^{n} \not \equiv 0$. It follows from (3.19) and Lemma 2.4 that

$$
\begin{align*}
m_{s} T(r, g)= & T\left(r, \sum_{i=1}^{s} d_{i} g^{m_{i}}+b^{m}-\alpha b^{n}\right) \\
\leq & \bar{N}\left(r, \sum_{i=1}^{s} d_{i} g^{m_{i}}+b^{m}-\alpha b^{n}\right)+\bar{N}\left(r, \frac{1}{\sum_{i=1}^{s} d_{i} g^{m_{i}}+b^{m}-\alpha b^{n}}\right) \\
& +\bar{N}\left(r, \frac{1}{\sum_{i=1}^{s} d_{i} g^{m_{i}}+b^{m}-\alpha b^{n}-\left(b^{m}-\alpha b^{n}\right)}\right)+S(r, g) \\
\leq & \left(m_{s}-m_{1}\right) T(r, g)+\bar{N}\left(r, \frac{1}{\sum_{i=1}^{s} d_{i} g^{m_{i}}+b^{m}-\alpha b^{n}}\right)+S(r, g) \\
\leq & \left(m_{s}-m_{1}\right) T(r, g)+\bar{N}\left(r, \frac{1}{\varphi}\right)+S(r, g) \tag{3.23}
\end{align*}
$$

By (3.15), (3.20) and (3.23), we have

$$
T(r, \varphi) \leq m_{s} T(r, f)+S(r, f) \leq \frac{m_{s}}{m_{1}} \bar{N}\left(r, \frac{1}{\varphi}\right)+S(r, f)
$$

It follows that φ has infinitely many zeros and $\lambda(\varphi)=\rho(f)$.
Thus, conclusion (i) is proved for Case 2. Next, we prove conclusion (ii).
Let $c\left(\not \equiv b^{m}-\alpha b^{n}\right)$ be a small function of f, then by (3.15) and (3.20), we know that c is a small function of φ. Hence, by (3.16), (3.19) and Lemma 2.3, we have

$$
\begin{aligned}
T(r, \varphi) & \leq \bar{N}(r, \varphi)+\bar{N}\left(r, \frac{1}{\varphi-\left(b^{m}-\alpha b^{n}\right)}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \\
& \leq \bar{N}\left(r, \frac{1}{d_{1} g^{m_{1}}+d_{2} g^{m_{2}}+\cdots+d_{s} g^{m_{s}}}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi)
\end{aligned}
$$

$$
\begin{align*}
& \leq \bar{N}\left(r, \frac{1}{g^{m_{1}}\left(d_{1}+d_{2} g^{m_{2}-m_{1}}+\cdots+d_{s} g^{m_{s}-m_{1}}\right)}\right)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) \\
& \leq\left(m_{s}-m_{1}\right) T(r, g)+\bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) . \tag{3.24}
\end{align*}
$$

By (3.20) and (3.24), we have

$$
\begin{equation*}
T(r, \varphi) \leq \frac{m_{s}}{m_{1}} \bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, \varphi) . \tag{3.25}
\end{equation*}
$$

It follow that $\varphi-c$ has infinitely many zeros.
By (3.15), (3.20) and (3.25), we have

$$
T(r, f) \leq \frac{1}{m_{1}} \bar{N}\left(r, \frac{1}{\varphi-c}\right)+S(r, f) .
$$

Hence, we obtain $\lambda(\varphi-c)=\rho(f)$. Thus the conclusion (ii) is proved.
This completes the proof of Theorem 1.4.

4. Proof of Theorem 1.10

Now, we prove the case of $n=1$.
We assume that $a, b \in \mathbb{C}, a^{2}-\alpha \not \equiv 0$ and $b^{2}-\alpha \not \equiv 0$.
Since a, b are two distinct Borel exceptional values of f, then by Lemma 2.5, we obtain

$$
\begin{equation*}
N\left(r, \frac{1}{f-a}\right)=S(r, f), N\left(r, \frac{1}{f-b}\right)=S(r, f) . \tag{4.1}
\end{equation*}
$$

Set

$$
\begin{equation*}
H(z)=\frac{f(z)-a}{f(z)-b} . \tag{4.2}
\end{equation*}
$$

By (4.2), we obtain

$$
\begin{equation*}
f(z)=\frac{a-b H(z)}{1-H(z)} . \tag{4.3}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
T(r, f)=T(r, H)+S(r, H) . \tag{4.4}
\end{equation*}
$$

Obviously, $H \not \equiv 0,1, \infty$. It follows from (4.1), (4.2) and (4.4) that

$$
\begin{equation*}
N(r, H)=S(r, H), N\left(r, \frac{1}{H}\right)=S(r, H) . \tag{4.5}
\end{equation*}
$$

By (4.3), we have

$$
\begin{align*}
\varphi_{1}(z)-\alpha(z) & =\frac{a-b H(z)}{1-H(z)} \frac{a-b H(z+c)}{1-H(z+c)}-\alpha(z) \\
& =\frac{\left(b^{2}-\alpha(z)\right) A(z) H^{2}(z)-(a b-\alpha(z))(A(z)+1) H(z)+a^{2}-\alpha(z)}{A(z) H^{2}(z)-(A(z)+1) H(z)+1}, \tag{4.6}
\end{align*}
$$

where $A(z)=\frac{H(z+c)}{H(z)}$. By Lemma 2.1 and (4.5), we obtain that A is a small function of H.

Next, we consider two cases.
Case 1. $\left(b^{2}-\alpha(z)\right) A(z) H^{2}(z)-(a b-\alpha(z))(A(z)+1) H(z)+a^{2}-\alpha(z)$ and $A(z) H^{2}(z)-(A(z)+1) H(z)+1$ are two mutually prime polynomials.

By (4.6) and Lemma 2.4, we have

$$
\begin{equation*}
T\left(r, \varphi_{1}\right)=T\left(r, \frac{b^{2} A H^{2}-a b(A+1) H+a^{2}}{A H^{2}-(A+1) H+1}\right)=2 T(r, H)+S(r, H) \tag{4.7}
\end{equation*}
$$

Since $b^{2} \not \equiv \alpha, a^{2} \not \equiv \alpha$, then by (4.5), Lemma 2.3 and Lemma 2.4, we obtain

$$
\begin{align*}
2 T(r, H)= & T\left(r,\left(b^{2}-\alpha\right) A H^{2}-(a b-\alpha)(A+1) H+a^{2}-\alpha\right)+S(r, H) \\
\leq & \bar{N}\left(r,\left(b^{2}-\alpha\right) A H^{2}-(a b-\alpha)(A+1) H+a^{2}-\alpha\right) \\
& +\bar{N}\left(r, \frac{1}{\left(b^{2}-\alpha\right) A H^{2}-(a b-\alpha)(A+1) H+a^{2}-\alpha-\left(a^{2}-\alpha\right)}\right) \\
& +\bar{N}\left(r, \frac{1}{\left(b^{2}-\alpha\right) A H^{2}-(a b-\alpha)(A+1) H+a^{2}-\alpha}\right)+S(r, H) \\
\leq & \bar{N}\left(r, \frac{1}{H\left[\left(b^{2}-\alpha\right) A H-(a b-\alpha)(A+1)\right]}\right) \\
& +\bar{N}\left(r, \frac{1}{\left(b^{2}-\alpha\right) A H^{2}-(a b-\alpha)(A+1) H+a^{2}-\alpha}\right)+S(r, H) \\
\leq & T(r, H)+\bar{N}\left(r, \frac{1}{\left(b^{2}-\alpha\right) A H^{2}-(a b-\alpha)(A+1) H+a^{2}-\alpha}\right)+S(r, H) \\
\leq & T(r, H)+\bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S(r, H) . \tag{4.8}
\end{align*}
$$

By (4.7) and (4.8), we have

$$
T\left(r, \varphi_{1}\right) \leq 2 \bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S\left(r, \varphi_{1}\right)
$$

It follows that $\varphi_{1}-\alpha$ has infinitely many zeros.
By (4.4) and (4.8), we obtain

$$
T(r, f) \leq \bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S(r, f)
$$

Hence, we obtain $\lambda\left(\varphi_{1}-\alpha\right)=\rho(f)$.
Case 2. $\left[b^{2}-\alpha(z)\right] A(z) H^{2}(z)-[(a b-\alpha)(A(z)+1)] H(z)+\left[a^{2}-\alpha(z)\right]$ and $A(z) H^{2}(z)-(A(z)+1) H(z)+1$ have common factor $\gamma(z)$.

In the following, we consider two subcases.
Case 2.1. γ is a polynomial of H with $\operatorname{deg} \gamma=1$.
By (4.6), we have

$$
\begin{equation*}
\varphi_{1}(z)-\alpha(z)=\frac{C_{1}(z) H(z)+D_{1}(z)}{A_{1}(z) H(z)+B_{1}(z)} \tag{4.9}
\end{equation*}
$$

where $A_{1}, B_{1}, C_{1}, D_{1}$ are small functions of H.

Since $a^{2} \not \equiv \alpha$, then by (4.6) and (4.9), we deduce that $D_{1} \not \equiv 0$. Similarly, we obtain $C_{1} \not \equiv 0$. By using the same argument as used in Case 1 , we prove that $\varphi_{1}-\alpha$ has infinitely many zeros and $\lambda\left(\varphi_{1}-\alpha\right)=\rho(f)$.

Case 2.2. γ is a polynomial of H with $\operatorname{deg} \gamma=2$.
By (4.6), we obtain

$$
\begin{equation*}
\varphi_{1}(z)-\alpha(z)=B(z) \tag{4.10}
\end{equation*}
$$

where B is a small function of H.
It follows

$$
\begin{equation*}
\varphi_{1}(z)=B_{2}(z), \tag{4.11}
\end{equation*}
$$

where $B_{2}=B+\alpha$ is a small function of H.
We claim that $B_{2} \not \equiv 0$. Otherwise, it follows from (4.10) that $f \equiv 0$, a contradiction.

By (4.3), we have

$$
\begin{equation*}
\varphi_{1}(z)=\frac{a^{2}-a b H(z)-a b H(z+c)+b^{2} H(z) H(z+c)}{1-H(z)-H(z+c)+H(z) H(z+c)} . \tag{4.12}
\end{equation*}
$$

It follows from (4.11) and (4.12) that

$$
\begin{align*}
& a^{2}-\left(a b+a b \frac{H(z+c)}{H(z)}\right) H(z)+b^{2} \frac{H(z+c)}{H(z)} H^{2}(z) \\
= & B_{2}(z)-\left(B_{2}(z)+B_{2}(z) \frac{H(z+c)}{H(z)}\right) H(z)+B_{2}(z) \frac{H(z+c)}{H(z)} H^{2}(z) . \tag{4.13}
\end{align*}
$$

Thus, we obtain

$$
\begin{align*}
& a^{2}=B_{2}(z), \tag{4.14}\\
& a b=B_{2}(z), \tag{4.15}\\
& b^{2}=B_{2}(z) . \tag{4.16}
\end{align*}
$$

By (4.14) and (4.15), we have $a=b$, a contradiction. Hence we prove that Theorem 1.10 is valid for $a, b \in \mathbb{C}, a^{2}-\alpha \not \equiv 0$ and $b^{2}-\alpha \not \equiv 0$.

Next, we assume that $a \in \mathbb{C}, b=\infty, a^{2}-\alpha \not \equiv 0$. Then, we have

$$
\begin{equation*}
\varphi_{1}(z)=[(f(z)-a)+a][(f(z+c)-a)+a] . \tag{4.17}
\end{equation*}
$$

Set

$$
\begin{equation*}
g(z)=f(z)-a \tag{4.18}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
T(r, f)=T(r, g)+S(r, g) \tag{4.19}
\end{equation*}
$$

Since a, ∞ are two distinct Borel exceptional values of f, then by Lemma 2.5, we obtain

$$
\begin{equation*}
N\left(r, \frac{1}{g}\right)=S(r, g), N(r, g)=S(r, g) \tag{4.20}
\end{equation*}
$$

By (4.17) and (4.18), we have

$$
\begin{aligned}
\varphi_{1}(z) & =[g(z)+a][g(z+c)+a] \\
& =g(z) g(z+c)+a g(z)+a g(z+c)+a^{2}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{g(z+c)}{g(z)} g^{2}(z)+a\left(\frac{g(z+c)}{g(z)}+1\right) g(z)+a^{2} . \tag{4.21}
\end{equation*}
$$

It follows from (4.20), Lemma 2.1 and Lemma 2.2 that

$$
\begin{equation*}
T\left(r, \frac{g(z+c)}{g(z)}\right)=m\left(r, \frac{g(z+c)}{g(z)}\right)+N\left(r, \frac{g(z+c)}{g(z)}\right) \leq S(r, g) \tag{4.22}
\end{equation*}
$$

By (4.21) and (4.22), we have

$$
\begin{equation*}
\varphi_{1}(z)=\alpha_{2}(z) g^{2}(z)+\alpha_{1}(z) g(z)+\alpha_{0} \tag{4.23}
\end{equation*}
$$

where $\alpha_{2}(z)=\frac{g(z+c)}{g(z)}, \alpha_{1}(z)=a\left(\frac{g(z+c)}{g(z)}+1\right), \alpha_{0}(z)=a^{2}$ are small functions of $g(z)$.

By (4.23) and Lemma 2.4, we obtain

$$
\begin{equation*}
T\left(r, \varphi_{1}\right)=2 T(r, g)+S(r, g) \tag{4.24}
\end{equation*}
$$

Since $\alpha \not \equiv a^{2}$, then by (4.20), (4.23) and Lemma 2.3, we obtain

$$
\begin{align*}
T\left(r, \varphi_{1}\right) & \leq \bar{N}\left(r, \varphi_{1}\right)+\bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha_{0}}\right)+\bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S\left(r, \varphi_{1}\right) \\
& \leq \bar{N}\left(r, \frac{1}{\alpha_{2} g^{2}+\alpha_{1} g}\right)+\bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S\left(r, \varphi_{1}\right) \\
& \leq \bar{N}\left(r, \frac{1}{g\left(\alpha_{2} g+\alpha_{1}\right)}\right)+\bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S\left(r, \varphi_{1}\right) \\
& \leq T(r, g)+\bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S\left(r, \varphi_{1}\right) \tag{4.25}
\end{align*}
$$

By (4.24) and (4.25), we have

$$
\begin{equation*}
T\left(r, \varphi_{1}\right) \leq 2 \bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S\left(r, \varphi_{1}\right) \tag{4.26}
\end{equation*}
$$

Thus, we deduce that $\varphi_{1}-\alpha$ has infinitely many zeros.
By (4.19), (4.24) and (4.26), we obtain

$$
T(r, f) \leq \bar{N}\left(r, \frac{1}{\varphi_{1}-\alpha}\right)+S(r, f)
$$

It follow $\lambda\left(\varphi_{1}-\alpha\right)=\rho(f)$. Hence we prove that Theorem 1.10 is valid for $a \in$ $\mathbb{C}, b=\infty, a^{2}-\alpha \not \equiv 0$.

Similarly, we prove that Theorem 1.10 is valid for $n \geq 2$.
This completes the proof of Theorem 1.10.

Acknowledgements

We thank the referee for his/her valuable comments and suggestions made to this paper.

References

[1] T. T. H. An and N. V. Phuong, A note on Hayman's conjecture, Internat. J. Math., 2020, 31(6), 10.
[2] W. Bergweiler and A. Eremenko, On the singulariyies of the inverse to a of meromorphic function of finite order, Rev. Mat. Iberoamericana, 1999, 11(2), 355-373.
[3] B. Chakraborty, S. Saha, A. K. Pal and J. Kamila, Value distribution of some differential monomials, Filomat, 2020, 34(13), 4287-4295.
[4] H. Chen and M. Fang, On the value distribution of $f^{n} f^{\prime}$, Science in China, 1995, 38A, 789-798.
[5] Y. M. Chiang and S. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 2008, 16(1), 105-129.
[6] Y. M. Chiang and S. Feng, On the growth of logarithmic differences, difference quotients and logarithmic derivatives of meromorphic functions, Trans. Amer. Math. Soc., 2009, 361, 3767-3791.
[7] J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 1962, 37, 17-27.
[8] J. Clunie, On a result of Hayman, J. London Math. Soc., 1967, 42, 389-392.
[9] R. G. Halburd and R. J. Korhonen, Difference analogue of the lemma on the logaritheoremic derivative with applications to difference equations, J. Math. Anal. Appl., 2006, 314(2), 477-487.
[10] R. G. Halburd and R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 2006, 31(2), 463-478.
[11] R, G. Halburd, R. Korhonen and K. Tohge, Holomorphic curves with shiftinvariant hyperplane preimages, Trans. Amer. Math. Soc., 2014, 366(8), 42674298.
[12] S. Halder and P. Sahoo, On value distribution of a class of entire functions, Izv. Nats. Akad. Nauk Armenii Mat., 2021, 56(2), 35-43.
[13] W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 1959, 70, 9-42.
[14] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[15] H. Karmakar and P. Sahoo, On the value distribution of $f^{n} f^{(k)}-1$, Results Math., 2018, 73(3), 14.
[16] I. Laine, Nevanlinna Theory and Complex Differential Equations, De Gruyter, Berlin, 1993.
[17] I. Laine and C. Yang, Value distribution of difference ploynomials, Proc. Japan Acad. Ser. A: Math. Sci., 2007, 83(8), 148-151.
[18] K. Liu, X. Liu and T. Cao, Value distributions and uniqueness of difference polynomials, Adv. Difference. Equ., 2011, 12.
[19] A. Z. Mokhon'ko, The Nevanlinna characteristics of certain meromorphic function, Teor. Funckciĭ Funckcional. Anal. i Priložen., 1971, 14, 83-87.
[20] E. Mues, Uber ein problem von Hayman, Math. Z., 1979, 164(3), 239-259.
[21] P. Sahoo and A. Sarkar, On the value distribution of the differential polynomial $A f^{n} f^{(k)}+B f^{n+1}-1$, Filomat., 2021, 35(2), 579-589.
[22] C. Yang and H. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.
[23] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin, 1993.
[24] P. Yang, L. Liao and Q. Chen, Value distribution of the derivatives of entire functions with multiple zeros, Bull. Malays. Math. Sci. Soc., 2020, 43(3), 20452063.
[25] L. Zalcman, On some problems of Hayman, Preprint (Bar-Ilan University), 1995.
[26] R. Zhang and Z. Huang, Certain type of difference polynomials of meromorphic functions, Chinese Ann. Math. Ser. A, 2019, 40(2), 127-138.
[27] X. Zheng and Z. Chen, On the value distribution of some difference polynomials, J. Math. Anal. Appl., 2013, 397, 814-821.

[^0]: ${ }^{\dagger}$ The corresponding author.
 ${ }^{1}$ Department of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China
 *The authors were supported by National Natural Science Foundation of China (No. 12171127) and Natural Science Foundation of Zhejiang Province (No. LY21A010012).
 Email: zhiyinggood@163.com(Z. Y. He), fanjinyu1997@163.com(J. Y. Fan), mlfang@hdu.edu.cn(M. L. Fang)

