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SOLVING THE YANG-BAXTER-LIKE MATRIX
EQUATION FOR A RANK-ONE MATRIX∗
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Abstract We reduce the problem of solving the Yang-Baxter-like matrix
equation AXA = XAX, where A is a rank-one matrix, to that of solving
linear matrix equations, obtaining all solutions. We use a direct and unified
approach for the both cases that A is diagonalizable or otherwise, instead of
seeking the help of the Jordan canonical form or factorization of A. Based on
the characterizations for the solutions, we derive a perturbation result when
A is not diagonalizable.
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1. Introduction
For a given n×n complex matrix A with n ≥ 2, the problem of solving the following
so-called Yang-Baxter-like matrix equation

AXA = XAX (1.1)

has been extensively studied in recent years (see, e.g., [1,4,7,9,11] and the references
therein). This quadratic matrix equation is similar in format to the classic Yang-
Baxter equation [2,15], which has close relations to knot theory, braid group theory,
quantum group theory, etc. We refer to the monographs [8, 16] for some historical
aspects and applications of the Yang-Baxter equation.

The Yang-Baxter-like matrix equation has two trivial solutions X = 0 and
X = A, but it is a difficult task to find all other solutions for a general matrix
A. Solving the quadratic matrix equation for the unknown n × n matrix X is
equivalent to solving a system of n2 scalar quadratic equations of n2 variables that
are the entries of X, and determining all the solutions of the system is a challenge
in general in algebraic geometry. Even for the simple case when A is a 2× 2 Jordan
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block with eigenvalue λ ̸= 0, solving the four quadratic scalar equations takes much
time via hand computation for all the non-trivial solutions.

However, if one gives the additional requirement that the solution commutes
with A, that is AX = XA, after a series of papers in the literature, the goal of
finding all the commuting solutions has been reached; see, e.g., [5–7, 13]. Thus,
the remaining problem is to find all the non-commuting solutions of (1.1). For
some special classes of matrices of A, such as elementary matrices and low ranked
matrices, all the non-commuting solutions have been obtained [4, 12, 14], by means
of the Jordan canonical form decomposition. However, even for a nilpotent matrix
A with a couple of 2× 2 Jordan blocks, finding all non-commuting solutions of the
corresponding Yang-Baxter-like matrix equation is still an open problem.

So far, the approach to solving the Yang-Baxter-like matrix equation is by means
of the Jordan canonical form J of the given matrix A, and then solving the “sim-
plified” Yang-Baxter-like matrix equation

JY J = Y JY. (1.2)

As is well known (Lemma 1 in [5]), the two equations (1.1) and (1.2) are equivalent
in the sense that X solves (1.1) if and only if Y = S−1XS solves (1.2), where
S−1AS = J . Although in theory the reduction of the matrix equation with the
original matrix A to the one with the simplest matrix J in the “similarity class”
of A can help us find some or all solutions by using the structural analysis of the
Jordan blocks in the canonical form of A, finding the Jordan canonical form of the
given matrix and the corresponding matrix S, whose columns are eigenvectors and
generalized eigenvectors associated to all the eigenvalues of A, is not a simple task,
especially the numerical computation of J and S. It turns out that obtaining partial
or all solutions of (1.1) directly without resort to the costly reduction process of the
Jordan canonical form decomposition is important and desired in applications.

A recent paper [10] proposed an alternative approach that avoids using the
Jordan canonical form of the known matrix A. For the case that A = pqT with
p and q given nonzero vectors, a necessary and sufficient condition is given for a
matrix X of the same order as A to be a solution of (1.1), based on which some
expressions of all commuting or non-commuting solutions are obtained.

The purpose of this paper is to establish concise characterizations in terms of the
given matrix A for a matrix X to solve (1.1) when A is a general rank one matrix
without being factorized. We show that solving the quadratic matrix equation (1.1)
with a rank-one matrix A is equivalent to solving several linear matrix equations.
Thus, we can construct a numerical scheme to find all solutions of the matrix
equation, so robust linear solvers can be applied to solve (1.1) numerically. Our
approach and analysis are more direct than before and the results are simpler to
express. Such results together with the concept of generalized inverses also lead to
a perturbation analysis for solving (1.1) when A is not diagonalizable.

In the next section we solve (1.1) directly for the first case that A is diago-
nalizable, and we present the solution result in Section 3 for the case that A is
not diagonalizable. We discuss numerical methods for finding all the solutions and
develop a perturbation result in Section 4. We conclude in Section 5.
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2. Solutions When A is Diagonalizable
Let A be an n×n complex matrix of rank one. As usual, by r(A), R(A), and N(A)
we denote the rank, range, and null space of A, respectively. Suppose that X is
a solution of the corresponding Yang-Baxter-like matrix equation (1.1). We shall
characterize X in terms of linear matrix equations. In this section we assume that
A is diagonalizable.

Since r(A) = 1, it is easy to see that A is similar to a diagonal matrix of
diagonal entries 0, . . . , 0, c with c ̸= 0, so c is a nonzero eigenvalue of A. Since
the other eigenvalue of A is 0 of multiplicity n − 1, it follows that the minimal
polynomial of A is λ(λ− c), from which

A2 = cA. (2.1)

Theorem 2.1. Suppose that the given rank-one matrix A is diagonalizable. Then
an n × n matrix X solves (1.1) if and only if one of the following conditions is
satisfied:

(i) Either AX = 0 or XA = 0;
(ii) Both AX = cA and XA = cA hold, where c is a nonzero eigenvalue of A.

Moreover, X is a commuting solution if and only if either AX = XA = 0 or
AX = XA = cA.

Proof. The matrix A has a unique nonzero eigenvalue c and satisfies the equation
(2.1). For the sufficiency part, first assume that AX = 0 or XA = 0. Then
AXA = XAX = 0. Now assume that X satisfies AX = cA and XA = cA. Then

AXA = cA ·A = cA2 = c · cA = c2A

and
XAX = cA ·X = c · cA = c2A,

so X solves (1.1).
For the necessity part, let X satisfy AXA = XAX. First suppose XAX = 0.

If AX ̸= 0 and XA ̸= 0, then X : R(A) → {0} from R(AX) = R(A), that is
XA = 0, a contradiction to the assumption that XA ̸= 0. This gives (i). Now
suppose XAX ̸= 0. Then from XAXA = AXA2 = cAXA, we have

(X − cI)AXA = 0, (2.2)

where I is the identity matrix. Since AXA ̸= 0, the rank of AXA is 1, so
R(AXA) = R(A). Thus the equality (2.2) implies that X − cI maps R(A) into
{0}, and consequently XA− cA = (X − cI)A = 0.

Now XAX = AXA ̸= 0 implies XTATXT = ATXTAT ̸= 0. Then from
XTATXTAT = ATXT (AT )2 = cATXTAT ,

(XT − cI)ATXTAT = 0,

so (XT − cI)AT = 0 since R(ATXTAT ) = R(AT ), from which AX = cA.
The last statement of the theorem is obvious.
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Remark 2.1. When the rank-one matrix A has one nonzero eigenvalue c, there are
nonsingular matrix solutions to the system AX = cA and XA = cA, so there are
nonsingular matrix solutions to (1.1); for example, X = cI is one of such solutions.
This fact can also be seen from the following illustrative example.

Example 2.1. Let A be a 3 × 3 matrix with all entries 1. Then r(A) = 1 and
A2 = 3A.

A basis of N(A) = N(AT ) is given by

u1 =


−1

1

0

 and u2 =


−1

0

1

 .

From the above theorem, all solutions of (1.1) are:

1) X =


−1 −1

1 0

0 1


r1 r2 r3

r4 r5 r6

 , ∀ ri ∈ C,

2) X =


s1 s4

s2 s5

s3 s6


−1 1 0

−1 0 1

 , ∀ si ∈ C,

3) X = 3I +


x+ y + z + w −x− z −y − w

−x− y x y

−z − w z w

 , ∀ x, y, z, w ∈ C.

3. Solutions When A is not Diagonalizable
Again let r(A) = 1 for the given n× n complex matrix A. The remaining situation
for us to discuss is that A is not diagonalizable. Then 0 is the only eigenvalue of
A, so A2 = 0 since r(A) = 1. In other words, A is a nilpotent matrix of order 2.
Consequently, R(A) ⊂ N(A).

Theorem 3.1. Suppose that the given rank-one matrix A is not diagonalizable.
Then an n× n matrix X solves (1.1) if and only if AX = 0 or XA = 0. Moreover,
X is a commuting solution if and only if AX = XA = 0.

Proof. The assumption implies that A2 = 0, so R(A) ⊂ N(A).
For the sufficiency part, suppose AX = 0 or XA = 0. Then clearly AXA =

XAX = 0, so X solves (1.1).
For the necessity part, let X be a solution of (1.1). Suppose AX ̸= 0. Then

0 < r(AX) ≤ r(A) = 1, from which r(AX) = 1. So R(AX) = R(A) since R(AX) ⊂
R(A) and dimR(A) = 1. From AXA = XAX, we see that (AX)2 = AXAX =
A · AXA = A2XA = 0 since A2 = 0. Thus, AX is a nilpotent matrix of rank one
and order 2, and it follows that R(A) = R(AX) ⊂ N(AX). Therefore, AXA = 0.
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Then X ·AX = AXA = 0, which implies that X : R(AX) = R(A) → {0}. In other
words, XA : Cn → {0}. Hence XA = 0.

Now, suppose that XA ̸= 0. Then ATXT ̸= 0. By the same reason as
above, R(AT ) = R(ATXT ) ⊂ N(ATXT ), so ATXTAT = 0. Thus, XTATXT =
(AXA)T = ATXTAT = 0, which means that XT : R(ATXT ) = R(AT ) → {0},
namely XTAT = 0. Hence AX = 0.

The last conclusion is obvious.

Remark 3.1. The proof of Theorem 3.1 indicates that under its condition, all
solutions X of (1.1) must make AXA = XAX = 0, a consequence of which is that
X cannot be nonsingular, since otherwise A = 0 from multiplying X−1 to the both
sides of the equality XAX = 0. This is unlike the situation in the previous section.

4. Computation of Solutions and Perturbations

From the characterizations proved in the previous two sections, we know that, for
the class of rank-one matrices A, solving the nonlinear matrix equation (1.1) is
equivalent to solving the linear matrix equations AX = 0 and XA = 0 separately
if A2 = 0, and the linear matrix equations AX = 0 and XA = 0 separately or
AX = cA and XA = cA simultaneously if the equation (2.1) true for some c ̸= 0.
Hence numerical linear algebra can be effectively used to find such solutions.

For the case that A is nilpotent, solving the system of AX = XA = 0 will
give all the commuting solutions, and when A is not nilpotent, solving the system
AX = XA = 0 or that of AX = XA = cA will give all the commuting solutions.
The equation AX = 0 means that all columns of X belong to N(A), so if one finds
a basis {u1, . . . , un−1} of N(A), then all columns of X are linear combinations of
u1, . . . , un−1. It follows that all solutions of AX = 0 can be expressed as X = UR
with R an arbitrary (n− 1)× n matrix, where U = [u1, . . . , un−1].

Similarly, all solutions to the equation XA = 0 can be written as X = LV
with L an arbitrary n× (n− 1) matrix, where V T = [v1, . . . , vn−1] whose columns
constitute a basis of N(AT ).

As for the consistent nonhomogeneous equation AX = cA, since X = cI is one
particular solution, all its solutions are X = UR + cI with the same U and R as
above. Similarly, all solutions to XA = cA have the general expression X = LV +cI
with the same V and L as above. Their common solutions are given by those R and
L such that UR = LV . Since c is nonzero, if we make any norm ∥UR∥ = ∥LV ∥ < c,
then X is nonsingular by Banach’s lemma.

For a diagonalizable rank-one matrix A so that the equation (2.1) holds for some
c ̸= 0, a small rank-preserving perturbation Ã of A is still diagonalizable, from
which Ã2 = c̃Ã with c̃ a small perturbation of c. However, if a rank-one matrix
A is not diagonalizable so that A2 = 0, most small rank-preserving perturbations
of A become diagonalizable. Since numerically solving the Yang-Baxter-like matrix
equation involves errors, a perturbation analysis of (1.1) is of practical importance,
which has not appeared in the literature. From the characterizations for all solutions
of (1.1) in Sections 2 and 3 for the two different cases of A, we can deduce a
perturbation result when a given rank-one nilpotent matrix A is perturbed to a
rank-one matrix Ã. We shall use ∥ ∥ to denote the vector 2-norm and the induced
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matrix 2-norm. For any m× n matrix B = [bij ], let

∥B∥F =

 m∑
i=1

n∑
j=1

|bij |2
1/2

be the Frobenius norm of B, whose square is the trace of the matrix BHB, and let
B† be the Moore-Penrose generalized inverse of B Campbell [3]. It is well-known
that for any two matrices B and C such that BC is defined, ∥BC∥F ≤ ∥B∥F ∥C∥F .

Theorem 4.1. Suppose that the given rank-one matrix A is not diagonalizable so
that A2 = 0. Let Ã = A + E be an n × n complex matrix such that r(Ã) = 1 and
Ã2 = ϵÃ, where ϵ is a complex number. Then for any solution X̃ to the perturbed
Yang-Baxter-like matrix equation ÃX̃Ã = X̃ÃX̃, there is a solution X to (1.1) such
that

∥X̃ −X∥F ≤
√
2
[
|ϵ|+ (|ϵ|+ ∥X̃∥F )∥A†E∥F

]
.

Proof. Write Ã = [ã1 · · · ãn] and X̃ = [x̃1 · · · x̃n]. Then Ãx̃j = ϵãj for
j = 1, . . . , n. Let xj be the orthogonal projection of x̃j onto N(A) for each j. Then
AX = 0 with X = [x1 · · · xn], and x̃j − xj ∈ N(A)⊥ for each j, where N(A)⊥ is
the orthogonal complement of N(A) in Cn. Now fix j = 1, . . . , n.

Subtracting Axj = 0 from Ãx̃j = ϵãj gives

A(x̃j − xj) = ϵãj − Ex̃j .

By the definition of the generalized inverse, A†A(x̃j − xj) = x̃j − xj , so

x̃j − xj = A†(ϵãj − Ex̃j),

from which
∥x̃j − xj∥2 ≤ 2

(
|ϵ|2∥A†ãj∥2 + ∥A†Ex̃j∥2

)
.

Consequently,

∥X̃ −X∥2F =

n∑
j=1

∥x̃j − xj∥2

≤ 2

|ϵ|2
n∑

j=1

∥A†ãj∥2 +
n∑

j=1

∥A†Ex̃j∥2


= 2
(
|ϵ|2∥A†Ã∥2F + ∥A†EX̃∥2F

)
.

It follows that

∥X̃ −X∥F ≤
√
2
(
|ϵ|2∥A†Ã∥2F + ∥A†E∥2F ∥X̃∥2F

) 1
2

≤
√
2(|ϵ|∥A†Ã∥F + ∥A†E∥F ∥X̃∥F ).

Since A†A is the orthogonal projection onto N(A)⊥, which is one dimensional,
∥A†A∥F equals 1, which is the trace of (A†A)HA†A = A†A, so ∥A†Ã∥F = ∥A†A+
A†E∥F ≤ 1 + ∥A†E∥F . Therefore,

∥X̃ −X∥F ≤
√
2
[
|ϵ|(1 + ∥A†E∥F ) + ∥X̃∥F ∥A†E∥F

]
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=
√
2
[
|ϵ|+ (|ϵ|+ ∥X̃∥F )∥A†E∥F

]
.

Remark 4.1. Since the solution X̃ in Theorem 4.1 also satisfies X̃Ã = ϵÃ, by
considering the orthogonal projection of each row vector of X̃ onto N(AT ), we
obtain another solution X to (1.1) that satisfies XA = 0.

5. Conclusions
We have given a direct approach to finding all the solutions of (1.1) without taking
the initial step of reducing the given matrix A to its Jordan canonical form as
done before in the literature. For a general n × n complex matrix A of rank-one
in the Yang-Baxter-like matrix equation (1.1), we have derived two necessary and
sufficient conditions for the solutions of the equation, depending on whether A is
diagonalizable or not. The first case implies that A has a nonzero eigenvalue and
the second case happens when A is also a nilpotent matrix of order 2. In both cases,
the problem of solving the nonlinear matrix equation is simplified to solving linear
matrix equations. Based on such results, a natural numerical scheme to find all the
solutions of the matrix equation is proposed, and a perturbation bound has also
been obtained for the structurally unstable case when A is nilpotent.

It will be interesting and desired to develop a usable perturbation upper bound
for the case when the given rank-one matrix A is diagonalizable. This is possible
after exploring the linear structure of the solution set for the system AX = XA = cA
and applying a minimal distance argument such as the least squares technique.
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