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TRANSMISSION DYNAMICS OF A CHAGAS
DISEASE MODEL WITH STANDARD

INCIDENCE INFECTION

Fanwei Meng1, Lin Chen2, Xianchao Zhang3 and Yancong Xu2,†

Abstract In this paper, an insect-parasite-host model with Ricker’s type re-
production of triatomines and the standard incidence rate of the interaction
between insects and hosts is formulated to study the transmission dynamics of
Chagas disease. Two thresholds of the ecological basic reproduction number
of triatomines and the epidemiological basic reproduction number of Chagas
disease are derived, which determine the dynamics of this model. As a result,
the existence of equilibria and the local/global stabilities of the equilibrium
are accordingly obtained. Moreover, backward bifurcation, forward bifurca-
tion and saddle-node bifurcation are also shown analytically and numerically.
Biologically speaking, Chagas disease may undergo outbreak if the number of
bites of per triatomine bug per unit time or the transmission probability from
infected bugs to susceptible competent hosts per bite increase.

Keywords Chagas disease, Ricker’s type reproduction, standard incidence
rate, backward/forward bifurcation.
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1. Introduction

Chagas disease, known as American trypanosomiasis, which is spread through bites
by triatomine bugs infected with T. cruzi or transmission from mother to child. It is
early discovered in 1908 by Doctor Chagas and is considered as a neglected disease
while still attracts public health attention. It is reported that about 13% of the
Latin American population is at risk of Chagas disease infection [23], and it also has
been observed considerable spread of this disease due to the convenient transporta-
tion and the widespread development of globalization [6, 25, 27–29]. The disease
is transmitted by a protozoan parasite called by Trypanosoma cruzi (T. cruzi) by
invading the lymphatic system and the blood stream. It is mainly prevalent in
Central and South America, such as Argentina, Bolivia, Brazil, Chile, etc. The
disease can cause serious clinical symptoms involving cardiomyopathy and heart
disease, which may cause many infected people to die due to these symptoms [4].
People infecting with T. cruzi generally passes through acute and chronic stages.
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The former includes fever, facial edema, anemia and so on and the latter often has
myocarditis, cerebral embolism, sudden death and so on [21]. There are an esti-
mated 6-8 million persons in the Americas with Chagas disease, causing a burden
of 29,000,000 DALYs and a health care cost of 24.73 billion.

In order to fully know about the measures of precaution, therapy and control,
many mathematical models have studied the dynamics of Chagas disease from dif-
ferent angles, such as the different transmission routes of the interaction between
hosts and vectors [5, 21, 34–36], disease transmission in host movement and host
community composition [1, 12, 18, 24, 33], the triatomine population from temporal
or spatial variations [3, 10, 11, 16, 30, 32], and the control optimization of Chagas
disease [2, 9, 13,15,17,19,20,22].

Recently, Wu et al. [36] formulated a new model (1) considering the Ricker’s
type function growth of triatomine bugs and pathogenic effect on triatomine bugs
to study the dynamics of interaction between triatomine bugs and T. rangeli, which
is relevant to Chagas disease. The model is

S′h(t) = Λh − β̃hIv(t)Sh(t)− µ1Sh(t),

I ′h(t) = β̃hIv(t)Sh(t)− µ1Ih(t), (1.1)

S′v(t) = r(Sv(t) + θIv(t))e
−σ(Sv(t)+Iv(t)) − β̃vSv(t)Ih(t)− βcSv(t)Iv(t)− µ2Sv(t),

I ′v(t) = β̃vSv(t)Ih(t) + βcSv(t)Iv(t)− dvIv(t)− µ2Iv(t),

where the population is divided into four components: susceptible and infected
competent hosts, susceptible and infected triatomine bugs, denoted by Sh, Ih, Sv, Iv,
respectively. Λh is the constant recruitment rate of susceptible competent host
per unit time. The transmission rate from infected bugs to susceptible competent
hosts is denoted by β̃h = ba

Nc+αNq
, where b is the transmission probability from

infected bugs to susceptible competent hosts per bite, a is the number of bites
of per triatomine bug per unit time, α is the biting preference of quasi-competent
hosts to competent hosts, Nc is the total number of competent hosts, Nq is the total
number of quasi-competent hosts. The transmission rate from infected competent
hosts to susceptible bugs is denoted by β̃v = ca

Nc+αNq
, where c is the transmission

probability from infected hosts to susceptible triatomine bug per bite. The total
infection rate through co-feeding transmission between susceptible and infected bugs
is βc, which is transmitted by both the competent and quasi-competent hosts. The
Ricker’s type function b(x) = rxe−σx was chosen to model the reproduction rate of
R. prolixus. Integrating the pathogenic effect, the growth rate of triatomine bugs
is modeled as r(Sv + θIv)e

−σ(Sv+Iv), where r is the maximal number of offsprings
that a triatomine bug can produce per unit time, and θ ∈ [0, 1] is the reproduction
reduction of bugs due to the pathogenic effect of T. rangeli on bugs, σ is the density-
dependency strength measuring the reproduction of bugs. µ1 and µ2 are the natural
death rates of competent hosts and triatomine bugs, respectively. dv is the death
rate of infected vectors induced by pathogenic effect.

Model (1.1) was used to develop the systemic and co-feeding transmission routes
among vectors and hosts, and two thresholds was derived to characterize the dynam-
ical behavior of this model. Interestingly, sustained oscillations of model solutions
were observed numerically by altering parameter dv and θ and the results have
shown that the oscillation amplitude will be larger if dv is larger or θ is smaller.

As we know, Trypanosoma rangeli (T. rangeli) is a kind of parasite which is
pathogenic to some vector species including triatomine bug, although it can infect
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Table 1. Parameter description of system (2.1)

Parameter Range / value Description

Λh Varied a constant recruitment rate per unit time

of susceptible host

a [0.2, 33]/day number of bites of per triatomine bug

per unit time [26,36]

b [0.00271, 0.06] transmission probability from infected bugs

to susceptible competent hosts per bite [21,33,36]

c [0.00026, 0.49] transmission probability from infected hosts

to susceptible triatomine bug per bite [1, 33]

r [0.0274, 0.7714]/day the maximal number of offsprings that a triatomine

bug can produce per unit time [1, 21]

σ (0, ∞) density-dependency strength measuring the

reproduction of bugs [36]

µ1 [0.000038, 0.0025]/day natural death rate of hosts [1, 33]

µ2 [0.0045, 0.0083]/day natural death rate of triatomine bugs [1, 33]

d Varied T. cruzi-induced death rate of hosts

mammals through the same triatomines, it is not pathogenic to human. Based on
model (1.1), in this paper, the T. cruzi-induced death rate of hosts and the standard
incidence rate are introduced in order to study the transmission dynamics of chagas
disease.

The rest of the paper is organized as follows. In the next section, a new model
with the death rate of the infected hosts, the standard incidence rate are formulated.
The corresponding basic reproduction number is given. In section 3, the existence,
and local and global stability of equilibria are obtained. In section 4, the forward
bifurcation and the backward bifurcation are derived by using the center-manifold
theorem. Numerical simulations are also performed to illustrate the obtained re-
sults. Finally, conclusion and discussion are also given.

2. Model description

Motivated by Wu et al. [36], in this paper, a new chagas model involved by the
effect of the T. cruzi-induced death rate of hosts and the standard incidence rate
between hosts and triatomine bugs is formulated. We assume the generation rate
of triatomine bugs follows Ricker’s type function instead of the logistic growth,
and further study the dynamical behavior of triatomine-host transmission. The
interaction among hosts, T. cruzi parasite and triatomine bugs are described by the
following model with Ricker’s type reproduction function of triatomine bugs:

S′h(t) = Λh − ab
Iv(t)

Sh(t) + Ih(t)
Sh(t)− µ1Sh(t),

I ′h(t) = ab
Iv(t)

Sh(t) + Ih(t)
Sh(t)− dIh(t)− µ1Ih(t), (2.1)

S′v(t) = r(Sv(t) + Iv(t))e
−σ(Sv(t)+Iv(t)) − ac Sv(t)

Sh(t) + Ih(t)
Ih(t)− µ2Sv(t),
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I ′v(t) = ac
Sv(t)

Sh(t) + Ih(t)
Ih(t)− µ2Iv(t),

where all the parameters are non-negative, and its biological meanings and ranges
are given in Table 1.

Let Nh(t) = Sh(t) + Ih(t). Summing up the first and the second equations of
system (2.1), we obtain N ′h(t) = Λh − µ1Nh − dIh, then we have the feasible region
of system (2.1) is

D = {(Sh, Ih, Sv, Iv)|Sh ≥ 0, Ih ≥ 0, Sv ≥ 0, Iv ≥ 0, Sh + Ih ≤
Λh
µ1
}. (2.2)

Theorem 2.1. System (2.1) with initial value lying in the region D has nonnega-
tive, bounded solution which exits for all t ≥ 0.

Proof. The above claim directly follows from Theorem 5.2.1 in Smith [31] that
system (2.1) admits a nonnegative solution (Sh(t), Ih(t), Sv(t), Iv(t)) through an
initial value (Sh(0), Ih(0), Sv(0), Iv(0)) ∈ D with the maximal interval of existence
[0, T ) for some T > 0. It remains to prove the boundedness. We know that Sh+Ih ≤
Λh

µ1
. Summing up the third and the fourth equations of system (2.1) and using

xe−σx ≤ 1
σe if x > 0, we have

(Sv + Iv)
′(t) = r(Sv(t) + Iv(t))e

−σ(Sv(t)+Iv(t)) − µ2(Sv(t) + Iv(t))

≤ r

σe
− µ2(Sv(t) + Iv(t)),

so that we can immediately obtain

lim sup
t→∞

(Sv(t) + Iv(t)) ≤
r

µ2σe
,

which indicates the boundedness of Sv and Iv mentioned above.
Now, let us calculate the basic reproduction number of system (2.1) by the

method of Dreessche and Watmough [8].
Define

F =


0 0 0 0

0 0 0 ab

0 0 0 0

0
acS0

v

S0
h

0 0


, (2.3)

V =


µ1 0 0 ab

0 d+ µ1 0 0

0
acS0

v

S0
h

e−S
0
vσr(S0

vσ − 1) + µ2 e
−S0

vσr(S0
vσ − 1)

0 0 0 µ2


. (2.4)

Then the T. cruzi basic reproduction number of system (2.1) is given by the spectral
radius of the next generation matrix FV −1, which is

R0 = ρ(FV −1) =

√
a2bcS0

v

S0
hµ2(d+ µ1)

=

√
a2bcµ1 lnRv

Λhµ2σ(d+ µ1)
, (2.5)
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where Rv = r
µ2
.

3. Existence and stability of equilibria

3.1. Existence of equilibria

Obviously, system (2.1) has a vector-free equilibrium E0(S0
h, 0, 0, 0) and a parasite-

free equilibrium ES(S0
h, 0, S

0
v , 0). Now we turn to analyse the existence of positive

equilibria E∗(S∗h, I
∗
h, S

∗
v , I
∗
v ) of system (2.1).

For any positive equilibrium E∗(S∗h, I
∗
h, S

∗
v , I
∗
v ) of system (2.1), its coordinates

satisfy

I∗h =
Λh − µ1S

∗
h

d+ µ1
,

S∗v =
µ2(Λh + dS∗h)2

a2bcS∗h(d+ µ1)
, (3.1)

I∗v =
(Λh + dS∗h)(Λh − µ1S

∗
h)

abS∗h(d+ µ1)
,

and it is easy to see that I∗h, S
∗
v and I∗v are greater than zero if S∗h is greater than zero.

The coordinate of S∗h should be the positive root of the following cubic equation:

f1(Sh) = AS3
h +BS2

h + CSh +D, (3.2)

where

A = dµ1σ(acµ1 − dµ2),

B = a2bc lnRvµ1(d+ µ1) + acΛhµ1σ(µ1 − 2d) + dΛhµ2σ(d− 2µ1), (3.3)

C = Λh(acΛhσ(d− 2µ1) + Λhµ2σ(2d− µ1)− a2bc lnRv(d+ µ1)),

D = Λ3
hσ(ac+ µ2).

For simplicity, we assume that A 6= 0, then we can rewrite equation (2.1) as

f(Sh) = S3
h +B1S

2
h +B2Sh +B3, (3.4)

where

B1 =
a2bc lnRvµ1(d+ µ1) + acΛhµ1σ(µ1 − 2d) + dΛhµ2σ(d− 2µ1)

dµ1σ(acµ1 − dµ2)
,

B2 =
Λh(acΛhσ(d− 2µ1) + Λhµ2σ(2d− µ1)− a2bc lnRv(d+ µ1))

dµ1σ(acµ1 − dµ2)
, (3.5)

B3 =
Λ3
h(ac+ µ2)

dµ1(acµ1 − dµ2)
.

The derivative of equation (3.4) is

f ′(Sh) = 3S2
h + 2B1Sh +B2, (3.6)



Transmission dynamics of a Chagas disease model 3427

which has two real roots η± =
−B1±

√
B2

1−3B2

3 as B2
1 − 3B2 > 0.

Define ∆3 =
4B3

1B3−B2
1B

2
2+4B3

2−18B1B2B3+27B2
3

108 . According to system (2.1), we
have

∆3 =− 1

108d4µ4
1σ

4(acµ1 − dµ2)4
(a2cΛ2

h(d+ µ1)3(a2bc lnRvµ1 − Λh(d+ µ1)µ2σ)2

(3.7)

× (a2b2c ln2Rv(d+ µ1) + 2abc lnRvΛh(µ1 − d)σ

+ Λhσ(−4bd lnRvµ2 + cΛh(d+ µ1)σ))),

and more details are provided in Appendix I.
Then the following theorems are obtained by applying Cardano formula [14,37]:

Theorem 3.1. If acµ1 > dµ2, system (2.1) has at most two positive equilibria.
Moreover, system (2.1) has

(1) two positive equilibria if

(i) ∆3 < 0, B1 ≤ 0, B3 > 0;

(ii) ∆3 < 0, B1 > 0, B2 < 0, B3 > 0;

(2) one positive equilibrium if

(i) B2
1 = −B2, B1B2 = B3 > 0;

(ii) ∆3 = 0, B3 > max{B1B2, 0};
(3) no positive equilibrium in other cases.

Proof. Obviously, the number of positive equilibrium of system (2.1) is corre-
sponding to the number of different positive roots of cubic equation (3.4). We can
see that f(0) = B3 > 0 and f(±∞) = ±∞ when acµ1 > dµ2, which implies that
system (2.1) has at most two positive equilibria.

When condition (1) holds, namely, ∆3 < 0, B1 ≤ 0, B3 > 0 or ∆3 < 0, B1 >
0, B2 < 0, B3 > 0, we know that the cubic it is impossible for equation (3.4) to
have two negative roots by Veda’s theorem, which means that there is at least one
positive root η+ of equation (3.4). By case III3 and III4 in Table 2 in Appendix
I and B3 > 0, we conclude that f(Sh) has two different positive roots if ∆3 < 0,
which is described in Figure 1 (a) Then we proved case (1).

By cases II2 and II5 in Table 2 in Appendix I, we can know that it is a root of
multiplicity 2 when equation (3.4) has one positive root and B3 > 0. It is described
in Figure 1 (b). This completes the proof.

Theorem 3.2. If acµ1 < dµ2, system (2.1) has at least one positive equilibrium
and at most three positive equilibria. Moreover, system (2.1) has

(1) three positive equilibria if ∆3 < 0, B1 < 0, B2 > 0, B3 < 0;

(2) two positive equilibria if ∆3 = 0, B1B2 < B3 < 0 and B2
1 − 3B2 > 0;

(3) one positive equilibrium in other cases.

Proof. The number of positive equilibrium of system (2.1) is corresponding to the
number of positive root of cubic equation (3.4). When acµ1 < dµ2, f(0) = B3 < 0
and f(±∞) = ±∞, f(Sh) has at least one positive equilibrium and at most three
positive equilibria.
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When ∆3 < 0, B1 < 0, B2 > 0, B3 < 0, there are three different positive roots of
the cubic equation (3.4) by case III4 of Table 2. When condition (1) holds, f(Sh)
has three different positive roots by Descartes’ rule of sign which is described in
Figure 2 (a).

If f(Sh) has two different positive roots, one of the two roots is of multiplicity 2,
which implies that f(η+) = 0 or f(η−) = 0, see Figure 2 (b). By case II4 of Table
2, we know that f(Sh) has two different positive roots if ∆3 = 0, B1B2 < B3 < 0.
In addition, we add a constraint which is B2

1 − 3B2 > 0 when f(Sh) has a root
of multiply 3 to ensure that f(Sh) has two different positive roots. Then case (2)
is proved. From previous analysis, we know that f(Sh) has at least one positive
equilibrium due to B3 < 0, which means that there is one positive equilibrium in
other cases in Table 2 when B3 < 0. Thus, we complete the proof.

B3

Sh

f(Sh)

0

（a）

B3

Sh

f(Sh)

0

(b)

Figure 1. The number of root for f(Sh) = 0 when acµ1 > dµ2. (a) Two different positive roots. (b)
One positive root.

B3

Sh

f(Sh)

0

(a)

B3

Sh

f(Sh)

0

(b)

Figure 2. The number of root for f(Sh) = 0 when acµ1 < dµ2. (a) Three different positive roots. (b)
Two different positive roots.

Theorem 3.3. If acµ1 = dµ2, system (2.1) has at most three positive equilibria.
Moreover, system (2.1) has

(1) two positive equilibria if ab lnRv > Λhσ and C ′ > 0 (where C ′ is defined as
(3.9));

(2) one positive equilibrium if ab lnRv < Λhσ;

(3) no positive equilibrium in other cases.

Proof. If acµ1 = dµ2, then equation (3.2) becomes the following quadratic equa-
tion:

f2(Sh) = B′S2
h + C ′Sh +D′, (3.8)
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where

B′ = dµ2(d+ µ1)(ab lnRv − Λhσ),

C ′ = − 1

µ1
Λhµ2(d+ µ1)(abd lnRv + Λhσ(−d+ µ1)), (3.9)

D′ =
1

µ1
Λ3
hµ2σ(d+ µ1),

∆ =
1

µ2
1

Λ2
hµ

2
2(d+ µ1)2(abd lnRv − Λh(d+ µ1)σ)2.

It is easy to see that D′ and ∆ are greater than zero.
If ab lnRv > Λhσ, then B′ > 0. Therefore, there are two positive equilibria as

long as C ′ < 0, otherwise, there is no positive equilibrium. We complete the proof
of case (1).

If ab lnRv < Λhσ, then B′ < 0. According to the diagram of the quadratic equa-
tion (3.9) under these conditions, we can know that there is only one equilibrium.
We complete the proof of case (2).

3.2. Stability of equilibria

3.2.1. Stability of boundary equilibrium

Theorem 3.4. The vector-free equilibrium E0(S0
h, 0, 0, 0) of system (2.1) is locally

asymptotically stable when Rv < 1, where S0
h = Λh

µ1
.

Proof. It is easy to calculate the following Jacobian matrix J(E0) at E0 of system
(2.1),

J(E0) =


−µ1 0 0 −ab

0 −(d+ µ1) 0 ab

0 0 r − µ2 r

0 0 0 −µ2

 . (3.10)

Obviously, the characteristic values of matrix J(E0) are −µ1,−(d + µ1), r − µ2

and −µ2. In view of the condition Rv < 1, all the characteristic values are nega-
tive. Therefore, the vector-free equilibrium E0(S0

h, 0, 0, 0) of system (2.1) is locally
asymptotically stable.

Theorem 3.5. The vector-free equilibrium E0(S0
h, 0, 0, 0) of system (2.1) is globally

asymptotically stable if Rv < 1 and unstable if Rv > 1.

Proof. Let Nv = Sv + Iv and sum up the third and fourth equations of system
(2.1), we have

N ′v = rNve
−σNv − µ2Nv (3.11)

≤ (r − µ2)Nv.

In view of Nv(0) = Sv(0) + Iv(0), we have

lim sup
t→∞

Nv(t) ≤ lim
t→∞

Nv(0)e(r−µ2)t = 0,
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when Rv < 1. It means that the solutions of Sv and Iv with feasible initial condition
tend to zero if Rv < 1. For Nh, it is cooperative with its positive invariance set
[0, Λh

µ1
]. We also know that E0 is a unique equilibrium of system (2.1) when Rv < 1.

Thus, we know that E0 is globally asymptotically stable if Rv < 1, and unstable if
Rv > 1.

Theorem 3.6. The parasite-free equilibrium ES(S0
h, 0, S

0
v , 0) of system (2.1) is

(1) unstable if R0 > 1;

(2) locally asymptotically stable if R0 < 1;

(3) a saddle-node point if R0 = 1.

Proof. System (2.1) has a parasite-free equilibrium ES(S0
h, 0, S

0
v , 0) when Rv > 1.

It is easy to obtain the following Jacobian matrix J(ES) of system (2.1) at ES ,

J(ES) =


−µ1 0 0 −ab

0 −(d+ µ1) 0 ab

0 −acµ1 lnRv

Λhσ
−µ2 lnRv µ2 − µ2 lnRv

0 acµ1 lnRv

Λhσ
0 −µ2

 . (3.12)

Then we have the following characteristic polynomial

P (λ) = (λ+ µ1)(λ+ µ2 lnRv)(λ
2 + b0λ+ c0), (3.13)

where

b0 = d+ µ1 + µ2, c0 = (d+ µ1)µ2 −
a2bcµ1 lnRv

Λhσ
.

The eigenvalues of Jacobian matrix (3.12) are denoted by

λ1 = −µ1, λ2 = −µ2 lnRv, λ3 =
−b0 +

√
∆0

2
, λ4 =

−b0 −
√

∆0

2
,

where

∆0 = b20 − 4c0 = (d+ µ1 − µ2)2 +
4a2bcµ1 lnRv

Λhσ
> 0.

If R0 > 1, then λ1 < 0, λ2 < 0, λ3 > 0, λ4 < 0, i.e., ES is unstable.
If R0 < 1, then λ1 < 0, λ2 < 0, λ3 < 0, λ4 < 0, i.e., ES is locally asymptotically

stable.
If R0 = 1, we have λ3 = 0, so that we need to illustrate the type of ES .
Firstly, let Sh = x1 + Λh

µ1
, Ih = x2, Sv = x3 + 1

σ lnRv, Iv = x4 to move the

equilibrium ES to the origin, then system (2.1) becomes

x′1 =− 1

Λ3
h

(Λ3
hµ1x1 + abx4(Λh + µ1x1)(Λ2

h − Λhµ1(x1 + x2) + µ2
1(x1 + x2)2)),

x′2 =
1

Λ3
h

(−Λ3
hx2(d+ µ1) + abx4(Λh + µ1x1)(Λ2

h − Λhµ1(x1 + x2) + µ2
1(x1 + x2)2)),

(3.14)

x′3 =
1

2Λ3
hσ

(σ(−2acµ1x2x3(Λ2
h − Λhµ1(x1 + x2) + µ2

1(x1 + x2)2) + Λ3
hµ2(σ2x3

4
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+ σx2
3(σx3 − 2) + σx2

4(3σx3 − 2) + x4(2− 4σx3 + 3σ2x2
3))) + (−2acµ1x2(Λ2

h

− Λhµ1(x1 + x2) + µ2
1(x1 + x2)2) + Λ3

hµ2σ(x3 + x4)(σx3 + σx4 − 2)) lnRv),

x′4 =− 1

Λ3
hσ

(Λ2
h − Λhµ1(x1 + x2) + µ2

1(x1 + x2)2)((−acµ1x2x3 + x4(Λh

+ (x1 + x2)µ1)µ2)σ − acµ1 lnRvx2).

By using the transformation

x1 = m11X1+X2+m13X3, x2 = m21X1+m23X3, x3 = −X1−X3+X4, x4 = X1+X3,

where

m11 = − ab
µ1
,m13 =

ab

d+ µ2
,m21 =

ab

d+ µ1
,m23 = − ab

µ2
.

Then we obtain

X ′1 =
ab((d− µ1)µ2 − acµ1)

Λh(d+ µ1 + µ2)
X2

1 +X1O(|X2, X3, X4|) +O(|X2, X3, X4|2),

X ′2 = −µ1X2 +O(|X1, X2, X3, X4|2), (3.15)

X ′3 = −(d+ µ1 + µ2)X3 +O(|X1, X2, X3, X4|2),

X ′4 = −µ2 lnRvX4 +O(|X1, X2, X3, X4|2),

which shows that ES is a saddle-node point when R0 = 1.

3.2.2. Stability of positive equilibrium

In this subsection, we will study the local stability of positive equilibrium
E∗(S∗h, I

∗
h, S

∗
v , I
∗
v ).

The Jacobian Matrix of system (2.1) at E∗ is

J(E∗) =


m− abI∗v

I∗h+S∗
h
− µ1 m 0 − abS∗

h

I∗h+S∗
h

−m+
abI∗v
I∗h+S∗

h
−d− µ1 −m 0

abS∗
h

I∗h+S∗
h

n n− acS∗
v

I∗h+S∗
h

J33 J33 +
acI∗h
I∗h+S∗

h
+ µ2

−n −n+
acS∗

v

I∗h+S∗
h

acI∗h
I∗h+S∗

h
−µ2


,

where m =
abI∗vS

∗
h

(I∗h+S∗
h)2 , n =

acI∗hS
∗
v

(I∗h+S∗
h)2 , and J33 = re−(I∗v+S∗

v )σ−re−(I∗v+S∗
v )σ(I∗v+S∗v )σ−

acI∗h
I∗h+S∗

h
− µ2. It is easy to obtain the characteristic polynomial of J(E∗):

P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, (3.16)

P1(ξ;S∗h, I
∗
h, S

∗
v , I
∗
v ) = ξ4 + a1ξ

3 + a2ξ
2 + a3ξ + a4, (3.17)

where

a1 =
abI∗v + d(I∗h + S∗h)− (I∗h + S∗h)(J33 − 2µ1 − µ2)

I∗h + S∗h
,

a2 =− 1

(I∗h + S∗h)2
(a2c(bS∗hS

∗
v + cI∗2h ) + a(I∗h + S∗h)(cI∗h(J33 + µ2)



3432 F. Meng, L. Chen, X. Zhang & Y. Xu

− bI∗v (d− J33 + µ1 + µ2)) + (I∗h + S∗h)2(d(J33 − µ1 − µ2 +m) + J33(2µ1 + µ2)

− µ1(µ1 + 2µ2))),

a3 =
1

(I∗h + S∗h)3
(a3bc2I∗h(S∗hS

∗
v − I∗hI∗v )− a2c(I∗h + S∗h)(b(I∗hI

∗
v (J33 + µ2)

+ S∗hS
∗
v (µ1 − J33)) + cI∗2h (d+ 2µ1)) + (I∗h + S∗h)3(d(J33(−µ1 − µ2 +m)

+ µ2(µ1 −m)) + µ1(µ1µ2 − J33(µ1 + 2µ2)))

− a(I∗h + S∗h)2(b(d(I∗v (J33 − µ2) + nS∗h)

+ I∗v (J33(µ1 + µ2)− µ1µ2)) + cI∗h(d+ 2µ1)(J33 + µ2))),

a4 =− 1

(I∗h + S∗h)3
(acI∗h + J33(I∗h + S∗h))(a2bc(dI∗hI

∗
v + I∗hI

∗
vµ1 − µ1S

∗
hS
∗
v )

− a(I∗h + S∗h)(b(−dI∗vµ2 + dnS∗h − I∗vµ1µ2) + cI∗h(d(m− µ1)− µ2
1)

− µ2(I∗h + S∗h)2(d(m− µ1)− µ2
1). (3.18)

Then by using Routh-Hurwitz criteria, we have the following theorem:

Theorem 3.7. The positive equilibrium E∗(S∗h, I
∗
h, S

∗
v , I
∗
v ) is locally asymptotically

stable if a1a2a3 − a2
3 − a2

1a4 > 0, and ai > 0, i = 1, 2, 3, 4 when

(1) acµ1 > dµ2, and

(i) B2
1 = −B2, B1B2 = B3 > 0;

(ii) ∆3 = 0, B3 > max{B1B2, 0};
(2) acµ1 = dµ2, and ab lnRv < Λhσ.

4. Backward bifurcation and forward bifurcation

Now, we will study the forward bifurcation and the backward bifurcation of system
(2.1) by calculating the direction of transcritical bifurcation point in the following.

Theorem 4.1. When R0 = 1, system (2.1) undergoes

(1) backward bifurcation if Λh < Λ∗h;

(2) forward bifurcation if Λh > Λ∗h where Λ∗h = ab lnRv(d−µ1)
σ(d+µ1) .

Proof. The Jacobian matrix at ES(S0
h, 0, S

0
v , 0) of system (2.1) is

J(ES) =


−µ1 0 0 −ab

0 −(d+ µ1) 0 ab

0 −acµ1 lnRv

Λhσ
−µ2 lnRv µ2 − µ2 lnRv

0 acµ1 lnRv

Λhσ
0 −µ2

 . (4.1)

Then the corresponding eigenvalues of the Jacobian matrix J(ES) are, respectively,

λ1 = −µ1, λ2 = −µ2 lnRv, λ3 =
−b0 +

√
∆0

2
, λ4 =

−b0 −
√

∆0

2
,
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where

b0 = d+ µ1 + µ2, c0 = (d+ µ1)µ2 −
a2bcµ1 lnRv

Λhσ
,

∆0 = b20 − 4c0 = (d+ µ1 − µ2)2 +
4a2bcµ1 lnRv

Λhσ
> 0.

Because of the biological significance, we know that all parameter values are non-
negative. Obviously, eigenvalues λ1 and λ2 are negative.

Let R0 = 1, then we have

c∗ ,
Λhµ2σ(d+ µ1)

a2bµ1 lnRv
.

Replacing c in λ3 and λ4 with c∗, we obtain that λ3 = 0, λ4 < 0. From Theorem
3.6, we know that parasite-free equilibrium ES(S0

h, 0, S
0
v , 0) of system (2.1) is un-

stable if c > c∗, and locally asymptotically stable if c < c∗ which means that c = c∗

is a bifurcation value.

Through calculation, we get a right eigenvector u and a left eigenvector v asso-
ciated with the zero eigenvalue as follows:

u =(u1, u2, u3, u4)T = (−ab(d+ µ1)Sh, abµ1Sh,−µ1(d+ µ1)Sh, µ1(d+ µ1)Sh)T ,
(4.2)

v =(v1, v2, v3, v4) = (0, µ2, 0, ab).

By using orthogonal condition < u, v >= 1, one yields

S∗h =
1

abµ1(d+ µ1 + µ2)
.

Next, set

Sh = x1, Ih = x2, Sv = x3, Iv = x4,

then system (2.1) has the form dx
dt = f , where x = (x1, x2, x3, x4)T ,

f = (f1, f2, f3, f4)T . Then we have

x′1(t) = Λh − ab
x4(t)

x1(t) + x2(t)
x1(t)− µ1x1(t) := f1,

x′2(t) = ab
x4(t)

x1(t) + x2(t)
x1(t)− dx2(t)− µ1x2(t) := f2, (4.3)

x′3(t) = r(x3(t) + x4(t))e−σ(x3(t)+x4(t)) − ac x3(t)

x1(t) + x2(t)
x2(t)− µ2x3(t) := f3,

x′4(t) = ac
x3(t)

x1(t) + x2(t)
x2(t)− µ2x4(t) := f4.

The bifurcation coefficients in system (2.1) at ES are as follows:

a∗ =

4∑
i,j,k=1

viujuk
∂2fi

∂xj∂xk
(ES , c

∗), b∗ =

4∑
i,j=1

viuj
∂2fi
∂xj∂c

(ES , c
∗).
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Obviously, since v1 = v3 = 0, we only consider the cross derivatives of f2 and f4 in
system (4.3) at ES . Then we can obtain non-zero terms as follows:

∂2f2

∂x2∂x4
=

∂2f2

∂x4∂x2
= −abµ1

Λh
,

∂2f4

∂x1∂x2
=

∂2f4

∂x2∂x1
= −µ1µ2(d+ µ1)

abΛh
,

(4.4)

∂2f4

∂x2∂x3
=

∂2f4

∂x3∂x2
=
µ2σ(d+ µ1)

ab lnRv
,

∂2f4

∂x2∂x2
= −2µ1µ2(d+ µ1)

abΛh
,

∂2f4

∂x2∂c
=

∂2f4

∂c∂x2
=
aµ1 lnRv
σΛh

.

The corresponding values of a∗ and b∗ are as follows:

a∗ =

4∑
i,j,k=1

viujuk
∂2fi

∂xj∂xk
(ES , c

∗)

=v2

4∑
j,k=1

ujuk
∂2f2

∂xj∂xk
(ES , c

∗) + v4

4∑
j,k=1

ujuk
∂2f4

∂xj∂xk
(ES , c

∗)

=− 2abµ2
1µ2(d+ µ1)

Λh lnRv
(ab lnRv(µ1 − d) + Λhσ(d+ µ1))S∗2h , (4.5)

b∗ =

4∑
i,j=1

viuj
∂2fi
∂xj∂c

(ES , c
∗)

=v4u2
∂2f4

∂x2∂c
(ES , c

∗)

=
a3b2µ2

1 lnRv
σΛh

S∗h > 0.

From [37,38], we realized that the signs of a∗ and b∗ determine the local dynamical
behaviour around parasite-free equilibrium ES of system (2.1). It is easy to see that
b∗ > 0 since S∗h are great than zero. There are an unstable equilibrium exhibiting
backward bifurcation near ES if a∗ > 0, and a locally asymptotically stable equi-
librium undergoing forward bifurcation if a∗ < 0. Then we will discuss the sign of
a∗ to study the dynamics of system (2.1).

Define

Λ∗h =
ab lnRv(d− µ1)

σ(d+ µ1)
. (4.6)

Then we can draw conclusions that system (2.1) undergoes a backward bifurcation
if Λh < Λ∗h, i.e., a∗ > 0; If Λh > Λ∗h, i.e., a∗ < 0, system (2.1) undergoes a forward
bifurcation. This completes the proof.

5. Numerical simulations

In this section, we will illustrate numerically the results of system (2.1) with the
following parameter values in Wu et al. [36] by using Matlab and Auto07P [7]:

Λh = 5, a = 0.6, b = 0.06, c = 0.49, r = 0.0274, σ = 0.0002,
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（a）

TC TC

（b）

Figure 3. (a) Backward bifurcation diagram of system (2.1) showing c vs Sh with Λh = 100; (b)
Forward bifurcation diagram of system (2.1) showing c vs Sh with Λh = 5.

Figure 4. Numerical solution of system (2.1) tends to a stable equilibrium when the time tends to
infinity, where Λh = 5, r = 0.0274, σ = 0.0002, µ1 = 0.0025, µ2 = 0.0083, d = 0.0083. The initial
solution is (Sh, Ih, Sv, Iv) = (172, 609, 21, 576).

µ1 = 0.0025, µ2 = 0.0083, d = 0.005. (5.1)

Using the above parameter values, it is easy to calculate that there is a vector-
free equilibrium (2000, 0, 0, 0), a parasite-free equilibrium (2000, 0, 5971.437, 0) and
a parasite-positive equilibrium (16.081, 661.306, 167.827, 5803.610).

Firstly, we simulate the backward and forward bifurcation to verify the results
in the previous sections. We choose transmission probability from infected hosts to
susceptible triatomine bug per bite (c) as the primary bifurcation parameter and
keep the other parameters fixed as (5.1), then we get the one-parameter bifurcation
diagram, shown in Figure 3. In Figure 3 (a), there is a transcritical bifurcation
point TC(4 × 104, 0, 5.97144 × 103, 0) showing backward bifurcation with Λh =
100 when c = 0.0193049, and in Figure 3 (b), there is a transcritical bifurcation
point TC(2 × 103, 0, 5.97144 × 103, 0) showing forward bifurcation with Λh = 5
when c = 0.0009652. A numerical solution of system (2.1) tending to a stable
equilibrium when the time tends to infinity with initial solution (Sh, Ih, Sv, Iv) =
(172, 609, 21, 576) is shown in Figure 4, where Λh = 5, r = 0.0274, σ = 0.0002, µ1 =
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Figure 5. One-parameter bifurcation diagram of system (2.1) with respect to a. (a) a vs. Ih; (b) a vs.
Iv.

（a）
（b）

Figure 6. One-parameter bifurcation diagram of system (2.1) with respect to b. (a) b vs. Ih; (b) b vs.
Iv.

0.0025, µ2 = 0.0083, d = 0.0083.

Secondly, when the number of bites of per triatomine bug per unit time (a)
is used as the primary bifurcation parameter, then we obtain the bifurcation di-
agram, shown in Figure 5. There is a transcritical bifurcation point TC(2000, 0,
5971.4377253, 0) showing forward bifurcation with a = 0.02663. It is obvious that
infected hosts (Ih) and infected vectors (Iv) will increase as the parameter a in-
creases, which indicates that chagas disease may go through outbreak.

Thirdly, the transmission probability from infected bugs to susceptible com-
petent hosts per bite (b) is used as the primary bifurcation parameter, we ob-
tain the bifurcation diagram, shown in Figure 6. A transcritical bifurcation point
TC(2000, 0, 5971.4377253, 0) shows forward bifurcation as b = 0.0001182. The in-
fected hosts (Ih) and infected vectors (Iv) will increase as the parameter b increases
which indicates that chagas disease may go through outbreak.

Finally, we take the T. cruzi-induced death rate of hosts (d) as the primary
bifurcation parameter, the bifurcation diagram shown in Figure 7 is obtained. The
number of infected hosts (Ih) and infected vectors (Iv) will decrease as the parameter
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Figure 7. (a) One-parameter bifurcation diagram of system (2.1) showing d vs. Ih; (b) One-parameter
bifurcation diagram of system (2.1) showing d vs. Iv .

d increases. It means that the increase of death rate of hosts caused by T. cruzi
will threaten the infected hosts and infected vectors.

Biologically speaking, chagas disease may undergo outbreak if the number of
bites of per triatomine bug per unit time (a), the transmission probability from
infected bugs to susceptible competent hosts per bite (b) increase while chagas
disease may disappear if the T. cruzi-induced death rate of hosts (d) decreases.

6. Discussion and conclusion

In this paper, a chagas model (2.1) with Ricker’s type function and the standard
incidence rate is investigated by using the dynamical system approach, and the ex-
istence and stability of equilibria are obtained, the related bifurcations are given,
which tells that the positive equilibrium of model (2.1) is locally asymptotically
stable when the number of bites of per triatomine bug per unit time (a), the trans-
mission probability from infected bugs to susceptible competent hosts per bite (b)
and T. cruzi-induced death rate of hosts (d) increase. Once the standard incidence
rate is considered, the positive equilibrium of system (2.1) will be stable, however,
it still tells us that the outbreak of infected hosts and infected vectors without
sustained oscillations.

7. Appendix

7.1. Appendix I

Consider the cubic equation

x3 + b1x
2 + b2x+ b3 = 0, (7.1)

where the coefficients b1, b2, b3 are real. It is known that equation (7.1) has three
roots in field C as following:

x1 =
3

√
−Q

2
+
√

∆3 +
3

√
−Q

2
−

√
∆3 −

b1
3
,
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x2 =
3

√
−Q

2
+
√

∆3ω
2 +

3

√
−Q

2
−

√
∆3ω −

b1
3
,

x3 =
3

√
−Q

2
+
√

∆3ω +
3

√
−Q

2
−
√

∆3ω
2 − b1

3

where ω = (−1+
√

3i)
2 , Q = 2

27b
3
1 + b3 − 1

3b1b2, and ∆3 =
4b31b3−b

2
1b

2
2+4b32−18b1b2b3+27b23

108 .

The following table is the distribution of roots of equation (7.1):

Table 2. Distribution of roots of equation (7.1)

Case Possibilities of b1, b2, b3 Distribution of roots

I1 b21 < 4b2, b1 < (>)b3 = 0 x1 = 0,<x2,3 > (<)0,=x2,3 6= 0

I2 b2 > 0, b1b2 = b3 > (resp. =, <)0 x1 < (resp. =, >)0,<x2,3 = 0,=x2,3 6= 0

I3 ∆3 > 0, b1b2 > (<)b3 > (<)0 x1 < (>)0,<x2,3 < (>)0,=x2,3 6= 0

I4 ∆3 > 0, b3 > max(< min){b1b2, 0} x1 < (>)0,<x2,3 > (<)0,=x2,3 6= 0

II1 b21 = 4b2, b1b2 < (>)b3 = 0 x1 = 0, x2 = x3 > (<)0

II2 b21 = −b2, b1b2 = b3 > (<)0 x1 < (>)0, x2 = x3 > (<)0

II3 b1 > (resp. =, <)b2 = b3 = 0 x1 < (resp. =, >)x2 = x3 = 0

II4 ∆3 = 0, , b1b2 < (>)b3 < (>)0 x1 > (<)0, x2 = x3 > (<)0

II5 ∆3 = 0, b3 > max(< min){b1b2, 0} x1 < (>)0, x2 = x3 > (<)0

III1 b21 > 4b2, b1 < (>)0, b2 > 0, b3 = 0 x1 > (=)0, x2 > (<)0, x3 = (<)0

III2 b2 < 0, b3 = 0 x1 > 0, x2 = 0, x3 < 0

III3 ∆3 < 0, b1 ≥ (≤)0, b3 < (>)0 x1 > 0, x2 < (>)0, x3 < 0

III4 ∆3 < 0, b1 < (>)0, b2 > (<)0, b3 < (>)0 x1 > 0, x2 > 0, x3 > (<)0

III5 ∆3 < 0, b1 < (>)0, b2 < (>)0, b3 < (>)0 x1 > (<)0, x2 < 0, x3 < 0
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frequency and blood ingestion of the Chagas’s disease vector Rhodnius prolixus
St̊ahl (Hemiptera: Reduviidae), in Venezuela, T. Roy. Soc. Trop. Med. H., 1979,
3, 272–283.

[27] A. Requena-Mndez, E. Aldasoro, E. De Lazzari, E. Sicuri, M. Brown, D. A. J.
Moore, J. Gascon, J. M. and M. M. Rodrigues, Prevalence of Chagas disease
in Latin-American migrants living in Europe: A systematic review and meta-
analysis, Plos. Negl. Trop. Dis., 2015, 9(2), e0003540.

[28] P. Rodari, F. Tamarozzi, S. Tais, M. Degani, F. Perandin, D. Buonfrate, E.
Nicastri, L. Lepore, M. L. Giancola, S. Carrara and others, Prevalence of Cha-
gas disease and strongyloidiasis among HIV-infected Latin American immi-
grants in Italy–The CHILI study, Tra. Med. Infect. Di., 2022, 48, 102324.

[29] M. Saavedra, A. Bacigalupo, M. V. Barrera, M. J. Vergara, B. Álvarez-Duhart,
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