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GENERALIZED CAPUTO–FABRIZIO
FRACTIONAL DIFFERENTIAL EQUATION∗

Masakazu Onitsuka1,† and Iz-iddine EL-Fassi2

Abstract In this paper, a generalization of the Caputo–Fabrizio fractional
derivative is proposed. The purpose of this study is to derive a solution for-
mula for ordinary differential equations with the generalized Caputo–Fabrizio
fractional derivative. The main result can be applied to solve the Caputo–
Fabrizio fractional differential equation Dαy = f(y). That is, a new result
even for common Caputo–Fabrizio fractional differential equations is obtained.
The strength of the results obtained in this study is that the solution to the
differential equation can be given using only the kernel included in the deriva-
tive and the right-hand side f of the equation. In other words, rather than
providing a method to solve the solution, this study provides a formula for
the solution. This study is proposed as a tool for solving many nonlinear
equations, including the logistic type fractional differential equations.

Keywords Caputo–Fabrizio fractional derivative, fractional differential equa-
tion, fractional calculus, nonsingular kernel, logistic equation.
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1. Introduction

In this section, we first introduce the definitions of known fractional derivatives
(Caputo–Fabrizio derivative and Caputo derivative), and then define a new frac-
tional derivative that will be dealt with in this study. We call it a generalized
Caputo–Fabrizio derivative. Next, we consider a fractional order differential equa-
tion involving the generalized Caputo–Fabrizio derivative and introduce logistic
fractional differential equations. In addition, the solution formula, which is the
main theorem of this study, is provided. Finally, we give remarks about the proper-
ties of solutions to nonlinear equations, which are important for understanding the
main theorem.
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1.1. Fractional derivatives

In 2015, the fractional derivative Dαφ(x) with 0 < α < 1 was introduced by Caputo
and Fabrizio [8]. The definition of Dαφ(x) is as follows.

Definition 1.1 (Caputo–Fabrizio derivative). Define

Dαφ(x) :=
1

1− α

∫ x

0

e−
α

1−α (x−ξ)φ′(ξ)dξ, x ≥ 0,

with 0 < α < 1.

Needless to say, the Caputo–Fabrizio derivative Dαφ is a completely different
derivative than the Caputo derivative Dαφ(x) which is defined by the following.

Definition 1.2 (Caputo derivative). Define

Dαφ(x) :=
1

Γ(1− α)

∫ x

0

(x− ξ)−αφ′(ξ)dξ, x ≥ 0,

with 0 < α < 1.

Of course, there are many other fractional derivatives, but the kernel

Kα(x, ξ) := e−
α

1−α (x−ξ)

of the Caputo–Fabrizio derivative Dαφ is characterized by the absence of singu-
larity. Although the Caputo–Fabrizio fractional derivative was recently proposed,
it has been applied in various fields. For example, it is useful for elucidating var-
ious phenomena including infectious diseases [1, 4, 5, 11, 20, 26, 31]. In particular,
Alinei-Poiana, Dulf, and Kovacs [1] have recently demonstrated the superiority of
fractional order models in tumor growth modeling in mathematical oncology. In
these applications, derivatives with singular kernels and derivatives with nonsingu-
lar kernels are compared in various situations and compete for superiority with each
other. In many cases, the Caputo–Fabrizio fractional derivative is compared with
the derivative with a singular kernel, as a representative of the derivative with a
nonsingular kernel. However, it is possible that there are nonsingular kernels that
can reproduce the phenomenon better than the Caputo–Fabrizio fractional deriva-
tive. Therefore, in this study, we propose the following new derivative to expand
the class of derivatives with nonsingular kernels.

Definition 1.3 (Generalized Caputo–Fabrizio derivative). Define

GDαφ(x) :=
1

1− α

∫ x

0

κα(ξ)

κα(x)
φ′(ξ)dξ, x ≥ 0,

with 0 < α < 1 for continuously differentiable function φ, where κα is a positive
continuously differentiable function on [0,∞).

Note here that GDαφ has the nonsingular kernel

GKα(x, ξ) :=
κα(ξ)

κα(x)
.

Moreover, if κα(x) ≡ e
α

1−αx or GKα = Kα, then the derivative GDαφ is just the
Caputo–Fabrizio derivative Dαφ. Then we say that GDαφ is an α-th order gener-
alized Caputo–Fabrizio fractional derivative with the kernel GKα(x, ξ).
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1.2. Generalized Caputo–Fabrizio fractional differential equa-
tion

This study deals with the generalized Caputo–Fabrizio fractional differential equa-
tion

GDαy = f(y) (1.1)

with the kernel GKα(x, ξ). Here f : Y → R is continuously differentiable, where Y
is an interval of R; that is, Y is the domain of definition of f . If GKα = Kα, then
(1.1) becomes the Caputo–Fabrizio fractional differential equation

Dαy = f(y). (1.2)

Studies on fractional ordinary differential equations with the Caputo–Fabrizio
derivative are in progress [6, 19, 21, 28, 33]. In addition, there are applications for
the Caputo–Fabrizio derivative in the field of partial differential equations [9, 12].
Against this background, it is an important question to know whether it is possible
to find an exact solution to the Caputo–Fabrizio fractional differential equations.

When α → 1− in (1.2), equation (1.2) is the well-known autonomous ordinary
differential equation

y′ = f(y).

Needless to say, the method of solving this equation when the integral of 1/f(y) is
explicitly given is widely known in many textbooks on ordinary differential equa-
tions. For example, using the method of separation of variables, the solution of the
logistic equation

y′ = y(1− y)

with the initial condition y(0) = y0 is displayed in the form

y(x) =
y0

y0 + (1− y0)e−x
.

In 2022, Nieto [23] derived a formula for the implicit solution of the fractional
version of the logistic differential equation

Dαy = y(1− y) (1.3)

with y(0) = y0. The form of the solution given by Nieto is as follows:

y(x)− y2(x)

(1− y(x))
2
α

=
y0 − y20

(1− y0)
2
α

· ex (1.4)

with 0 < α < 1 and y(x) 6= 0, 1 for all x ∈ [0,∞). We can find that other
types of Caputo–Fabrizio fractional differential equations have also been solved
recently [3, 10, 14, 32]. In particular, Cui [10] uses the same technique as Nieto’s
paper [23] to obtain implicit solutions to the equations

Dαy = −y2 + 1, Dαy = 2y − y2 + 1, Dαy = −y + y2,

and
Dαy = y(1− y2).

See also [7, 15–17, 22, 27] for solutions of fractional differential equations with an-
other fractional derivatives. In particular, for the fractional logistic equation, see [2,
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13, 24, 30]. Logistic-type differential equations are known to be extremely effective
not only as models for representing population growth, but also for understanding
the mechanisms of infectious diseases. For example, Nishiura, Tsuzuki, Yuan, Ya-
maguchi, and Asai [25] analyzes the dynamics of cholera in Yemen. Wang, Wu,
and Yang [29] proved that the exponential term in a generalized logistic equation
has a one-to-one nonlinear correspondence to the basic reproduction number of the
SIR model. Therefore, it is very important to study logistic equations and their
generalized equations in order to understand phenomena. In particular, the pa-
pers [1–4, 14, 23, 24] deal with fractional-order differential equations of the logistic
type, mention the importance of fractional-order differential equations of the logistic
type, and compare solutions of fractional-order differential equations with solutions
of ordinary differential equations.

Inspired by the above results, in order to respond to the demands of society,
the present study attempts to apply the technique used in [23] to more general
equations. That is, we aim to derive a formula for the implicit solution of (1.1).
The following theorem and corollary realize the expression of the non-trivial solu-
tion determined only by κα, which constitutes the kernel given to the fractional
differential equation, and the form f on the right-hand side of the equation. This
fact extracts the essence that cannot be found just by looking at the solution to a
concrete equation. Our results have the strength that if

∫
dη
f(η) is given explicitly,

the differential equation can be solved. The obtained result is as follows.

Theorem 1.1. Let S := {η ∈ Y : f(η) 6= 0}, and let F : S → R be a function
defined by F (η) :=

∫
dη
f(η) . Then an implicit solution of (1.1) with y(0) = y0 ∈ Y is

given by
κα(x)f(y(x))

κα(0)f(y0)
exp

(
F (y(x))− F (y0)

α− 1

)
= 1

for all x ∈ [0, T ), with 0 < α < 1, whenever y(x) ∈ S for all x ∈ [0, T ), where
0 < T ≤ ∞ is the smaller of the maximal existence time M of the solution y(x)
and inf{x ∈ [0,∞) : f(y(x)) = 0} if {x ∈ [0,∞) : f(y(x)) = 0} 6= ∅; M if
{x ∈ [0,∞) : f(y(x)) = 0} = ∅.

When κα(x) ≡ e
α

1−αx, we can obtain the following result.

Corollary 1.1. Let S := {η ∈ Y : f(η) 6= 0}, and let F : S → R be a function
defined by F (η) :=

∫
dη
f(η) . Then an implicit solution of (1.2) with y(0) = y0 ∈ Y is

given by
f(y(x))

f(y0)
exp

(
F (y(x))− F (y0)− αx

α− 1

)
= 1

for all x ∈ [0, T ), with 0 < α < 1, whenever y(x) ∈ S for all x ∈ [0, T ), where
0 < T ≤ ∞ is the smaller of the maximal existence time M of the solution y(x)
and inf{x ∈ [0,∞) : f(y(x)) = 0} if {x ∈ [0,∞) : f(y(x)) = 0} 6= ∅; M if
{x ∈ [0,∞) : f(y(x)) = 0} = ∅.

1.3. Remarks

Remark 1.1. Throughout this paper, let [0,M) be the maximum existence interval
of the solution y(x) of (1.1), and 0 < M ≤ ∞ be called the maximal existence time
of y(x). If there exists a constant y1 ∈ Y such that f(y1) = 0, then we see that the
constant function y(x) = y1 for x ∈ [0,M) is a trivial solution. Especially, M of
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this solution can be choose M =∞. That is, the trivial solutions of (1.1) exists for
all x ∈ [0,∞).

On the other hand, an implicit solution given in Theorem 1.1 can be said to be
a formula for nontrivial solutions. There are some facts to note about 0 < T ≤ ∞
that appears in Theorem 1.1 because (1.1) is nonlinear. First, we note that there
may be nontrivial solutions that blow up in finite time. For example, the equation

y′ = −y(1− y)

with y(0) = y0 has the solution

y(x) =
y0

y0 + (1− y0)ex
.

This implies that if y0 > 1 holds, then the solution y(x) blows up in x = ln
(
−y0
1−y0

)
.

That is, M = ln
(
−y0
1−y0

)
if y0 > 1, but M = ∞ if y0 ≤ 1. In addition, notice

that in the first case, M is depend on the initial value y0. Next, we note that
nontrivial solutions may match a trivial solution after a finite time. In other words,
the uniqueness of the solution may be lost at some finite time. For example, the
equation

y′ = −√y

with y(0) = 1
4 has the solution

y(x) =

{
(1−x)2

4 if 0 ≤ x < 1,

0 if x ≥ 1.

This solution will match the trivial (constant) solution y(x) ≡ 0 after the finite
time x = 1. This says that we can choose M = ∞, but we must choose T = 1 in
Theorem 1.1. Of course, if all solutions exist for all x ∈ [0,∞) and the uniqueness
of all solutions is guaranteed, then we can choose T =∞.

Remark 1.2. Define U := {η ∈ R : η 6= 0, 1}. Let y(x) ∈ U for all x ∈ [0, T ) be a
solution of (1.2) with f(y) = y(1− y) and y(0) = y0, where T is a suitable value or
∞. Since

exp

(
F (y(x))− F (y0)

α− 1

)
= exp

(
−1

1− α

∫ y(x)

y0

1

f(η)
dη

)

= exp

(
−1

1− α

∫ y(x)

y0

(
1

η
− −1

1− η

)
dη

)

=

∣∣∣∣ (1− y0)y(x)

y0(1− y(x))

∣∣∣∣ −1
1−α

=

∣∣∣∣ (1− y0)y(x)

y0(1− y(x))

∣∣∣∣ −α
1−α−1

(1.5)

and

0 <
f(y(x))

f(y0)
=
y(x)(1− y(x))

y0(1− y0)
=

∣∣∣∣y(x)(1− y(x))

y0(1− y0)

∣∣∣∣ (1.6)
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hold for x ∈ [0, T ), by Corollary 1.1, we obtain

1 =
f(y(x))

f(y0)
exp

(
F (y(x))− F (y0)− αx

α− 1

)
=

∣∣∣∣y0(1− y(x))ex

(1− y0)y(x)

∣∣∣∣ α
1−α

(
1− y(x)

1− y0

)2

=

[
y0(1− y0)ex

y(x)(1− y(x))

(
1− y(x)

1− y0

) 2
α

] α
1−α

for x ∈ [0, T ). This equation implies (1.4). That is, we obtain an implicit solution
of (1.3) with y(x) ∈ U for all x ∈ [0, T ). In addition, we note that using Corollary
1.1, Cui’s results [10] are also derivable.

This paper is organized as follows. In the next section, we will introduce some
basic facts about a fractional integral. In Section 3, we prove the main theorem.
In Section 4, we present important examples. In the last section, we will state our
conclusions and future outlook.

2. Fractional integral

It is known that the fractional integral [18] corresponding to Caputo–Fabrizio deriva-
tive is given by

Iαφ(x) = (1− α)(φ(x)− φ(0)) + α

∫ x

0

φ(ξ)dξ. (2.1)

Then we see that
IαDαφ(x) = φ(x) + C, (2.2)

where C is an arbitrary constant. But, note that

DαIαφ(x) = φ(x)− φ(0)e−
α

1−αx

holds (see, [19]). Two properties of fractional integrals, (2.1) and (2.2), play an
important role in this paper.

3. Proof of main theorem

We will prove the main theorem.

Proof. [Proof of Theorem 1.1] Let S = {η ∈ Y : f(η) 6= 0}, and let y(x) for
x ∈ [0,M) be a solution of (1.1) with y(0) = y0 ∈ Y , where Y is the domain of
definition of f and M is the maximal existence time of y(x). Define

g(x) := κα(x)e−
α

1−αx,

with 0 < α < 1. Then we see that

GDαy(x) =
1

1− α

∫ x

0

g(ξ)

g(x)
e−

α
1−α (x−ξ)y′(ξ)dξ
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=
1

g(x)
Dα
(∫

g(x)y′(x)dx

)
.

From this with (1.1), we obtain the equation

Dα
(∫

g(x)y′(x)dx

)
= g(x)f(y(x)).

Thus, by (2.1) and (2.2), the equality∫
g(x)y′(x)dx+ C1 =IαDα

(∫
g(x)y′(x)dx

)
= Iαg(x)f(y(x))

=(1− α)(g(x)f(y(x))− g(0)f(y(0)))

+ α

∫ x

0

g(ξ)f(y(ξ))dξ

holds, where C1 is an arbitrary constant. Since κα is continuously differentiable, g
is also continuously differentiable. Differentiating both sides of the above equation
with respect to x, we have

g(x)y′(x) =(1− α)g′(x)f(y(x)) + (1− α)g(x)f ′(y(x))y′(x)

+ αg(x)f(y(x)) (3.1)

for x ∈ [0,M).
Let T be the smaller of M and inf{x ∈ [0,∞) : f(y(x)) = 0} if {x ∈ [0,∞) :

f(y(x)) = 0} 6= ∅; M if {x ∈ [0,∞) : f(y(x)) = 0} = ∅. If y0 ∈ Y satisfies f(y0) = 0,
then y(x) = y0 for all x ∈ [0,∞) is a trivial solution, and T = 0. Now we assume
that y(x) ∈ S for all x ∈ [0, T ), where T is positive by the definition of S and T .
From this with the fact that g(x) 6= 0 holds, we obtain

1− (1− α)f ′(y(x))

f(y(x))
y′(x) = (1− α)

g′(x)

g(x)
+ α,

for x ∈ [0, T ). Integrating both sides by x and by the definition of F , we get

F (y(x))− (1− α) ln |f(y(x))| = (1− α) ln |g(x)|+ αx+ C2,

where C2 is an arbitrary constant. This implies that

|g(x)f(y(x))|−(1−α) = exp (−F (y(x)) + αx+ C2) ,

and so that

g(x)f(y(x)) = ± exp

(
−F (y(x)) + αx+ C2

−(1− α)

)
.

Substituting x = 0, and using y(0) = y0, we have

g(0)f(y0) = ± exp

(
−F (y0) + C2

−(1− α)

)
.

Hence
g(x)f(y(x))

g(0)f(y0)
exp

(
F (y(x))− F (y0)− αx

−(1− α)

)
= 1

holds for x ∈ [0, T ). Recalling that g(x) = κα(x)e−
α

1−αx, we obtain the solution
formula for (1.1). This completes the proof.
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Remark 3.1. If f(y) = 0 for all y ∈ Y in (1.1), then we see that y(x) = y0 for
all x ∈ [0,∞) is the solution of (1.1) with y(0) = y0 ∈ Y . In fact, in this case, we
obtain

y′(x) = 0

from (3.1). Thus, y(x) is a constant, and so that we have y(x) = y0 for all x ∈ [0,∞)
by y(0) = y0.

4. Examples

Example 4.1. Consider the linear differential equation

GDαy = λy (4.1)

with the kernel GKα(x, ξ), where λ 6= 0. By Theorem 1.1, we obtain the following
implicit solution of (4.1) with y(0) = y0:

κα(x)

κα(0)

∣∣∣∣y(x)

y0

∣∣∣∣
1+λ(α−1)
λ(α−1)

= 1

with 0 < α < 1, whenever y(x) ∈ V1 := {η ∈ R : η 6= 0} for all x ∈ [0, T ), where T
is a suitable value or ∞. Since this equation can be solved for y(x), we can get the
explicit solution

y(x) = y0

(
κα(0)

κα(x)

) λ(α−1)
1+λ(α−1)

(4.2)

with 0 < α < 1. Note here that we can choose T = ∞ because κα is positive and
y0 ∈ V1. Moreover, when y0 = 0 this function satisfies y(x) = 0 for all x ∈ [0,∞).
Combining the above facts, we see that for any y0 ∈ R, the explicit solution of (4.1)
with y(0) = y0 is given by (4.2) for all x ∈ [0,∞).

In particular, if κα(x) ≡ e
α

1−αx or GKα = Kα, then (4.2) is

y(x) = y0e
λα

1+λ(α−1)
x

for all x ∈ [0,∞). When α→ 1− it becomes

y(x) = y0e
λx

for all x ∈ [0,∞). Clearly this is the solution of the first-order linear differential
equation y′ = λy with y(0) = y0 ∈ R.

Example 4.2. Consider the logistic differential equation

GDαy = y(1− y) (4.3)

with the kernel
GKα(x, ξ) =

ξ + 1

x+ 1
e−

α
1−α (x−ξ). (4.4)

Since κα(x) = (x+1)e
α

1−αx holds, using Theorem 1.1 and (1.5) and (1.6), we obtain
the following implicit solution of (4.3) with (4.4) and y(0) = y0:

(x+ 1)

∣∣∣∣y0(1− y(x))ex

(1− y0)y(x)

∣∣∣∣ α
1−α

(
1− y(x)

1− y0

)2

= 1
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with 0 < α < 1, whenever y(x) ∈ U for all x ∈ [0, T ), where T is a suitable value or
∞.

Figure 1 shows that solution curves of classical logistic equation (black), Caputo–
Fabrizio fractional logistic equation (1.3) (blue), and generalized Caputo–Fabrizio
fractional logistic equation (4.3) with (4.4) (red) with y(0) = 0.1 and α = 0.1. After
intersecting the solution curve of classical logistic equation, the solution curve of
equation (4.3) with (4.4) lies between solution curves of classical logistic equation
and Caputo–Fabrizio fractional logistic equation (1.3). Figures 2 and 3 show the
case where α = 0.5 and 0.9. As α → 1−, the graphs of (1.3) and (4.3) with (4.4)
approach the graph of classical logistic equation.

5 10 15 20
x

0.1

0.5

1

y

Figure 1. Solution curves of classical logistic equation (black), Caputo–Fabrizio fractional logistic
equation (1.3) (blue), and generalized Caputo–Fabrizio fractional logistic equation (4.3) with (4.4) (red),
with y(0) = 0.1 and α = 0.1.

5 10 15 20
x

0.1

0.5

1

y

Figure 2. Solution curves of classical logistic equation (black), Caputo–Fabrizio fractional logistic
equation (1.3) (blue), and generalized Caputo–Fabrizio fractional logistic equation (4.3) with (4.4) (red),
with y(0) = 0.1 and α = 0.5.

More generally, we get the following result.

Example 4.3. Consider equation (4.3) with the kernel

GKα(x, ξ) =
h(ξ)

h(x)
e−

α
1−α (x−ξ), (4.5)

where h(x) is a positive continuous function. Doing the same as in Example 4.1,
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0.1
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y

Figure 3. Solution curves of classical logistic equation (black), Caputo–Fabrizio fractional logistic
equation (1.3) (blue), and generalized Caputo–Fabrizio fractional logistic equation (4.3) with (4.4) (red),
with y(0) = 0.1 and α = 0.9.

we obtain the following implicit solution of (4.3) with (4.5) and y(0) = y0:

h(x)

h(0)

∣∣∣∣y0(1− y(x))ex

(1− y0)y(x)

∣∣∣∣ α
1−α

(
1− y(x)

1− y0

)2

= 1

with 0 < α < 1, whenever y(x) ∈ U for all x ∈ [0, T ), where T is a suitable value or
∞.

Example 4.4. Consider the differential equation

GDαy =
y

y − 1
(4.6)

with the kernel GKα(x, ξ), where y 6= 1 i.e., y(x) ∈ Y1 := {η ∈ R : η 6= 1}. By
Theorem 1.1, we obtain the following implicit solution of (4.6) with y(0) = y0:

κα(x)y(x)(y0 − 1)

κα(0)y0(y(x)− 1)

∣∣∣∣y(x)

y0

∣∣∣∣ 1
1−α

exp

(
y(x)− y0
α− 1

)
= 1

with 0 < α < 1, whenever y(x) ∈ V2 := {η ∈ Y1 : η 6= 0} for all x ∈ [0, T ), where T
is a suitable value or ∞.

5. Conclusions and future outlook

This study introduces a novel generalized Caputo–Fabrizio fractional derivative and
presents a versatile method for solving generalized Caputo–Fabrizio fractional dif-
ferential equations. Our findings extend to encompass Caputo–Fabrizio fractional
differential equations, offering a broad application range. Importantly, we provide
a theorem that offers a versatile solution framework, not restricted to specific equa-
tions like the logistic or Riccati equations.

When κα(x) ≡ 1, the expression

GDαφ(x) =
1

1− α
(φ(x)− φ(0))

reveals that the new derivative, GDαφ, can be viewed as an extension of the Caputo–
Fabrizio fractional derivative, albeit not necessarily as a traditional “derivative”.
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It’s worth noting that further research could potentially lead to characterizing the
generalized Caputo–Fabrizio fractional derivative by imposing specific constraints
on the nonsingular kernel, GKα(x, ξ).
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