
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 14, Number 3, June 2024, 1269–1301 DOI:10.11948/20230087

STABILIZED PRIMAL AND DUAL HYBRID
MIXED DGFEM FOR DARCY FLOW∗

Iury Igreja1,†

Abstract This work presents and analyzes two stabilized mixed hybrid Dis-
continuous Galerkin Finite Element Methods (DGFEM) for Darcy flows. The
difference between the methodologies lies in the choice of Lagrange multipliers
that aim to weakly enforce continuity on the edge/face of the elements. Thus,
we study methods with multipliers associated with the normal component of
the velocity field and the trace of the pressure field that naturally gives rise,
respectively, to primal and dual formulations. However, despite the difference
between the formulations, both methods can be associated with the same dis-
continuous Galerkin formulation. In this sense, the analysis of consistency,
existence, uniqueness, and error estimates is similar for both methods, even
when continuous interpolations are employed to approximate the Lagrange
multipliers. Moreover, stability and convergence rate are improved by adding
the least-squares residual forms of the governing equations. Besides, for spe-
cific edge/face stabilization parameter choices, the methods become locally
conservative, allowing the use of non-conforming Raviart-Thomas spaces. Fi-
nally, to illustrate the accuracy, convergence rates, local mass conservation,
computational efficiency, and flexibility of the methods, several two and three-
dimensional numerical experiments are performed considering homogeneous
and heterogeneous porous media.

Keywords Darcy problem, primal and dual formulation, hybrid-mixed meth-
ods, discontinuous Galerkin, stabilization.
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1. Introduction

The incompressible fluid flow in the porous media has been extensively studied due
to several applications in petroleum engineering, hydrogeology, biofluid dynamics,
and filtration, among others. This problem is modeled by the classical Darcy sys-
tem, which consists of the mass conservation equation plus Darcy’s law, which
relates the average velocity of the fluid in a porous medium with the gradient of a
potential field through the hydraulic conductivity tensor. Several numerical meth-
ods have been employed in the last decades to approximate this system of partial
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differential equations. In particular, mixed finite element methods have been de-
veloped. However, the classical finite element approximations for these problems
present limitations due to the necessity to satisfy an inf-sup compatibility condition
between the space of approximations [9, 11, 12]. To overcome this limitation, [29]
and [13] developed combinations of the approximation spaces based on the impo-
sition the continuity of the normal component of the velocity field in combination
with specific discontinuous interpolations for the pressure. More recently, examples
of stable spaces for this problem were proposed by [5] and [2].

On another front, where this work is focused, the class of finite element methods
is stabilized by adding least-squares residual terms of the model problem to pre-
serve the consistency and symmetry of the formulation. This technique is known in
the literature by Galerkin Least-Square (GLS) methods [10, 14, 19, 26] that, unlike
the classical formulations in which the stability is limited to specific finite element
spaces, are unconditionally stable and add more flexibility in the finite element
approximations construction as, for example, the same polynomial order approxi-
mations for the velocity and pressure fields. Thus, stabilized methods add terms to
classical variational formulations, making the discrete approximations, which would
otherwise be unstable, stable, and convergent.

Discontinuous Galerkin (DG) methods have also been proposed to solve the
Darcy problem due to their flexibility in choosing approximation spaces and imple-
menting h and p adaptivity strategies and parallelization [15,16,22]. More recently,
hybridized versions of DG methods have been introduced that preserve the prop-
erties of DG methods but with improved stability and reduced implementation
complexity and computational cost [8,25,31]. The hybrid formulations allow, from
appropriate choices, the elimination of the local problems at each element level in
favor of the Lagrange multiplier [24]. Thus, the system involves only global degrees
of freedom associated with the multiplier. Some references that apply this technique
to solve Darcy’s Problem can be found in the works of [17,18,25,28].

In this context, we study two stabilized hybrid approaches based on the Darcy
problem’s primal and dual formulations. In both formulations, we add least-squares
residuals of Darcy’s law and the mass balance equation, which leads to flexibility
in the choice of finite element spaces and optimal convergence properties in an en-
ergy norm equivalent to a mesh dependent H(div) × H1-norm [19, 22, 25, 26]. In
this context, we propose the Stabilized Primal Hybrid Mixed (SPHM) method,
which, unlike the method presented and analyzed in [25], whose Lagrange multi-
plier is a vector associated with the velocity field, the proposed method only imposes
the continuity of the normal velocity component at the interfaces of the elements.
The scalar Lagrange multiplier associated with the normal component of the veloc-
ity field makes possible the natural treatment of the heterogeneities generated by
the permeability of the porous matrix, the use of non-conforming Raviart-Thomas
spaces, and also significantly reduces the size of the global problem. On the other
hand, the Stabilized Dual Hybrid Mixed (SDHM) method employs Lagrange multi-
pliers related to the pressure field. The SDHM method was first introduced in [28]
considering discontinuous interpolations for the Lagrange multiplier. However, the
contribution here is to perform the analysis and numerical studies adopting con-
tinuous interpolations for the Lagrange multiplier. Another contribution of this
work is to connect the hybrid formulations to a DG method by eliminating the La-
grange multiplier to employ the same arguments to prove the consistency, stability,
continuity, and convergence of both hybrid techniques. Moreover, both methods
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become locally conservative from appropriate choices for the edge/face stabilization
coefficient, allowing the use of non-conforming Raviart-Thomas spaces [6, 29].

To validate, establish accuracy, and confirm the convergence rates of the pro-
posed SPHM method and the SDHM method with continuous interpolations for the
Lagrange multiplier, we conducted an extensive numerical investigation in two- and
three-dimensions on homogeneous and heterogeneous porous media. In this context,
these methods are compared through h- and p-convergence studies. Furthermore, an
analysis of local mass conservation based on the variation of the penalty parameter
is presented, a study is carried out regarding the computational cost of assembling
and solving these methods, and Jacobi and Symmetric Successive Over-Relaxation
(SSOR) preconditioners are tested to compare their performances.

This paper is organized as follows. In Section 2, the Darcy problem, notations,
and definitions are introduced. In Section 3, Primal and Dual hybrid mixed methods
and their connection with the same DG method are presented. The consistency,
stability, continuity, and error estimates of these methods are proved in Section 4.
Section 5 presents the computational strategy to solve these methods. In Section 6,
we validate and compare the formulations through convergence studies considering
homogeneous and heterogeneous porous media. Finally, Sections 7 and 8 present
the discussions and concluding remarks of this work.

2. Preliminares

This section presents the model problem and some definitions and notations com-
monly adopted to construct variational formulations in broken function spaces as-
sociated with DG and hybrid mixed methods.

2.1. Model problem

The flow of a Newtonian and incompressible fluid through a rigid porous medium
is governed by a system of partial differential equations formed by the mass conser-
vation combined with Darcy’s law, which relates to the flow velocity average in the
pores with a potential gradient. Therefore, in a bounded domain Ω ⊂ Rd, d = 2 or
3 with Lipschitz boundary Γ = ∂Ω, we present the Darcy system as follows:

Given the function f , find the fluid velocity u : Ω → Rd and the hydrostatic
pressure p : Ω→ R, such that

u = −K∇p in Ω, (2.1)

div u = f in Ω, (2.2)

where ∇ and div denotes the gradient and divergent operators, respectively, and K
the hydraulic conductivity tensor. This problem can be supplemented by Neumann
boundary conditions

u · n = 0 on Γ, (2.3)

where the source f must satisfy the compatibility condition∫
Ω

f dx = 0,
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or Dirichlet boundary conditions

p = 0 on Γ. (2.4)

2.2. Notations and definitions

Let Hm(Ω) denote the usual Sobolev space equipped with a norm ‖·‖m,Ω = ‖·‖m
and semi-norm |·|m,Ω = |·|m, with m ≥ 0. For m = 0, we present L2(Ω) = H0(Ω)
as the space of square-integrable functions and H1

0 (Ω) the subspace of functions in
H1(Ω) with zero trace on ∂Ω. In addition, we set

L2
0(Ω) = {φ ∈ L2(Ω) :

∫
Ω

φdx = 0}.

We also define the Hilbert space associated to the divergence operator

H(div,Ω) = H(div) = {w ∈ [L2(Ω)]d, div w ∈ L2(Ω)},

with norm

‖w‖2H(div) = ‖w‖20 + ‖div w‖20.

Let Th be a regular finite element partition of the domain Ω, defined by

Th = {K} := the union of all elements K

and let Eh = {e; e is an edge/face of K for all K ∈ Th} denotes the set of all edges/
faces e of all elements K, E0

h = {e ∈ Eh; e is an interior edge/face} is the set of
interior edges/faces, and E∂h = {e ∈ Eh; e ⊂ ∂Ω} is the set of edges/faces of Eh on
the boundary of Ω. We assume that the domain Ω is polygonal and Th is a regular
partition of Ω. Thus, there exists c > 0 such that h ≤ che, where he is the diameter
of the edge/face e ∈ ∂K and h, the mesh parameter is the element diameter. For
each element K, we associate a unit outward normal vector nK .

For a scalar-valued function φ ∈ L2(Ω) with φ|K ∈ Hm(K) for all K ∈ Th, let
|φ|m,h be the usual broken Hm-type semi-norm of φ defined by

|φ|m,h =

( ∑
K∈Th

|φ|2m,K

)1/2

=

( ∑
K∈Th

∫
K

|∇mφ|2dx
)1/2

. (2.5)

If w is a vector-valued or tensor-valued function, the corresponding term ‖w‖m,h
is defined in a similar manner. For a vector or a tensor w, we denote by |w| the
quantity (w ·w)1/2 or (w : w)1/2, respectively.

To establish a connection between the hybrid methods with discontinuous
Galerkin methods, we introduce some definitions usually applied to formulate and
analyze the DG methods. Thus, given the elements K+,K− ∈ Th sharing the
edge/face e, we define the corresponding outward unit normal vectors nK+ and
nK− on e to K+ and K−. For a scalar function φ and a vector-valued function
w that is smooth inside each element K±, let us denote by (φ±,w±) the traces of
(φ,w) on e taken from within the interior of K±, respectively. Thus, we define the
following averages

{{φ}} =
1

2
(φ+ + φ−); {{w}} =

1

2
(w+ + w−) on e ∈ E0

h, (2.6)
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and analogously, we define the jumps as

[[φ]] = φ+nK+ + φ−nK− ; [[w]] = w+ · nK+ + w− · nK− on e ∈ E0
h. (2.7)

For edges/faces on the boundary of the domain, it is usually set

{{φ}} = φ, [[φ]] = φn; {{w}} = w, [[w]] = w · n on e ∈ E∂h (2.8)

where n is the unit outward normal vector on Γ.
Based on the above definitions, we present the following identity (see [7] and [15])∑

K∈Th

∫
∂K

φ(w · nK)ds =
∑
e∈Eh

∫
e

{{φ}} [[w]]ds+
∑
e∈E0h

∫
e

[[φ]] · {{w}} ds. (2.9)

Let Vh and Qh denote the broken function spaces on the partition of Th, given by

Vkh = {w ∈ [L2(Ω)]d; w|K ∈ [Qk(K)]d, ∀K ∈ Th}, (2.10)

Qlh = {φ ∈ L2(Ω);φ|K ∈ Ql(K), ∀K ∈ Th}, (2.11)

where Qj(K) is the product space of polynomial functions of degree at most j in
each space variable associated with quadrilateral/hexahedral elements, with j = k
or j = l. Furthermore, to simplify the notation, we use throughout the text QQQk =
[Qk]d. Also, on the edges/faces e ∈ Eh, we define the Lagrange multiplier spaces

Dkh = {µ ∈ L2(Eh) : µ|e = pk(e), ∀e ∈ E0
h, µ|e = 0, ∀e ∈ E∂h}, (2.12)

Ckh = {µ ∈ C0(Eh) : µ|e = pk(e), ∀e ∈ E0
h, µ|e = 0, ∀e ∈ E∂h}. (2.13)

Similarly, pk(e) is the space of polynomial functions of degree at most k on an
edge/face e. The space Dkh consider discontinuous interpolations for the Lagrange
multiplier and Ckh the continuous interpolations. The set of admissible continuous
and discontinuous functions is defined as

Mk
h ∈ {Dkh, Ckh}. (2.14)

3. Stabilized Hybrid Mixed methods

In this section, we introduce a Stabilized Primal Hybrid Mixed (SPHM) formula-
tion for the Darcy problem and recall the Stabilized Dual Hybrid Mixed (SDHM)
method adopting continuous and discontinuous interpolations for the Lagrange mul-
tipliers [28]. The SPHM method is characterized by the weak imposition of the
continuity via Lagrange multipliers associated with the normal velocity component
on the edges/faces of the elements. On the other hand, the SDHM method is iden-
tified by the Lagrange multipliers related to the pressure field on the edges/faces of
the elements. From an appropriate choice of the interface stabilization parameter,
both formulations generate the same associated DG method when we eliminate the
Lagrange multipliers.

To this end, first, we define the model problem (2.1)-(2.3) posed on each element
K of the mesh Th as the set of local problems

Au = −∇p in K, (3.1)
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div u = f in K, (3.2)

[[u]] = u · n = 0 ∀e ∈ E∂h , (3.3)

with the following transmission conditions

[[u]] = 0 and [[p]] = 0, ∀e ∈ E0
h, (3.4)

where A = K−1 denotes the hydraulic resistivity tensor and [[·]] is the jump operator
defined in (2.7). From the definition of the problem at the element level, we next
introduce the stabilized hybrid mixed primal and dual formulations.

3.1. Stabilized Primal Hybrid Mixed method

Considering the equations (3.1)-(3.2) multiplied by their respective weighting func-
tions in the spaces [L2(K)]d and H1(K) using the integration by parts on each
element K ∈ Th, leads to the following local weak form∫

K

Au · v dx +

∫
K

∇p · v dx = 0, ∀v ∈ [L2(K)]d, (3.5)∫
K

u · ∇q dx−
∫
∂K

(u · nK) q ds = −
∫
K

f q dx, ∀q ∈ H1(K). (3.6)

An approximation to the formulation (3.5)-(3.6) can be obtained in the spaces Vkh
and Qlh defined, respectively, in (2.10) and (2.11), generating the approximation for
each element K ∈ Th∫

K

Auh · vh dx +

∫
K

∇ph · vh dx = 0, ∀vh ∈ Vkh , (3.7)∫
K

uh · ∇qh dx−
∫
∂K

(uh · nK) qh ds = −
∫
K

f qh dx, ∀qh ∈ Qlh. (3.8)

Adding (3.7) and (3.8), choosing the multiplier associated with the normal compo-
nent of the velocity field λn = u ·nK |e on each edge/face e ∈ Eh belonging to space
Dkh and introducing a consistent stabilization term related to λn governed by the
edge/face stabilization parameter βn, defined as

βn = Ahβ0, (3.9)

we obtain∫
K

Auh · vh dx +

∫
K

∇ph · vh dx + βn

∫
∂K

(uh · nK − λnh) vh · nK ds

+

∫
K

uh · ∇qh dx−
∫
∂K

λn qh ds (3.10)

=−
∫
K

f qh dx,

for all [vh, qh] ∈ Vkh × Qlh. Thus, summing the equation (3.10) on all elements K
and including the global problem associated with the multiplier equation, we obtain
the following mixed hybrid formulation on the partition Th of the domain Ω.
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Find the pair [uh, ph] ∈ Vkh×Qlh and the Lagrange multiplier λnh ∈ Dkh such that,
for all [vh, qh] ∈ Vkh ×Qlh and µnh ∈ Dkh∑

K∈Th

[ ∫
K

Auh · vh dx +

∫
K

∇ph · vh dx +

∫
K

uh · ∇qh dx−
∫
∂K

λnh qh ds

+ βn

∫
∂K

(uh · nK − λnh) vh · nK ds
]

(3.11)

=−
∑
K∈Th

∫
K

f qh dx,

∑
K∈Th

[
−
∫
∂K

ph µ
n
h ds− βn

∫
∂K

(uh · nK − λnh)µnh ds

]
= 0. (3.12)

The two terms in global problem (3.12) are consistent with the pressure and
flux continuities on the interface e ∈ E0

h between two adjacent elements. The local
problems (3.11) must satisfy some compatibility conditions between the velocity
and pressure approximation spaces [9, 11, 12]. Therefore, based on the works of
[10, 14, 19, 22, 25, 26], we add to the problem least-squares residual terms related to
Darcy’s law (3.1) and the mass balance (3.2) in the interior of each element K and
present the stabilized primal mixed hybrid method in a compact form, as follows:

Find Xh ∈ Vh, such that

ASPHM (Xh,Yh) = FSPHM (Yh), ∀ Yh ∈ Vh (3.13)

with Xh = [uh, ph, λ
n
h] and Yh = [vh, qh, µ

n
h] belonging to the product space Vh =

Vkh ×Qlh ×Dkh and

ASPHM (Xh,Yh) =
∑
K∈Th

[ ∫
K

Auh · vh dx +

∫
K

∇ph · vh dx +

∫
K

uh · ∇qh dx

+ δ1

∫
K

K(Auh +∇ph) · (Avh +∇qh) dx

+ δ2

∫
K

Adiv uh div vh dx−
∫
∂K

λnh qh ds−
∫
∂K

phµ
n
h ds

+ βn

∫
∂K

(uh · nK − λnh)(vh · nK − µnh) ds

]
, (3.14)

FSPHM (Yh) =
∑
K∈Th

[
δ2

∫
K

Af div vh dx−
∫
K

f qh dx

]
, (3.15)

where A = ‖A‖∞, ‖ · ‖∞ denotes the maximum norm, and the stabilization param-
eters δ1 and δ2 are related to least-squares residual forms defined in the interior of
each element K. The commonly adopted values for these parameters are δ1 = −0.5
and δ2 = 0.5, as can seen in [19,25]. The imposition of the Neumann boundary con-
ditions (3.3) for this formulation is made through the space (2.12) of the Lagrange
multipliers on the edges/faces e ∈ E∂h .

3.2. Stabilized Dual Hybrid Mixed method

Here, we recall the Stabilized Dual Mixed Hybrid (SDHM) method introduced in
[28]. To this, following the same steps to derive the SPHM method (3.13), but
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choosing the Lagrange multiplier as the trace of the pressure field λp = p|e on each
edge/face e ∈ Eh belonging to the space (2.14), we multiply the equations (3.1)-(3.2)
by weighting functions, we integrate by parts the equation relative to Darcy’s law,
we include the least-square terms to make compatible the approximation spaces,
and we introduce an edge/face stabilization parameter βp, defined as

βp = −β−1
n . (3.16)

In this context, we can present the following formulation:
Find Xh ∈ Vh, such that

ASDHM (Xh,Yh) = FSDHM (Yh), ∀ Yh ∈ Vh, (3.17)

with Xh = [uh, ph, λ
p
h] and Yh = [vh, qh, µ

p
h] belonging to the product space Vh =

Vkh ×Qlh ×Mk
h and

ASDHM (Xh,Yh) =
∑
K∈Th

[ ∫
K

Auh · vh dx−
∫
K

ph div vh dx−
∫
K

qh div uh dx

+ δ1

∫
K

K(Auh +∇ph) · (Avh +∇qh) dx

+ δ2

∫
K

A div uh div vh dx +

∫
∂K

λph (vh · nK) ds

+

∫
∂K

µph (uh · nK) ds+ βp

∫
∂K

(ph − λph)(qh − µph) ds

]
,

(3.18)

and FSDHM (·) is the same of (3.15).
The terms multiplied by µph weakly impose the continuity of the normal com-

ponent of the velocity field and the flux boundary condition (2.3) and enforce the
continuity of the pressure field.

Remark 3.1. It’s important to emphasize that the local conservation property in
both methods, SPHM and SDHM, depend on the edge/face stabilization parameter.
For the SDHM method, taking βp = 0, the method becomes locally conservative [28].
On the other hand, from relation (3.16), the same behavior is observed for the SPHM
method when we have βn →∞. In this case, using non-conforming Raviart-Thomas
spaces [6, 29] preserves the local conservation property and makes the velocity and
pressure spaces compatible without incorporating least-squares residual terms.

3.3. SPHM connection with a DG method

To establish an appropriate connection between the hybrid method with an asso-
ciated DG method, we rewrite the SPHM method (3.13) in terms of jumps and
averages defined in (2.6)-(2.8). Thus, considering λnh and µnh uniquely determined
on the edges/faces e ∈ Eh and the following identity∑

K∈Th

∫
∂K

(uh · nK − λnh)(vh · nK − µnh)ds

=
∑
e∈E0h

1

2

∫
e

[[uh]][[vh]]ds+
∑
e∈E0h

2

∫
e

({{uh}} · nK − λnh) ({{vh}} · nK − µnh) ds, (3.19)
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we can express ASPHM (·, ·) as

ASPHM (Xh,Yh) =
∑
K∈Th

[ ∫
K

Auh · vh dx +

∫
K

∇ph · vh dx +

∫
K

uh · ∇qh dx

+ δ1

∫
K

K(Auh +∇ph) · (Avh +∇qh) dx

+ δ2

∫
K

Adiv uh div vh dx

]
−
∑
e∈E0h

∫
e

λnh ([[qh]] · nK) + µnh ([[ph]] · nK) ds

+
∑
e∈E0h

βn
2

∫
e

[[uh]][[vh]]ds

+
∑
e∈E0h

2βn

∫
e

({{uh}} · nK − λnh) ({{vh}} · nK − µnh) ds. (3.20)

To derive a DG method in the primal variables uh and ph related to the SPHM
formulation, we can exactly solve the equation (3.12), yielding

λnh = {{uh}} · nK +
1

2βn
[[ph]] · nK on e ∈ E0

h. (3.21)

Replacing (3.21) in (3.20) and including the linear functional FSPHM (·) (3.15), with
µnh = 0, we get the following discontinuous Galerkin formulation∑

K∈Th

[ ∫
K

Auh · vh dx +

∫
K

∇ph · vh dx +

∫
K

uh · ∇qh dx

+ δ1

∫
K

K(Auh +∇ph) · (Avh +∇qh) dx + δ2

∫
K

A div uh div vh dx

]
+
∑
e∈E0h

∫
e

([[ph]] · {{vh}}+ {{uh}} · [[qh]]) ds+ τp
∑
e∈E0h

∫
e

[[ph]] · [[qh]]ds

+ τu
∑
e∈E0h

∫
e

[[uh]][[vh]] ds (3.22)

=
∑
K∈Th

[
δ2

∫
K

Af div vh dx−
∫
K

f qh dx

]
.

In this case, τp = −1/(2βn) and τu = 2βn. The DG method derived is consistent
due to transmission conditions [[u]] = 0 and [[p]] = 0. Moreover, setting δ2 = τu = 0
and δ1 = −1/2, we recover a stabilized mixed DG method proposed and analyzed
in [22].

Remark 3.2. Similarly, from the SDHM method (3.17), adopting discontinuous
interpolations for the Lagrange multiplier (λph ∈ Dkh), we can derive the following
relation for the Lagrange multiplier

λph = {{ph}} −
1

2βp
[[uh]] on e ∈ E0

h, (3.23)
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where integrating by parts the terms (ph,div vh) and (qh,div uh) and using the def-
inition (3.16), we recover the same DG method associated with the SPHM method

(3.22), setting τp = 2βp and τu = − 1

2βp
.

4. Numerical analysis

The numerical analysis of hybrid methods typically relies on arguments similar to
those employed in the analysis of discontinuous Galerkin methods. These arguments
involve employing norms defined at the element level, incorporating jumps and
averages of variables along edges/faces, and utilizing specific inequalities such as
trace and generalized Poincaré inequalities [8,25]. Therefore, the numerical analysis
of the SPHM formulation presented in (3.13) is performed using the bilinear form
ASPHM (·, ·), which is reformulated in terms of jumps and averages as shown in
(3.20). In this context, first, we demonstrate the consistency of the proposed hybrid
method.

4.1. Consistency

Lemma 4.1. The stabilized primal mixed hybrid formulation (3.13) is consistent,
that is, the exact solution X = [u, p, λn] satisfies

ASPHM (X,Yh) = FSPHM (Yh), ∀ Yh ∈ Vh. (4.1)

Proof. From the SPHM method, with ASPHM (·, ·) in the form presented in (3.20),
let the triple [u, p, λn], with u and p solution of the model problem (2.1)-(2.2) and
λn = u · nK |e on each edge/face e ∈ Eh, such that satisfies∑

K∈Th

[ ∫
K

Au · vh dx +

∫
K

∇p · vh dx +

∫
K

u · ∇qh dx

+ δ1

∫
K

K(Auh +∇ph) · (Avh +∇qh) dx + δ2

∫
K

Adiv u div vh dx

]
−
∑
e∈E0h

∫
e

λn ([[qh]] · nK) + µnh ([[p]] · nK) ds+
∑
e∈E0h

βn
2

∫
e

[[u]][[vh]]ds

+
∑
e∈E0h

2βn

∫
e

({{u}} · nK − λn) ({{vh}} · nK − µnh) ds, (4.2)

for all [vh, qh, µ
n
h] ∈ Vkh × Qlh × Dkh. From the exact solution X = [u, p, λn] and

considering the transmission conditions (3.4), the system (4.2) reduces to∑
K∈Th

∫
K

Au · vh dx +

∫
K

∇p · vh dx +

∫
K

u · ∇qh dx−
∑
K∈Th

∫
∂K

(u · nK) qh ds

=−
∑
K∈Th

∫
K

f qh dx

which integrated by parts leads to∑
K∈Th

∫
K

[Au +∇p] · vh dx = 0, ∀vh ∈ Vkh , (4.3)
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K∈Th

∫
K

[div u− f ] qh dx = 0, ∀qh ∈ Qlh, (4.4)

and the proof is complete.

4.2. Existence and uniqueness

To prove the existence and uniqueness of the SPHM formulation (3.13), we define
the mesh dependent norm ‖·‖SH , to prove stability of the bilinear form ASPHM (·, ·)
presented in (3.20), as follows

‖Xh‖2SH = |[uh, ph]|2Th + |[uh, ph, λnh]|2∂Th (4.5)

where

|[uh, ph]|2Th =
∑
K∈Th

[ ∫
K

Auh · uh dx +

∫
K

K∇ph · ∇ph dx

+

∫
K

A|div uh|2 dx
]
, (4.6)

|[uh, ph, λnh]|2∂Th =
∑
e∈E0h

[
βn
2

∫
e

|[[uh]]|2ds+ 2βn

∫
e

| {{uh}} · nK − λnh|2ds

+
1

2βn

∫
e

|[[ph]]|2ds
]
. (4.7)

4.2.1. Global stability

Using the norm (4.5), the next Lemma establishes the stability of the form (3.20)
in the sense of Babuška [9].

Lemma 4.2 (SPHM global inf-sup stability). There exists a positive constant γ >
0, independent of the mesh size, such that

sup
Yh∈Vh

ASPHM (Xh,Yh)

‖Yh‖SH
≥ γ‖Xh‖SH , ∀ Xh ∈ Vh. (4.8)

Proof. Setting δ1 = −1/2, δ2 = 1/2, and choosing Ȳh = [v̄h, q̄h, µ̄
n
h] with

v̄h = uh, q̄h = −ph, µ̄nh = λnh −
1

2βn
[[ph]] · nK (4.9)

such that
‖Ȳh‖SH ≤ 2‖Xh‖SH , (4.10)

for any Xh ∈ Vh, we have

ASPHM (Xh, Ȳh)

≥1

2
|[uh, ph]|2Th +

∑
e∈Eh

[
βn
2

∫
e

|[[uh]]|2ds+ 2βn

∫
e

| {{uh}} · nK − λnh|2ds

+
1

2βn

∫
e

|[[ph]]|2ds+

∫
e

|[[ph]] · nK({{uh}} · nK − λnh)| ds
]
. (4.11)
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Considering that

|[[ph]] · nK({{uh}} · nK − λnh)| ≥ −1

2

(
1

2βn
|[[ph]]|2 + 2βn|({{uh}} · nK − λnh)|2

)
(4.12)

we get

ASPHM (Xh, Ȳh) ≥ 1

2

(
|[uh, ph]|2Th + |[uh, ph, λnh]|2∂Th

)
=

1

2
‖Xh‖2SH . (4.13)

Thus,

sup
Yh∈Vh

ASPHM (Xh,Yh)

‖Yh‖SH
≥ ASPHM (Xh, Ȳh)

‖Ȳh‖SH
≥ 1

4
‖Xh‖SH

which proves the lemma, with γ = 1/4, and the stability of the proposed SPHM
formulation.

4.2.2. Continuity

Continuity or boundedness of ASPHM (·, ·) is proved in the same norm of the stability
(4.5), but in the infinite dimension space V(Th) = V(Th)×Q(Th)×D(Eh) with

V(Th) = {v ∈ [L2(Ω)]d; v|K ∈ [H1(K)]d, ∀K ∈ Th},
Q(Th) = {q ∈ L2(Ω); q|K ∈ H1(K), ∀K ∈ Th},
D(Eh) = {µ|e ∈ L2(e), ∀e ∈ E0

h, µ|e = 0, ∀e ∈ E∂h}.

Lemma 4.3 (Continuity of ASPHM (·, ·) and FSPHM (·)). There exist constants
MC <∞ and MF <∞, independent of the mesh size, such that

|ASPHM (X,Y)| ≤MC‖X‖SH‖Y‖SH , ∀ X,Y ∈ V(Th), (4.14)

|FSPHM (Y)| ≤MF ‖Y‖SH , ∀ Y ∈ V(Th). (4.15)

Proof. To prove the continuity of ASPHM (·, ·) defined in (3.20), we apply the
triangle inequality to obtain

|ASPHM (X,Y)| ≤C|[u, p]|Th |[v, q]|Th +

∣∣∣∣∣∣
∑
e∈E0h

βn
2

∫
e

[[u]][[v]]ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
e∈E0h

2βn

∫
e

({{u}} · nK − λn) ({{v}} · nK − µn) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
e∈E0h

∫
e

λn ([[q]] · nK) ds

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
e∈E0h

∫
e

µn ([[p]] · nK) ds

∣∣∣∣∣∣ . (4.16)

If we set δ2 = −δ1 = 1/2, the constant C is 1/2. The all terms in (4.16), except the
two last terms, are bounded by |[u, p, λn]|∂Th |[v, q, µn]|∂Th . Thus, we rewrite these
terms as∣∣∣∣∣∣

∑
e∈E0h

∫
e

λn ([[q]] · nK) ds

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
e∈E0h

∫
e

(λn − {{u}} · nK + {{u}} · nK) ([[q]] · nK) ds

∣∣∣∣∣∣



Stabilized primal and dual hybrid mixed methods 1281

≤

∣∣∣∣∣∣
∑
e∈E0h

∫
e

(λn − {{u}} · nK) ([[q]] · nK) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
e∈E0h

∫
e

{{u}} · [[q]] ds

∣∣∣∣∣∣ . (4.17)

To estimate the last term in (4.17), we employ the inequality (2.9), integration by
parts and the generalized Poincaré inequality (see [4])

∑
K∈Th

∫
K

|q|2 dx ≤ CK

 ∑
K∈Th

∫
K

|∇q|2 dx + h−1
∑
e∈E0h

∫
e

|[[q]]|2ds

 (4.18)

to get ∣∣∣∣∣∣
∑
e∈E0h

∫
e

{{u}} · [[q]] ds

∣∣∣∣∣∣
≤
∣∣∣∣∣ ∑
K∈Th

∫
∂K

q(u · nK)ds

∣∣∣∣∣
=

∣∣∣∣∣ ∑
K∈Th

∫
K

(u · ∇q + q div u) dx

∣∣∣∣∣
≤|u|0,h|q|1,h + CK

|q|21,h + 2Aβ0

∑
e∈E0h

1

2βn

∫
e

|[[q]]|2ds

1/2

|div u|0,h. (4.19)

Thus, the estimative (4.14) is proved combining (4.17) and (4.19) with (4.16), with
MC depending on stabilization parameters δ’s and β0 and the constant CK of the
generalized Poincaré inequality (4.18).

In the same way, using the generalized Poincaré inequality (4.18), we can prove
the continuity of FSPHM (·)

|FSPHM (Y)| ≤
∣∣∣∣∣ ∑
K∈Th

δ2

∫
K

Af div v dx

∣∣∣∣∣+

∣∣∣∣∣ ∑
K∈Th

∫
K

f q dx

∣∣∣∣∣ ≤MF ‖Y‖SH . (4.20)

The proof is complete with MF depending on δ2, β0, ‖f‖0,h and the constant of the
generalized Poincaré inequality (4.18).

4.3. Energy norm error estimates

The exact solution X = [u, p, λn] of the Darcy problem and the SPHM consistency
(Lemma 4.1) leads to the orthogonality property

ASPHM (X−Xh,Yh) = 0, ∀ Yh ∈ Vh. (4.21)

Let X̃ ∈ Vh be appropriate projections of u, p and λn on Vkh , Qlh and Dkh,
respectively. Thus, from Lemma 4.2, it follows that

γ‖X̃−Xh‖SH ≤
ASPHM (X̃−Xh, Ỹ −Yh)

‖Ỹ −Yh‖SH
,
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choosing Yh = [uh,−ph, λnh −
1

2βn
[[ph]] ·nK ] and Ỹ = [ũ,−p̃, λ̃n− 1

2βn
[[p̃]] ·nK ] and

considering (4.10) we have

1

2
‖X̃−Xh‖2SH ≤ASPHM (X̃−Xh, X̃−Xh)

≤ASPHM (X̃−X, X̃−Xh) +ASPHM (X−Xh, X̃−Xh).

Considering orthogonality (4.21) and continuity of ASPHM (·, ·) (Lemma 4.3), we
get

‖X̃−Xh‖SH ≤2MC‖X̃−X‖SH . (4.22)

Using the triangle inequality and the result (4.22), we obtain

‖X−Xh‖SH ≤‖X− X̃‖SH + ‖X̃−Xh‖SH
≤(1 + 2MC)‖X− X̃‖SH . (4.23)

Considering ũ = uI , p̃ = pI and λ̃n = λnI the continuous interpolants of u, p and
λn, respectively, the definition of the Lagrange multiplier λn = u · nK |e on each
edge/face e ∈ E0

h, and the norm (4.5), the estimate (4.23) reduces to

‖X−Xh‖SH ≤ (1 + 2MC)|[u− uI , p− pI ]|Th (4.24)

since, in this case, λnI = uI · nK |e on each edge/face e ∈ E0
h and the jumps of

p − pI and u − uI are zero at the interelement boundaries. Therefore, assuming
‖div u‖0,K ≤ C‖∇u‖0,K , using the approximation properties of the interpolant,
adopting equal order approximations for velocity, pressure, and the multiplier (k =
l), and supposing sufficiently regular solutions (u ∈ [Hk+1]d, p ∈ Hk+1) we derive
the following rate of convergence in the energy norm

‖X−Xh‖SH ≤ Chk (|u|k+1 + |p|k+1) . (4.25)

The coefficients of stability, continuity, and interpolant are encapsulated in the
constant C.

A discussion of convergence rates in L2-norm, for different choices of the stabi-
lization parameters δ’s and β, can be seen in [25].

Remark 4.1. Using the same arguments employed for the SPHM method, the
consistency, existence, uniqueness, and error estimates of the SDHM method (3.17)
can be proved in a similar norm adopted in (4.5), with |[uh, ph, λph]|∂Th in the place
of (4.7) defined as

|[uh, ph, λph]|2∂Th
=
∑
e∈E0h

[
1

2βp

∫
e

|[[uh]]|2ds+ 2βp

∫
e

| {{ph}} − λph|2ds+
βp
2

∫
e

|[[ph]]|2ds
]

and replacing µ̄nh by µ̄ph = −λph+
1

2βp
[[uh]] in (4.9) to demonstrate the global inf-sup

stability. Moreover, this analysis is also valid for the continuous interpolations for
the Lagrange multiplier.
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5. Computational implementation

To solve the SPHM and SDHM formulations, we apply the static condensation
strategy to eliminate the velocity and pressure degrees-of-freedom at the element
level in favor of the Lagrange multiplier, generating a global system involving only
degrees of freedom of the multiplier. However, to employ this strategy, the local
problems must have a unique solution. In particular, the SPHM method does not
satisfy this requirement because the pressure field is only determined up to an
arbitrary additive constant. Therefore, to overcome this, we add a global unknown,
a constant-pressure mode associated with a null mean value of the pressure field over
each element K, to make the local problems solvable. To this, we introduce in the
SPHM system a new global variable p̄h ∈ P 0

h = {p̄ ∈ L2(Ω); p̄|K ∈ Q0(K), ∀K ∈
Th}, associated to constant-pressure mode, through the following consistent and
symmetric term(

p̄h −
∫
K

ph dx

)(
q̄h −

∫
K

qh dx

)
= 0, ∀[q̄h, qh] ∈ P 0

h ×Qlh. (5.1)

5.1. The local problems

The local problem associated with the SPHM method (3.13), adding the term (5.1)
to ensure the solvability of the local problems, can be written in the following
bilinear forms

aK([uh, ph], [vh, qh]) =

∫
K

Auh · vh dx +

∫
K

∇ph · vh dx +

∫
K

uh · ∇qh dx

+ δ1

∫
K

K(Auh +∇ph) · (Avh +∇qh) dx

+ δ2

∫
K

A div uh div vh dx +

∫
K

ph dx

∫
K

qh dx

+ βn

∫
∂K

(uh · nK) (vh · nK) ds, (5.2)

bK([λnh, p̄h], [vh, qh]) =−
∫
∂K

λnh qh ds− βn
∫
∂K

λnh(vh · nK) ds

− p̄h
∫
K

qh dx, (5.3)

and the linear functional

fK([vh, qh]) = δ2

∫
K

Af div vh dx−
∫
K

f qh dx. (5.4)

Then, the local problem can be presented as

aK([uh, ph], [vh, qh]) + bK([λnh, p̄h], [vh, qh]) = fK([vh, qh]). (5.5)

Considering AK and BK the matrices generated by the local bilinear operators
aK(·, ·) and bK(·, ·), respectively, and FK the vector originating from fK(·), we can
rewrite the local problem (5.5) in a matrix form

AKU + BKΛ = FK , ∀K ∈ Th. (5.6)

Given that AK is invertible, we solve the system (5.6) to obtain

U = A−1
K (FK −BKΛ), ∀K ∈ Th. (5.7)
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5.2. The global problem

From the system (3.13), we define the bilinear form

cK([λnh, p̄h], [µnh, q̄h]) = β

∫
∂K

λh µh ds+ p̄h q̄h.

Considering BT
K and CK the matrices given by the bilinear forms

bK([µnh, q̄h], [uh, ph]) and cK([λnh, p̄h], [µnh, q̄h], respectively, we can write the global
problem in a matrix form as follows∑

K∈Th

BT
KU +

∑
K∈Th

CKΛ = 0. (5.8)

Replacing (5.7) in (5.8) we obtain the global system in the multiplier only as∑
K∈Th

(CK −BT
KA−1

K BK)Λ = −
∑
K∈Th

BT
KA−1

K FK . (5.9)

After solving the global system (5.9), the vector U is obtained by post-processing
Λ, given by (5.9), in (5.7).

We follow the same steps above to apply the static condensation for the SDHM
method (3.17), but, in this case, it is not necessary to include the term (5.1). It is
important to emphasize that adding the term (5.1) to the SPHM method increases
the dimension of the global problem by one degree of freedom per element compared
with the SDHM method.

6. Numerical results

In this section are presented several numerical studies in two and three dimensions,
considering homogeneous and heterogeneous porous media, comparing the proposed
SPHM method with the SDHM method adopting three approaches:

• SPHM method using standard polynomial basis, as Lagrange or Legendre,
for the primal variables and discontinuous interpolations for the Lagrange
multipliers, named SPHM-D;

• SPHM method employing Raviart-Thomas spaces for the velocity field, the
standard polynomial basis for the pressure, and discontinuous interpolations
for the Lagrange multipliers, called SPHM-RT;

• SDHM method applying standard polynomial basis for the velocity and pres-
sure fields and continuous interpolations for the Lagrange multipliers, called
SDHM-C;

As shown, employing specific choices for the stabilization parameters, SPHM and
SDHM methods generate the same DG method (see Remark 3.2). Therefore, in
these numerical studies, the SDHM method with discontinuous multipliers is not
considered because the results are the same as those obtained by the SPHM method.
Moreover, a study about local conservation of the proposed hybrid methods is
presented and compared with the results of classical Raviart-Thomas conservative
spaces. Finally, we assess the computational cost associated with solving these for-
mulations and present the performance of two preconditioners: Jacobi and SSOR.
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The numerical results presented in this section have been carried out with a code
written in C++ with the support of the deal.II library [3]. All the tests were run
on a MacBook Pro with a 2.8 GHz Intel Core i7 Quad-Core and 16 GB of RAM. To
solve the linear system, we employ the Conjugate Gradient (CG) method combined
with SSOR preconditioner adopting a 10−9 tolerance, and the local problems are
solved by applying the Gauss-Jordan method to invert the matrix AK . Convergence
studies adopt square or cubic domains composed of quadrilateral or hexahedral
grids with 2n elements in each direction, where n = 2, 3, 4, 5, 6, with polynomial
orders k = l = 1, 2, 3. The least-squares stabilization parameters considered are
δ1 = −0.5 and δ2 = 0.5, and the interface stabilization parameter is β0 = 1.0
for SPHM-D and SDHM-C methods. On the other hand, the SPHM-RT method
is fixed δ1 = δ2 = 0 and β0 = 1.0/h3. To generate fairer comparisons between
methods that use continuous or discontinuous multipliers, the convergence results
are presented in terms of the global degrees of freedom associated with the Lagrange
multipliers (#dof), which are divided by the dimension d to obtain the correct slope
of the convergence rate. Moreover, the boundary conditions are imposed using the
analytical solutions of the numerical examples studied.

6.1. Homogeneous medium

In this section, the hybrid methods SPHM-D, SPHM-RT, and SDHM-C are tested in
two and three dimensions, adopting uniform meshes of quadrilateral or hexahedral
elements in homogeneous porous media.

6.1.1. Numerical test Case 1

The first numerical study is performed in a two-dimensional square domain Ω =
[−1, 1]2 with K = I adopting the analytical solution

p = 2 sin(πx) sin(πy). (6.1)

Figure 1 presents a h-convergence study of velocity, divergence, and pressure.
The results demonstrate convergence rates of O(hk+1) for all velocity, divergence,
and pressure approximations, except for the velocity field approximated with the
SDHM-C method using k = l = 2 (see Fig. 1(b)). The approximate velocity field
by the SDHM-C method proved more accurate than the other hybrid approaches
for k = l = 1 (see Fig. 1(a)). For biquadratic and bicubic elements, SPHM-RT
was the most accurate. The SDHM-C method is more accurate for divergence and
pressure fields than the SPHM-D and SPHM-RT methods.

6.1.2. Numerical test Case 2

The next convergence test is developed in a three-dimensional domain Ω = [−1, 1]3

considering isotropic hydraulic conductivity K = I and the following analytical
solution for the pressure field

p = 2 sin(πx) sin(πy) sin(πz). (6.2)

The results of this convergence study can be seen in Figure 2. In this three-
dimensional example, it is possible to verify optimal convergence rates for divergence
and pressure fields in all simulations performed. Again, the SDHM-C method is the
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Figure 1. Numerical test case 1: h-convergence studies of the velocity (top), divergence (middle), and
pressure (bottom) comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of
freedom.
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most accurate regarding the degrees of freedom for the divergence and pressure
approximations and bilinear elements for the velocity field. Moreover, For the ve-
locity field, the convergence rates obtained by the SPHM-D and SPHM-RT methods
tend to the optimal rate O(hk+1) as the mesh is refined, but the SDHM-C method
presents results with a sub-optimal rate employing k = l = 2.

1 1.5

log10(#dof)/3

-4

-2

0

2

lo
g 1

0
(‖
u
h
−
u
‖ 0
)

SPHM-D
SPHM-RT
SDHM-C

1
2

(a) k = l = 1 (velocity)

1 1.2 1.4 1.6 1.8 2

log10(#dof)/3

-4

-2

0

2

lo
g 1

0
(‖
u
h
−
u
‖ 0
)

SPHM-D
SPHM-RT
SDHM-C

1

3

(b) k = l = 2 (velocity)

1.2 1.4 1.6 1.8 2

log10(#dof)/3

-4

-2

0

2

lo
g 1

0
(‖
u
h
−
u
‖ 0
)

SPHM-D
SPHM-RT
SDHM-C

1

4

(c) k = l = 3 (velocity)

1 1.5

log10(#dof)/3

-4

-2

0

2

lo
g 1

0
(‖
d
iv
(u

h
−

u
)‖

0
)

SPHM-D
SPHM-RT
SDHM-C

1
2

(d) k = l = 1 (divergence)

1 1.2 1.4 1.6 1.8 2

log10(#dof)/3

-4

-2

0

2

lo
g 1

0
(‖
d
iv
(u

h
−

u
)‖

0
)

SPHM-D
SPHM-RT
SDHM-C

1

3

(e) k = l = 2 (divergence)

1.2 1.4 1.6 1.8 2

log10(#dof)/3

-4

-2

0

2

lo
g 1

0
(‖
d
iv
(u

h
−

u
)‖

0
)

SPHM-D
SPHM-RT
SDHM-C

1

4

(f) k = l = 3 (divergence)

1 1.5

log10(#dof)/3

-6

-4

-2

0

2

lo
g 1

0
(‖
p h

−
p‖

0
)

SPHM-D
SPHM-RT
SDHM-C

1
2

(g) k = l = 1 (pressure)

1 1.2 1.4 1.6 1.8 2

log10(#dof)/3

-6

-4

-2

0

2

lo
g 1

0
(‖
p h

−
p‖

0
)

SPHM-D
SPHM-RT
SDHM-C

1

3

(h) k = l = 2 (pressure)

1.2 1.4 1.6 1.8 2

log10(#dof)/3

-6

-4

-2

0

2

lo
g 1

0
(‖
p h

−
p‖

0
)

SPHM-D
SPHM-RT
SDHM-C

1

4

(i) k = l = 3 (pressure)

Figure 2. Numerical test case 2: h-convergence studies of the velocity (top), divergence (middle), and
pressure (bottom) comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of
freedom.
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6.2. Heterogeneous media

Here, we develop convergence studies considering heterogeneous media formed by
variable, isotropic, or anisotropic hydraulic conductivity in two and three dimen-
sions.

6.2.1. Numerical test Case 3

The next two-dimensional test case is inspired by the work of [20]. Supposing the
domain Ω = [−2, 2]2 formed by the union of Ω1 and Ω2, this test combines the
solution (6.1) in Ω1 = Ω \ Ω2 with the following pressure analytical solution in
Ω2 = [−1, 1]2

p = sin(πx) sin(πy), (6.3)

adopting K = I in Ω1 and in Ω2 an anisotropic hydraulic conductivity tensor given
by

K =

2 1

1 2

 .
The results of this study are summarized in Figure 3. Compared with the

results of the numerical test case presented in Section 6.1.1, it can be seen that the
introduction of an anisotropic distribution of hydraulic conductivity in a domain
region, despite generating velocity discontinuities, preserves the same convergence
rates but with lower accuracy.

6.2.2. Numerical test Case 4

In the three-dimensional case, a low hydraulic conductivity block with K = I is
considered in Ω1 = [−1/2, 1/2]3 and K = 100I in Ω2 = Ω \ Ω1, where Ω = [−1, 1]3.
For this test case, the pressure analytical solution is [1]

p = exp

((
x2 − 1

4

)2(
y2 − 1

4

)2(
z2 − 1

4

)2

− 1

)
. (6.4)

For this example, convergence rates and approximation errors are shown in Fig-
ure 4. It is possible to observe the same rates obtained in the test case considering
the homogeneous medium depicted in Figure 2. However, for the velocity and
pressure fields, the results in the heterogeneous medium show a decrease in the
accuracy of the SDHM-C hybrid methodology concerning the other adopted hybrid
approaches compared to the results in a homogeneous medium.

6.2.3. Numerical test Case 5

Let the square domain Ω = [−1, 1]2, the next convergence test aims to study the
effect of the following variable hydraulic conductivity adapted from [31]

K =

kxx 0

0 kyy

 , with

{
kxx = exp(x+ y),

kyy = exp(x− y)
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Figure 3. Numerical test case 3: h-convergence studies of the velocity (top), divergence (middle), and
pressure (bottom) comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of
freedom.
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Figure 4. Numerical test case 4: h-convergence studies of the velocity (top), divergence (middle), and
pressure (bottom) comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of
freedom.
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whose analytical solution is given by

p = sin(πx) cos(πy). (6.5)

The results presented in Figure 5 reproduce the convergence rates behavior of
the previous studies, in particular, the numerical test case 3 (Section 6.2.1). Again,
the optimal convergence rates are observed in all simulations for the pressure and
divergence approximated by the hybrid methods and for the velocity field calculated
by SPHM-D and SPHM-RT formulations. The velocity approximated by SDHM-C
presents a sub-optimal convergence rate for polynomial order k = l = 2 and, in this
case, is less accurate than SPHM-RT.

6.2.4. Numerical test Case 6

Similarly to the study developed in the previous subsection, but considering a three-
dimensional domain [−1, 1]3 and the following space-dependent hydraulic conduc-
tivity [31]

K =


kxx 0 0

0 kyy 0

0 0 kzz

 , with


kxx = exp(x+ y),

kyy = exp(y + z),

kzz = exp(x+ z)

whose analytical solution is given by

p = sin(πx) cos(πy) sin(πz), (6.6)

we present the convergence study in Figure 6. This study extends the problem
simulated in Section 6.2.3 for the three-dimensional case. In this sense, we verify
the similar results of the two-dimensional case, including a sub-optimal convergence
rate demonstrated by the SDHM-C adopting k = l = 2.

6.3. p-convergence study

In this section, a p-convergence study of the previous numerical test cases is devel-
oped and presented in Figure 7. This study compares the hybrid methods SPHM-D,
SPHM-RT, and SDHM-C for the velocity field regarding global degrees of freedom
associated with Lagrange multipliers. For the simulations, we adopt uniform meshes
with 24×24 quadrilateral elements and 23×23×23 hexahedral elements considering
polynomial approximations of the same order for velocity, pressure and multiplier
with k = l = 1, 2, 3, 4, 5, 6 for two-dimensional cases and k = l = 1, 2, 3, 4, 5 for three-
dimensional scenarios. In particular, for the SPHM-RT formulation, k = l = 0 is
also simulated. The results show that by fixing the interpolation polynomial degree,
the SPHM-RT method is more accurate than SPHM-D and SDHM-C for all poly-
nomial orders simulated, differing only by the number of degrees of freedom due to
the choice of the Lagrange multipliers. However, for the same number of degrees of
freedom of the global problem, the method that uses continuous multipliers presents
more accurate results.
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Figure 5. Numerical test case 5: h-convergence studies of the velocity (top), divergence (middle), and
pressure (bottom) comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of
freedom.
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Figure 6. Numerical test case 6: h-convergence studies of the velocity (top), divergence (middle), and
pressure (bottom) comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of
freedom (#dof).
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Figure 7. p-Convergence studies of the velocity field in two (top) and three (bottom) dimensions
comparing SPHM-D, SPHM-RT, and SDHM-C in L2-norm in terms of degrees of freedom.

6.4. Summary of convergence rates

Based on the numerical results of the h- and p-convergence, we summarize in Table 1
the convergence rates in L2 norm for velocity, divergence, and pressure obtained by
SPHM-D, SPHM-RT, and SDHM-C. This table highlights the optimal convergence
rates for all cases, except for the velocity field approximated by even polynomial
orders using the SDHM-C method, which converges at a sub-optimal rate.

Table 1. Summary of convergence rates in the L2 norm of numerical test cases assuming polynomial
orders k = l > 0 for SPHM-D and SDHM-C and k = l ≥ 0 for SPHM-RT.

Error SPHM-D SPHM-RT SDHM-C

‖u− uh‖0 k + 1 k + 1
k + 1 (odd-order)

k (even-order)

‖ div(u−uh)‖0 k + 1 k + 1 k + 1

‖p− ph‖0 k + 1 k + 1 k + 1
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6.5. Local mass conservation

A local mass conservation study of the developed hybrid methods is presented in
this section. This study aims to demonstrate the influence of parameter β0 on the
mass conservation of the SPHM-D and SPHM-RT methods in meshes composed
of quadrilateral uniform elements. As a reference for this study, we compare the
results obtained by the hybrid formulations with a classical formulation equipped by
the conforming Raviart-Thomas spaces [29]. Thus, considering the same problem
proposed in the Section 6.1 adopting meshes with 16×16 elements, we construct the
results presented in Figure 8, where the β0 parameter varies in the range between
10−2 and 1015, and the local mass conservation (lmc) is calculated by the expression

lmc =

√√√√∑
K∈Th

∑
e∈∂K

(∫
e

[[uh]] ds

)2

.

Figure 8 shows that as the value β0 is increased (βn → ∞), the hybrid methods
tend to become locally conservative (lmc→ 0). This behavior occurs much earlier
as the polynomial degree is increased. From a given β0 value, the lmc reaches a
plateau close to the result obtained with the classical Raviart-Thomas formulation.
It is also possible to observe that the SPHM-RT method is more conservative than
the SPHM-D for high values of stabilization parameter (β0 > 1010). In contrast,
in most of the β0 variation range, the SPHM-D method was more conservative.
For the SDHM-C method, checking the local conservation property is unnecessary
due to continuous interpolations for the Lagrange multiplier; in this case, lmc is
unaffected by the β0 parameter.
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Figure 8. Influence of the stabilization parameter β0 on the local mass conservation comparing SPHM-D
and SPHM-RT formulations.

6.6. Computational efficiency

This section studies the computational efficiency of the SPHM and SDHM-C meth-
ods. In this context, we examine the number of iterations for convergence of the
Conjugate Gradient method by comparing the Jacobi and SSOR preconditioners.
Furthermore, we explore the computational costs associated with solving SPHM
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and SDHM-C. For these studies, the three-dimensional problem related to numeri-
cal test case 6 was simulated for meshes of 24×24×24, 25×25×25 and 26×26×26

elements and polynomial orders k = l = 1, 2, 3. It is important to highlight that
we do not emphasize the approximation space of the SPHM method, as the results
obtained with SPHM-D and SPHM-RT are similar.

Table 2 presents the number of iterations required to solve the linear system
applying Jacobi and SSOR preconditioners for different mesh refinements and poly-
nomial orders using a tolerance of 10−9. In all results, the SSOR preconditioner
consistently demonstrated faster convergence, requiring fewer iterations than the
Jacobi preconditioner. Furthermore, as a result of employing discontinuous mul-
tipliers, the linear system produced by the SPHM method incorporates a greater
number of variables than the one derived from the SDHM-C method, consequently
requiring more iterations for convergence (see the values in parentheses in Figure
9).

Table 2. Number of iterations of the preconditioned conjugate gradient with the Jacobi and Symmetric
Successive Over-Relaxation (SSOR) preconditioners using a tolerance of 10−9 to SPHM and SDHM-C
methods for different mesh refinements and polynomial orders.

Mesh
Polynomial

order

Jacobi SSOR

SPHM SDHM-C SPHM SDHM-C

24 × 24 × 24

k = l = 1 237 57 78 30

k = l = 2 244 114 92 61

k = l = 3 268 156 110 87

25 × 25 × 25

k = l = 1
404 120 140 57

26 × 26 × 26 766 248 271 111

A three-dimensional computational cost study of the SPHM and SDHM-C hy-
brid methods using the computer and the linear system solver described at the
beginning of Section 6 is presented in Figure 9. This study is focused on the propor-
tion of execution time between three steps of the resolution algorithm (see Section
5), which are Assembly, Linear system, and Post-processing. The Assembly consid-
ers the local problems assembly, static condensation, and global problem assembly.
The Linear system is related to the solution of the global matrix, in which entries
are associated with the Lagrange multipliers’ degrees of freedom. Post-processing
accounts for the cost to find, given the multiplier approximation, the solution of the
interest variables in each element.

As expected, the results show that using continuous multipliers (SDHM-C) com-
pared to discontinuous multipliers (SPHM) presents a reduction in computational
cost for all simulated cases, and this cost reduction is proportionally preserved when
we increase the polynomial order (see Fig. 9(a)). Moreover, when we increase the
polynomial order, we can also observe that the cost to solve the linear system is
negligible compared to the steps of static condensation combined with global prob-
lem assembly. On the other hand, when we increase the mesh refinement (see Fig.
9(b)) using discontinuous multipliers, we see that the computational cost of solving
the linear system becomes higher than the other steps of the resolution algorithm.
This is because the mesh refinement generates more element faces, increasing the
global problem (see the degrees of freedom in parentheses in Fig. 9(b)). However,
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continuous multipliers preserve the low cost of solving the linear system, and, in
this case, the Assembly stage predominantly dominates the computational cost as
illustrated in Figure 9(b)). The post-processing step presents the lowest compu-
tational cost in all cases studied due to the storage of A−1

K , which allows a direct
substitution of the Lagrange multiplier solution in 5.7 to find velocity and pressure.

(a) polynomial order increase (b) mesh refinement increase

Figure 9. Three-dimensional computational cost of assembly, linear system solver, and post-processing
comparing SPHM and SDHM-C formulations increasing the polynomial order and mesh refinement.

7. Discussions

Convergence studies for the hybrid mixed method employing continuous multipli-
ers demonstrated optimal convergence rates for the primal scalar variable in all
simulated scenarios. Although this approach does not preserve local mass con-
servation, its computational cost is considerably reduced compared to methodolo-
gies that adopt discontinuous multipliers, as illustrated in Section 6.6. In this
sense, this methodology favors applications that show similarities with the model
problem studied in this work but have the scalar variable as the main one of the
model [21, 23, 27, 30]. Among the possible applications for this methodology, we
highlight the Helmholtz problem, the transport problem, the Cahn-Hilliard prob-
lem, and the cardiac monodomain problem, among others.

A hybrid method for the mixed Darcy problem employing continuous interpola-
tions for the Lagrange multiplier was proposed and analyzed in [16]. The stability
of this formulation is enforced by penalty terms defined on the interface of the
elements (similar to the term multiplied by β in this work). It presents optimal
convergence rates for pressure and sub-optimal for the velocity field. The SDHM-C
formulation proposed and analyzed in this work demonstrates an advance in this
direction. Since including least-squares terms provides optimal rates for the velocity
field when applying odd-order polynomial approximations.

The proposed SPHM formulation, due to the choice of the multiplier associated
with the normal velocity component, can be used to simulate coupled problems
where the interface conditions are compatible with this choice for the multiplier.
In this context, numerical approaches can be proposed using hybrid methods that
couple the SPHM method, using standard polynomial basis or Raviart-Thomas
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spaces, with other methodologies present in the literature for problems such as
Stokes/Darcy, Navier-Stokes/Darcy, and Helmholtz/elastic wave.

Although it was not the subject of this work, due to the use of broken spaces,
these methodologies are naturally indicated for the benefit of parallelism approaches
and adaptivity schemes for the simulation of large problems that demand high nu-
merical accuracy. Thus, using computational parallelism and mesh or polynomial
adaptivity could be easily handled by hybrid methods [31]. The application of paral-
lelism techniques, mainly using high-order polynomial interpolations, can overcome
the most computationally expensive step of the SDHM-C method. In this case,
as demonstrated in the computational efficiency results, assembling the linear sys-
tem associated with the global problem using high-order polynomials can dominate
the computational cost, as seen in Figure 9(a). In this context, the use of paral-
lelization strategies in the assembly stage can substantially reduce the problem’s
computational cost.

Regarding the variation of the β penalty parameter, it is important to emphasize
that the increase of βn to achieve local conservation can affect the conditionality
of the matrix associated with the linear system generated by the SPHM method.
In practice, what is noticed in the results presented in Section 6.5 is that there is
an increase in the number of iterations of the linear system solver, whereas, for the
bilinear case, it can be observed that the number of iterations from the lowest to
the highest β0, practically doubles. For the biquadratic case, they quadruple, and
so on. On the other hand, the SDHM method remains well-conditioned since taking
βp = 0 does not affect the matrix stability due to the least-squares terms.

8. Conclusion and remarks

Stabilized Primal and Dual hybrid formulations were presented and analyzed in this
work, where the principal difference between the proposed methods is the choice of
the Lagrange multipliers. The stability of these methods was improved by adding
least-square residuals of the governing equations, besides the classical stabilizations
associated with the Lagrange multipliers on the edge/face of the elements. The
analysis of the proposed methods started from the connection of these methods
with the same discontinuous Galerkin formulation. Thus, the same mathematical
tools proved both methods’ consistency, stability, continuity, and error estimates.

As summarized in Table 1, the convergence results demonstrated optimal con-
vergence rates for the pressure field and the divergence even in heterogeneous media
for all studied cases. For the velocity field, optimal convergence rates are verified
using discontinuous multipliers. Conversely, the convergence order is degraded for
continuous multipliers when even-order polynomials are adopted. Regarding the
number of degrees of freedom, continuous interpolations for the Lagrange multi-
plier showed more accurate results than discontinuous multipliers, especially for
pressure, divergence, and using bilinear approximations for the velocity field.

Numerical tests have ensured that the methods that employ discontinuous mul-
tipliers become locally conservative for specific limits of the edge/face stabilization
parameter. Moreover, a study of the computational cost in three dimensions showed
that assembling the linear system is the most expensive step in solving the methods
using high-order polynomials. However, by fixing the polynomial order and refining
the mesh, the computational cost to solve the linear system increases considerably,
exceeding the assembly cost. We also showed that, in general, the iterative CG
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method with the SSOR preconditioner required only half the iterations for con-
vergence of the linear system compared to the Jacobi preconditioner. Finally, as
discussed, the proposed methods can also be extended or adapted to other physical
applications, aiming to reduce the computational cost through continuous multipli-
ers or expand the possibilities of combining with other numerical methodologies to
treat coupled problems.
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