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1. Introduction

Several problems in diverse disciplines of applied sciences and engineering are non-
linear in nature. Fixed point theory studied in the framework of normed linear
or Banach spaces enjoys the linear structure of the ambient spaces. A nonlinear
setting for fixed theory is a metric space endowed with convex structure. It is well
known that the class of hyperbolic spaces are nonlinear in nature and they are
valuable among non-positive curved spaces. The class of hyperbolic spaces provides
a rich geometrical structure for various results with applications in signal process-
ing, wave propagation, robotics, telecommunications, system identification, biology,
heat transfer, traffic systems, viscoelasticity, graph theory, topology, multivalued
analysis, game theory and so on.

In this manuscript, we will consider the hyperbolic spaces studied of Kohlenbach
[28]. The concept of the hyperbolic space of Kohlenbach [28] is more restrictive
than that in [14] and more general than that in [47]. CAT(0) and Banach spaces
are contained in hyperbolic spaces. Also, the class of hyperbolic spaces includes
Cartesian product of Hilbert spaces, Hadamard manifolds, Hilbert ball endowed
with hyperbolic metric [15] and R-trees.

Definition 1.1. In the sense of Kohlenbach [28], a hyperbolic space (S, ρ,V) is a
metric space (S, ρ) together with a convexity mapping V : S2× [0, 1]→ S satisfying

(V1) ρ(w,V(u, v, h)) ≤ (1− h)ρ(w, u) + hρ(w, v);

(V2) ρ(V(u, v, h),V(u, v, η)) = |h− η|ρ(u, v);

(V3) V(u, v, h) = V(v, u, (1− h));

(V4) ρ(V(u,w, h),V(v, s, h)) ≤ (1− h)ρ(u, v) + hρ(w, s),

for all u, v, w, s ∈ S and h, η ∈ [0, 1]. A nonempty subset G of a hyperbolic space S
is termed convex, if V(u, v, h) ∈ G, for all u, v ∈ G and h ∈ [0, 1].

Suppose u, v ∈ S and h ∈ [0, 1]. The notation (1−h)u⊕hv is used for V(u, v, h).
In a convex metric space, the following is also true [20]: for any u, v ∈ S and
h ∈ [0, 1], ρ(u, (1 − h)u ⊕ hv) = hρ(u, v) and ρ(v, (1 − h)u ⊕ hv) = (1 − h)ρ(u, v).
Consequently, 1u⊕ 0v = u, 0u⊕ 1v = v and (1− h)u⊕ hu = hu⊕ (1− h)u = u.

If (S, ρ) is a metric space, then an element u ∈ S is said to be a fixed point of
the mapping M : S → S if Mu = u. We denote the set of all fixed points of M by
F (M) = {u ∈ S : Mu = u}. There exist several recent results in the literature on
complete metric spaces, see for example, [12, 27,55].

Definition 1.2. A mapping M : S → S is called:

(a) a contraction if there exists a constant k ∈ [0, 1) such that for all u, v ∈ S, we
have

ρ(Mu,Mv) ≤ kρ(u, v);

(b) an almost contraction if there exist some constants k ∈ [0, 1) and L ≥ 0 such
that for all u, v ∈ S, we have

ρ(Mu,Mv) ≤ kρ(u, v) + Lρ(u,Mu).

This class of mappings was introduced by Berinde [4] and has been studied
recently by several authors (see [35] and the references therein).
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Definition 1.3. A mapping M : S → S is called contractive-like if there exists
k ∈ [0, 1) and a strictly increasing continuous function Ψ : [0,∞) → [0,∞) with
Ψ(0) = 0 such that for all u, v ∈ S, we have

ρ(Mu,Mv) ≤ kρ(u, v) + Ψ(ρ(u,Mu)). (1.1)

This class of mappings was introduced by Imoru and Olantiwo [21]. The class
of contractive-like mappings includes the class of almost contraction mappings for
Ψ(u) = Lu. There are several recent results on the studies of this class of mappings
(see [13,23,35] and the references in them).

Definition 1.4. A mapping M : S → S is called:

(d) nonexpansive if for all u, v ∈ S, we have

ρ(Mu,Mv) ≤ ρ(u, v);

(e) quasi-nonexpansive if for all u ∈ S and p† ∈ F (M) 6= ∅, we have

ρ(Mu, p†) ≤ ρ(u, p†);

(f) Suzuki generalized nonexpansive or having the condition (C) if for all u, v ∈ S,
we have

1

2
ρ(u,Mu) ≤ ρ(u, v) ⇒ ρ(Mu,Mv) ≤ ρ(u, v).

This class of mappings was introduced in 2008 by Suzuki [52] as a generaliza-
tion of the class of nonexpansive mappings. The author studied the existence
and convergence analysis of such mappings.

In 2011, Garćıa-Falset et al. [13] introduced the notion of mappings having
the condition (E) which are generally weaker than the class of nonexpansive map-
pings and mappings having the condition (C), but stronger than the class of quasi-
nonexpansive mappings.

Definition 1.5. A mapping M : S → S is said to satisfy condition Eµ if there
exists µ ≥ 1 such that

ρ(u,Mv) ≤ µρ(u,Mu) + ρ(u, v), ∀u, v ∈ S. (1.2)

Now, M is said to satisfy the condition (E), whenever M satisfies the condition Eµ
for some µ ≥ 1.

In recent years, iterative methods have been considered as the main tool for fixed
point analysis of nonlinear operators. In the past two decades or so, several iterative
methods have been introduced for approximating fixed points of different classes of
mappings. Some of these prominent iterative methods are: Mann [31], Ishikawa [22],
Noor [32], S [2], Picard-S [17], Picard-Mann [25] and Abbas [1] iterative methods.

Very recently, Gursoy and Karakaya [17] introduced the Picard-S iterative
method in Banach spaces as follows:

u1 ∈ G,

wγ = (1− hγ)uγ + hγMuγ ,

vγ = (1− gγ)Muγ + gγMwγ ,

uγ+1 = Mvγ ,

γ ≥ 1, (1.3)
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where {gγ} and {hγ} are real sequences in (0,1). The authors [16] proved some fixed
point results of the iterative method (1.3) for contraction mappings. They further
showed that (1.3) converges faster than a number of existing iterative processes.

On the other hand, the notion of stability of iterative methods was initiated
by Ostrowski [45]. The results of Ostrowski [45] were extended by Harder [18],
Harder and Chicks [19] for contractive-type mappings. The results of Ostrowski
[45], Harder [18], Harder and Chicks [19] were later improved and generalized by
Roades [48], Osilike [40–44] and Berinde [3, 5].

In 2007, Timis [54] defined a more generalized and natural notion of stability
known as weak w2-stability.

Definition 1.6. [6] A sequence {uγ} is said to be equivalent to another {vγ}, if

ρ(uγ , vγ)→ 0, as γ → +∞.

Definition 1.7. [54] If (S, ρ) is a metric space and M : S → S, then for an
arbitrary u1 ∈M , {uγ} is the iterative algorithm defined by

uγ+1 = f(M,uγ), γ ≥ 0. (1.4)

Assume that uγ → p† as γ → +∞, for all p† ∈ F (M) and given a sequence {aγ} ⊂ S
which is equivalent to {uγ}, we get

lim
γ→+∞

ρ(aγ+1, f(M,aγ)) = 0 =⇒ lim
γ→+∞

aγ = p†,

then the iterative procedure (1.4) is said to be weak w2-stable with respect to M .

For recent results on weak w2-stability, the reader can refer to [33,34,36–39] and
the references therein.

Remark 1.1. The concept of stability studied in Definition 1.7 involves only one
mapping and as far as we know, there are no results on weak w2-stability of iterative
algorithms involving two contractive-like mappings in hyperbolic spaces.

Another important aspect of fixed point theory is the data dependence results
of iterative methods. In recent years, many valuable contributions to this regard
have been made by prominent authors (see [35]).

Remark 1.2. The existing data dependence results in the literature have been
achieved for iterative schemes with one mapping. To the best of our knowledge, the
concept of data dependence results of iterative schemes involving two contractive-
like mappings is yet to be studied in hyperbolic spaces.

The concept of iterative methods involving two mappings was initiated by Das
and Debata [8]. The problems dealing with approximation of common fixed points of
finitely many mappings play a significant role in applied mathematics, particularly
in the minimization problems and the theory of evolution equations [9–11,26,30].

To fill the gaps in Remark 1.1 and Remark 1.2, we introduce the hyperbolic
space version of Picard-S iterative method (1.3) which deals with two mappings as
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follows: 

u1 ∈ G,

wγ = (1− hγ)uγ ⊕ hγM2uγ ,

vγ = (1− gγ)M2uγ ⊕ gγM1wγ ,

uγ+1 = M1vγ ,

γ ≥ 1, (1.5)

where {gγ} and {hγ} are real sequences in (0,1).
The aim of this article is to prove the strong convergence of the mixed-type

Picard-S iterative method (1.5) for common fixed points of contractive-like map-
pings in hyperbolic spaces. We present some examples of contractive-like mappings
to test competence of the new iterative method with some existing iterative meth-
ods. We consider new notions of weak w2-stability and data dependence of iterative
methods. Precisely, we prove the stability and data dependence results using the
mixed-type Picard-S iterative scheme (1.5) for contractive-like mappings. Several
strong and 4-convergence theorems of (1.5) for approximations of common fixed
points of mappings satisfying condition (E) are also obtained. We provide nontriv-
ial examples to authenticate the mild conditions in convergence results and further
use one of the numerical examples to test the applicability and efficiency of (1.5).

2. Preliminaries

A hyperbolic space (S, ρ,V) is called uniformly convex [20], if for any k > 0 and
ε ∈ (0, 2], there exists ν ∈ (0, 1] such that for all u, v, p ∈ S,

ρ(
1

2
u⊕ 1

2
v, p) ≤ (1− ε)k,

provided ρ(u, p) ≤ k, ρ(v, p) ≤ k and ρ(u, v) ≥ εk. A mapping θ : (0,∞)× (0, 2]→
(0, 1] is said to be modulus of uniform convexity, provided that ν = θ(k, ε) for any
k > 0 and ε ∈ (0, 2]. We say that θ is monotone if for fixed ε, it decreases with k,
which implies that, θ(k2, ε) ≤ θ(k1, ε), for all k2 ≥ k1 > 0.

In 2007, Leustean [29] showed that if the modulus of uniform convexity ν(s, ε) =
ε2

8 quadratic in ε, then the CAT(0) space is a uniformly convex hyperbolic spaces.
It therefore means that the class of uniformly convex hyperbolic spaces properly
includes both CAT(0) space and a uniformly convex Banach space [20].

We now present the following concepts which will be useful in the definition of
M-convergence. Let (S, ρ) be a metric space and G be a nonempty subset of S. If
{uγ} is any sequence that is bounded in S. For any u ∈ S, we define:

• asymptotic radius of {uγ} at u as

ra({uγ}, u) = lim sup
γ→∞

d(uγ , u);

• asymptotic radius of {uγ} relative to G as

ra({uγ},G) = inf{ra({uγ}, u);u ∈ G};
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• asymptotic center of {uγ} relative to G as

AC({uγ},G) = {u ∈ G; ra({uγ}, u) = ra({uγ},G)}. (2.1)

Every bounded sequence has a unique asymptotic center with respect to each
closed convex subset in CAT(0) and Banach spaces. Suppose the asymptotic center
is considered with respect to S, then we simplify represent it by AC({uγ}).

In [29], Leustean showed that the above property is also true in a complete
uniformly convex hyperbolic space as follows:

Lemma 2.1. [29] Let ν be the monotone modulus of uniform convexity of the
complete uniformly convex hyperbolic (S, ρ,V). Then any bounded sequence {uγ}
in S, has a unique asymptotic center with respect to any nonempty closed convex
subset G of S.

Now, we give the following established results which will be used in the sequel.

Definition 2.1. If u is the unique asymptotic center of every subsequence {uγl}
of {uγ} in S, then {uγ} is said to be M-convergent to an element u in S. We write
M − lim

γ→∞
uγ = u and say u the M-limit of {uγ}.

Lemma 2.2. [24] Let ν be the monotone modulus of uniform convexity of a uni-
formly convex hyperbolic space S. Let u ∈ S and {hγ} be a sequence in [e, d]
such that e, d ∈ (0, 1). Assume that {uγ} and {vγ} are sequences in S with
lim sup
γ→+∞

ρ(uγ , u) ≤ c, lim sup
γ→+∞

ρ(vγ , u) ≤ c and lim
γ→+∞

ρ(hγuγ ⊕ (1 − hγ)vγ , u) = c

for some c ≥ 0, implies that lim
γ→+∞

ρ(uγ , vγ) = 0.

Lemma 2.3. [51] Let {dγ} be a nonnegative sequence. Assume there exists a
γ0 ∈ N such that for any γ ≥ γ0, the following inequality holds:

dγ+1 ≤ (1− ϕγ)dγ + ϕγφγ

where ϕγ ∈ (0, 1) for all γ ∈ N,
∑+∞
γ=0 ϕγ = +∞ and φγ ≥ 0 ∀γ ∈ N. Then the

following inequality is true:

0 ≤ lim sup
γ→+∞

dγ ≤ lim sup
γ→+∞

φγ .

Definition 2.2. [51] Let M , M̃ : S → S. Then M̃ is an approximate operator of
M if for any ε > 0, it follows that d(Mu, M̃u) ≤ ε holds for any u ∈ S.

Proposition 2.1. [13] Let M : S → S be a mapping which satisfies the condition
(E) with F (M) 6= ∅, then M is quasi-nonexpansive.

3. Convergence, weak w2 stability and data depen-
dence results

In this section, we show that the mixed-type Picard-S iterative method (1.5) con-
verges to the common fixed points of two mappings satisfying (1.1). The conver-
gence result will be useful in obtaining our data dependence and weak w2-stability
results for two mappings satisfying (1.1).

In the remaining part of this article, we use R to denote the set of all real
numbers.
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Theorem 3.1. Let (S, ρ,V) be a hyperbolic space, G be a nonempty closed convex
subset of S and M1,M2 : G → G be two contractive-like mappings with Ω = F (M1)∩
F (M2) 6= ∅. If {uγ} is the sequence defined by (1.5), then {uγ} converges to a point
in Ω.

Proof. Suppose p† ∈ F (M1) ∩ F (M2). Using (1.5), we obtain

ρ(wγ , p
†) = ρ(((1− hγ)uγ ⊕ hrM2uγ), p†)

≤ (1− hγ)ρ(uγ , p
†) + hγρ(M2uγ , p

†)

≤ (1− hγ)d(uγ , p
†) + hγkρ(uγ , p

†)

= (1− (1− k)hγ)ρ(uγ , p
†). (3.1)

Using (1.5) and (3.1), we have

ρ(vγ , p
†) = ρ(((1− gγ)M2uγ ⊕ gγM1wγ), p†)

≤ (1− gγ)ρ(M2uγ , p
†) + gγρ(M1wγ , p

†)

≤ k(1− gγ)ρ(uγ , p
†) + kgγρ(wγ , p

†)

≤ k(1− gγ)ρ(uγ , p
†) + kgγ(1− (1− k)hγ)ρ(uγ , p

†)

= k(1− (1− k)hγgγ)ρ(uγ , p
†). (3.2)

By (1.5) and (3.2), we obtain

ρ(uγ+1, p
†) = ρ(M1vγ , p

†)

≤ kρ(vγ , p
†)

≤ k2(1− (1− k)hγgγ)ρ(uγ , p
†). (3.3)

Since 0 ≤ k < 1 and 0 < hγ , gγ < 1, we have (1 − (1 − k)hγgγ) < 1. So, (3.3)
becomes

ρ(uγ+1, p
†) ≤ k2ρ(uγ , p

†). (3.4)

Inductively, we obtain

ρ(uγ+1, p
†) ≤ k2(γ+1)ρ(u0, p

†).

Since 0 ≤ k < 1, it follows that lim
γ→+∞

uγ = p†. This completes the proof.

Now, we authenticate the results in Theorem 3.1 with the following examples
of contractive-like mappings which will be used to test the efficiency of our new
method (1.5) with some well known algorithms.

Example 3.1. Let S = R2 and G = {u = (u1, u2) : (u1, u2) ∈ [0, 10]× [0, 10]} be a
subset of W with the taxi-cab metric

ρ((u1, u2), (v1, v2)) = |u1 − v1|+ |u2 − v2|,

for all (u1, u2) and (v1, v2) in G. Let M1,M2 : G → G be defined by

M1(u1, u2) =


(
u1

8 ,
u2

8

)
, if (u1, u2) ∈ [0, 5)× [0, 5),(

u1

16 ,
u1

16

)
, if (u1, u2) ∈ [5, 10]× [5, 10];



Mixed-type Picard-S iterative method 1309

and

M2(u1, u2) =


(
u1

6 ,
u2

6

)
, if (u1, u2) ∈ [0, 5)× [0, 5),(

u1

12 ,
u2

12

)
, if (u1, u2) ∈ [5, 10]× [5, 10].

Since every nonexpansive mapping is continuous, we know that M1 and M2 are not
nonexpansive mappings because of their discontinuity at 5 ∈ S and hence, they are
not contraction mappings.

Now, we show that M1 satisfies (1.1). For this, we define Ψ(u) = u
14 . It is easy

to see that the function Ψ is strictly increasing and continuous such that Ψ(0) = 0.
It is worthy to note that for all u = (u1, u2) ∈ [0, 5)× [0, 5), we have

ρ(u,M1u) = ρ
(

(u1, u2),
(u1

8
,
u2

8

))
=
∣∣∣u1 −

u1

8

∣∣∣+
∣∣∣u2 −

u2

8

∣∣∣
=

∣∣∣∣7u1

8

∣∣∣∣+

∣∣∣∣7u2

8

∣∣∣∣
and

Ψ(ρ(u,Mu)) =
∣∣∣u1

16

∣∣∣+
∣∣∣u2

16

∣∣∣ . (3.5)

Also, if u = (u1, u2) ∈ [5, 10]× [5, 10], then we have

ρ(u,M1u) = ρ
(

(u1, u2),
(u1

16
,
u2

16

))
=
∣∣∣u1 −

u1

16

∣∣∣+
∣∣∣u2 −

u2

16

∣∣∣
=

∣∣∣∣15u1

16

∣∣∣∣+

∣∣∣∣15u2

16

∣∣∣∣
and

Ψ(ρ(u,M1u)) =

∣∣∣∣15u1

224

∣∣∣∣+

∣∣∣∣15u2

224

∣∣∣∣ . (3.6)

Next, we verify the following cases:

Case A. If u = (u1, u2), v = (v1, v2) ∈ [0, 5)× [0, 5), then by (3.5), we have

ρ(M1u,M1v) = ρ
((u1

8
,
u2

8

)
,
(v1

8
,
v2

8

))
=
∣∣∣u1

8
− v1

8

∣∣∣+
∣∣∣u2

8
− v2

8

∣∣∣
=

1

8
|u1 − v1|+

1

8
|u2 − v2|

=
1

8
ρ((u1, v2), (u1, v2))

≤ 1

8
ρ(u, v) +

∣∣∣u1

16

∣∣∣+
∣∣∣u2

16

∣∣∣
=

1

8
ρ(u, v) + Ψ(ρ(u,M1u)).
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Case B. If u = (u1, u2), v = (v1, v2) ∈ [5, 10]× [5, 10], then by (3.6), we get

ρ(M1u,M1v) = ρ
((u1

16
,
u2

16

)
,
( v1

16
,
v2

12

))
=
∣∣∣u1

16
− v1

16

∣∣∣+
∣∣∣u2

16
− v2

16

∣∣∣
=

1

16
|u1 − v1|+

1

16
|u2 − v2|

=
1

16
ρ((u1, v2), (u1, v2))

≤ 1

8
ρ(u, v) +

∣∣∣∣15u1

224

∣∣∣∣+

∣∣∣∣15u2

224

∣∣∣∣
=

1

8
ρ(u, v) + ψ(ρ(u,M1u)).

Case C. If u = (u1, u2) ∈ [0, 5) × [0, 5) and v = (v1, v2) ∈ [5, 10] × [5, 10], then by
(3.5), we have

ρ(M1u,M1v) = ρ
((u1

8
,
u2

8

)
,
( v1

16
,
v2

16

))
=
∣∣∣u1

8
− v1

16

∣∣∣+
∣∣∣u2

8
− v2

16

∣∣∣
=
∣∣∣u1

16
+
u1

16
− v1

16

∣∣∣+
∣∣∣u2

16
+
u2

16
− v2

16

∣∣∣
≤
∣∣∣u1

16

∣∣∣+
∣∣∣u2

16

∣∣∣+
∣∣∣u1

16
− v1

16

∣∣∣+
∣∣∣u2

16
− v2

16

∣∣∣
=

1

16
(|u1 − v1|+ |u2 − v2|) + Ψ(ρ(u,M1u))

≤ 1

8
ρ((u1, u2), (v1, v2)) + Ψ(ρ(u,M1u))

=
1

8
ρ(u, v) + Ψ(ρ(u,M1u)).

Case D. If u = (u1, u2) ∈ [5, 10] × [5, 10] and v = (v1, v2) ∈ [0, 5) × [0, 5), then by
(3.5), we have

ρ(M1u,M1v) = ρ
((u1

16
,
u2

16

)
,
(v1

8
,
v2

8

))
=
∣∣∣u1

16
− v1

8

∣∣∣+
∣∣∣u2

16
− v2

8

∣∣∣
=
∣∣∣u1

8
− u1

16
− v1

8

∣∣∣+
∣∣∣u2

8
− u2

16
− v2

8

∣∣∣
≤
∣∣∣u1

16

∣∣∣+
∣∣∣u2

16

∣∣∣+
∣∣∣u1

8
− v1

8

∣∣∣+
∣∣∣u2

8
− v2

8

∣∣∣
=

1

8
(|u1 − v1|+ |u2 − v2|) + Ψ(ρ(u,M1u))

=
1

8
ρ((u1, u2), (v1, v2)) + Ψ(ρ(u,M1u)

=
1

8
ρ(u, v) + Ψ(ρ(u,M1u)).

Thus, from all the above cases, it is shown that M1 is a contractive-like mapping
with k = 1

8 . The fixed point of M1 is (0, 0). Using a similar approach above, we
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can show that M2 is a contractive-like mapping with k = 1
6 . The fixed point of M2

is (0, 0). Clearly, F (M1) ∩ F (M1)={(0,0)}.
For all γ ≥ 1, let hγ = hγ = tγ = 3

4 be the control parameters and (2, 4) be the
starting point. We use MATLAB R2015a to obtain the Table 1, Table 2, Figure
1 and Figure 2. It is not hard to see that Mixed-type Picard-S iterative converges
faster to the common fixed point (0,0) than Man, Ishikawa, S, Noor, Abbas and
Picard-Man iterative schemes.

Table 1. Convergence comparison of different iterative algorithms for contraction-like mappings.

uγ Mann Ishikawa S Mixed-Type Picard-S

g1 (2.000000, 4.000000) (2.000000, 4.000000) (2.000000, 4.000000) (2.000000, 4.000000)

g2 (0.687500, 1.375000) (0.564453, 1.128906) (0.126953, 0.253906) (0.019206, 0.038411)

g3 (0.236328, 0.472656) (0.159304, 0.318607) (0.008059, 0.016117) (0.000184, 0.000369)

g4 (0.081238, 0.162476) (0.044960, 0.089919) (0.000512, 0.001023) (0.000002, 0.000004)

g5 (0.027925, 0.055851) (0.012689, 0.025378) (0.000032, 0.000065) (0.000000, 0.000000)

g6 (0.009599, 0.019199) (0.003581, 0.007162) (0.000002, 0.000004) (0.000000, 0.000000)

g7 (0.003300, 0.006600) (0.001011, 0.002021) (0.000000, 0.000000) (0.000000, 0.000000)

g8 (0.001134, 0.002269) (0.000285, 0.000570) (0.000000, 0.000000) (0.000000, 0.000000)

g9 (0.000390, 0.000780) (0.000081, 0.000161) (0.000000, 0.000000) (0.000000, 0.000000)

g10 (0.000134, 0.000268) (0.000023, 0.000045) (0.000000, 0.000000) (0.000000, 0.000000)

g11 (0.000046, 0.000092) (0.000006, 0.000013) (0.000000, 0.000000) (0.000000, 0.000000)

g12 (0.000016, 0.000032) (0.000002, 0.000004) (0.000000, 0.000000) (0.000000, 0.000000)

g13 (0.000005, 0.000011) (0.000001, 0.000001) (0.000000, 0.000000) (0.000000, 0.000000)

g14 (0.000002, 0.000004) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g15 (0.000001, 0.000001) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g16 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

Table 2. Convergence comparison of different iterative algorithms for contraction-like mappings.

uγ Noor Abbas Picard-Man Mixed-Type Picard-S

g1 (2.000000, 4.000000) (2.000000, 4.000000) (2.000000, 4.000000) (2.000000, 4.000000)

g2 (0.552917, 1.105835) (0.068420, 0.136841) (0.085938, 0.171875) (0.019206, 0.038411)

g3 (0.152859, 0.305718) (0.002341, 0.004681) (0.003693, 0.007385) (0.000184, 0.000369)

g4 (0.042259, 0.084518) (0.000080, 0.000160) (0.000159, 0.000317) (0.000002, 0.000004)

g5 (0.011683, 0.023366) (0.000003, 0.000005) (0.000007, 0.000014) (0.000000, 0.000000)

g6 (0.003230, 0.006460) (0.000000, 0.000000) (0.000000, 0.000001) (0.000000, 0.000000)

g7 (0.000893, 0.001786) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g8 (0.000247, 0.000494) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g9 (0.000068, 0.000136) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g10 (0.000019, 0.000038) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g11 (0.000005, 0.000010) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g12 (0.000001, 0.000003) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g13 (0.000000, 0.000001) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

g14 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

Now, we give the hyperbolic space version of the definition of weak w2-stability
involving two mappings as follows:

Definition 3.1. Let (S, ρ,V) be a hyperbolic space, M1,M2 : S → S and for
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Figure 1. Graph corresponding to Table 1.

arbitrary u1 ∈ S, the sequence{uγ} be defined by

uγ+1 = f(Mi, uγ) (i = 1, 2), γ ≥ 1. (3.7)

Assume that uγ → p† as γ → +∞, for all p† ∈ Ω = F (M1) ∩ F (M2) and given any
sequence {xγ} ⊂ S that is equivalent to {uγ}, we obtain

lim
γ→+∞

ρ(xγ+1, f(Mi, xγ)) = 0 =⇒ lim
γ→+∞

xγ = p†,

then we say that (3.7) is weak w2-stable with respect to M1 and M2.

Theorem 3.2. Assume that all the conditions in Theorem 3.1 hold. Then, the
sequence {uγ} generated by (1.5) is weak w2-stable with respect to M1 and M2.

Proof. Let {uγ} be the sequence generated by (1.5) and {xγ} ⊂ G be a sequence
which is equivalent to {uγ}. We define {εγ} ∈ [0,∞) by

u1 ∈ G,

zγ = (1− hγ)xγ ⊕ hγM2xγ ,

yγ = (1− gγ)M2xγ ⊕ gγM1zγ ,

εm = ρ(xγ+1,M1yγ),

γ ≥ 1, (3.8)

where {gγ} and {hγ} are real sequences in (0, 1).
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Figure 2. Graph corresponding to Table 2.

Suppose lim
γ→∞

εγ = 0 and p† ∈ F (M1) ∩ F (M2). From (1.5) and (3.8), we have

ρ(wγ , zγ) = ρ((1− hγ)uγ ⊕ hγM2uγ , (1− hγ)xγ ⊕ hγM2xγ)

≤ (1− hγ)ρ(uγ , xγ) + hγρ(M2uγ ,M2xγ)

≤ (1− hγ)ρ(uγ , xγ) + hγkρ(uγ , xγ) + Ψ(ρ(uγ ,M2uγ))

= (1− (1− k)hγ)ρ(uγ , xγ) + Ψ(ρ(uγ ,M2uγ)). (3.9)

Since 0 ≤ k < 1 and 0 < hγ < 1, we have 1− (1− k)hγ < 1. So (3.9) becomes

ρ(wγ , zγ) ≤ ρ(uγ , xγ) + Ψ(ρ(uγ ,M2uγ)). (3.10)

By (1.5), (3.8) and (3.10), we have

ρ(vγ , yγ) = ρ((1− gγ)M2uγ ⊕ gγM1wγ , (1− gγ)M2xγ ⊕ gγM1zγ)

≤ (1− gγ)ρ(M2uγ ,M2xγ) + gγρ(M1wγ ,M1zγ) (3.11)

≤ (1− gγ)[kρ(uγ , xγ) + Ψ(ρ(uγ ,Muγ))]

+gγ [kρ(wγ , zγ) + Ψ(ρ(wγ ,Mwγ))]

≤ (1− gγ)[kρ(uγ , xγ) + Ψ(ρ(uγ ,Muγ))]

+gγ [kρ(uγ , xγ) + kΨ(ρ(uγ ,M2uγ)) + Ψ(ρ(wγ ,M1wγ))]

≤ kρ(uγ , xγ) + (1 + gγk)Ψ(ρ(uγ ,M2uγ)) + gγΨ(ρ(wγ ,M1wγ)).

From (1.5), (3.8), (3.10) and (3.12), we obtain

ρ(xγ+1, p
†) ≤ ρ(xγ+1, uγ+1) + ρ(uγ+1, p

†)
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≤ ρ(xγ+1,M1yγ) + ρ(M1yγ , uγ+1) + ρ(uγ+1, p
†)

= εγ + ρ(M1vγ ,M1yγ) + ρ(uγ+1, p
†)

≤ εγ + kρ(vγ , yγ) + Ψ(ρ(vγ ,M1vγ)) + ρ(uγ+1, p
†)

≤ εγ + k2ρ(uγ , xγ) + k(1 + gγk)Ψ(ρ(uγ ,M2uγ)) + kgγΨ(ρ(wγ ,M1wγ))

+Ψ(ρ(vγ ,M1vγ)) + ρ(uγ+1, p
†).

As established in Theorem 3.1, lim
γ→∞

ρ(uγ , p
†) = 0. Notice that

ρ(uγ ,M2uγ) ≤ ρ(uγ , p
†) + ρ(p†,M2uγ)

≤ ρ(uγ , p
†) + kρ(p†, uγ)

= (1 + k)ρ(uγ , p
†)→ 0 as γ →∞.

Using a similar approach above, one can show that lim
γ→+∞

ρ(wγ ,M1w) =

lim
γ→+∞

ρ(vγ ,M1vγ) = 0. Since Ψ is a strictly increasing continuous self function

defined on [0,+∞) such that Ψ(0) = 0, it follows that lim
γ→+∞

ρ(uγ ,M2uγ) =

lim
γ→+∞

Ψ(ρ(uγ ,M2uγ)) = Ψ( lim
γ→+∞

ρ(uγ ,M2uγ)) = 0. Similar argument holds for

others. Since lim
γ→+∞

ρ(uγ , p
†) = 0, we have lim

γ→+∞
ρ(uγ+1, p

†) = 0. Also, by the

equivalence of {uγ} and {xγ}, we have lim
γ→+∞

ρ(uγ , xγ) = 0.

Thus if we take the limit on both sides of (3.12), then we get

lim
γ→+∞

d(xγ , p
†) = 0.

This implies that (1.5) is weak w2-stable with respect to M1 and M2.
Next, we prove that the new method (1.5) is data dependent with respect to

both M1 and M2 satisfying (1.1).

Theorem 3.3. Let (S, ρ,V) be a hyperbolic space, G be a nonempty closed convex
subset of S and M1,M2 : G → G be two mappings satisfying (1.1). Let M̃1, M̃2 :
G → G be approximate operators of M1 and M2, respectively with ρ(M1u, M̃1u) ≤ ε
and ρ(M2u, M̃2u) ≤ ε for all u ∈ G. If {uγ} is the sequence generated by (1.5)
for two mappings M1 and M2 satisfying (1.1). Let an iterative sequence {ũγ} be
defined as follows: 

ũ1 ∈ G,

w̃γ = (1− hγ)ũγ ⊕ hγM̃ũγ ,

ṽγ = (1− gγ)M̃ũγ ⊕ gγM̃w̃γ ,

ũγ+1 = M̃ṽγ ,

γ ≥ 1, (3.12)

where {gγ} and {hγ} are real sequences in (0,1) such that 1
2 ≤ hγgγ . Let F (M1) ∩

F (M2) 6= ∅ and F (M̃1) ∩ F (M̃2) 6= ∅. Then for each p† ∈ F (M1) ∩ F (M2) and
p̃† ∈ F (M̃1) ∩ F (M̃2) with ũγ → p̃† as γ → +∞, we have

ρ(p†, p̃†) ≤ 7ε

1− k
,

where ε is a fixed number.
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Proof. From (1.5) and (3.12), we have

ρ(wγ , w̃γ) = ρ((1− hγ)uγ ⊕ hγM2uγ , (1− hγ)ũγ ⊕ hγM̃2ũγ)

≤ (1− hγ)ρ(uγ , ũγ) + hγρ(M2uγ , M̃2ũγ)

≤ (1− hγ)ρ(uγ , ũγ) + hγρ(M2uγ ,M2ũγ) + hγρ(M2ũγ , M̃2ũγ)

≤ (1− hγ)ρ(uγ , ũγ) + hγkρ(uγ , ũγ) + hγΨ(d(uγ ,M2uγ) + hγε

= (1− (1− k)hγ)ρ(uγ , ũγ) + hγΨ(ρ(uγ ,M2uγ)) + hγε. (3.13)

From (1.5) and (3.12), we have

ρ(vγ , ṽγ) = ρ((1− gγ)M2uγ ⊕ gγM1wγ , (1− gγ)M̃2ũγ ⊕ gγM̃1w̃γ)

≤ (1− gγ)ρ(M2uγ , M̃2ũγ) + gγρ(M1wγ , M̃1w̃γ) (3.14)

≤ (1− gγ)ρ(M2uγ ,M2ũγ) + (1− gγ)ρ(M2ũγ , M̃2ũγ)

+gγρ(M1wγ ,M1w̃γ) + hγρ(M1w̃γ , M̃1w̃γ)

≤ (1− gγ)kρ(uγ , ũγ) + (1− gγ)Ψ(d(uγ ,M2uγ) + (1− gγ)ε

+gγkρ(wγ , w̃γ) + gγΨ(d(wγ ,M1wγ) + gγε

≤ (1− gγ)kρ(uγ , ũγ) + Ψ(d(uγ ,M2uγ) + ε

+gγkρ(wγ , w̃γ) + gγΨ(d(wγ ,M1wγ) + gγε

≤ (1− gγ)kρ(uγ , ũγ) + Ψ(d(uγ ,M2uγ) + ε

+gγk[(1− (1− k)hγ)ρ(uγ , ũγ) + hγΨ(ρ(uγ ,M2uγ)) + hγε]

+gγΨ(d(wγ ,M1wγ) + gγε

≤ k(1− (1− k)hγgγ)ρ(uγ , ũγ) + Ψ(d(uγ ,M2uγ)) + ε

+kgγhγΨ(ρ(uγ ,M2uγ)) + kgγhγε+ gγΨ(d(wγ ,M1wγ) + gγε.

From (1.5), (3.12) and (3.15), we have

ρ(uγ+1, ũγ+1) = d(M1vγ , M̃1ṽγ) (3.15)

≤ ρ(M1vγ ,M1ṽγ) + ρ(M1ṽγ , M̃1ṽγ)

≤ kρ(vγ , ṽγ) + Ψ(ρ(vγ ,M1vγ)) + ε

≤ k2(1− (1− k)hγgγ)ρ(uγ , ũγ) + kΨ(d(uγ ,M2uγ)) + kε

+k2gγhγΨ(ρ(uγ ,M2uγ)) + k2gγhγε+ kgγΨ(d(wγ ,M1wγ)

+kgγε+ Ψ(ρ(vγ ,M1vγ)) + ε. (3.16)

Since 0 ≤ k < 1 and 0 < hγ , gγ < 1, (3.16) becomes

ρ(uγ+1, ũγ+1) ≤ (1− (1− k)hγgγ)ρ(uγ , ũγ) + Ψ(ρ(uγ ,M2uγ))

+gγhγΨ(ρ(uγ ,M2uγ)) + gγhγε+ Ψ(ρ(wγ ,M1wγ)

+Ψ(ρ(vγ ,M1vγ)) + 3ε. (3.17)

Since 1
2 ≤ hγgγ , ∀γ ≥ 1, 1 ≤ 2hγgγ , ∀γ ≥ 1, (3.17) becomes

ρ(uγ+1, ũγ+1)

≤ (1− (1− k)hγgγ)ρ(uγ , ũγ) + 2hγgγΨ(ρ(uγ ,M2uγ)) (3.18)

+gγhγΨ(ρ(uγ ,M2uγ)) + 2hγgγΨ(ρ(wγ ,M1wγ)
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+2hγgγΨ(ρ(vγ ,M1vγ)) + 7hγgγε

= (1− (1− k)hγgγ)ρ(uγ , ũγ) + (1− k)hγgγ

×
[

3Ψ(ρ(uγ ,M2uγ)) + 2Ψ(ρ(wγ ,M1wγ) + 2Ψ(ρ(vγ ,M1vγ)) + 7ε

(1− k)

]
.

Therefore,
dγ+1 = (1− ϕγ)dγ + ϕγφγ ,

where

dγ+1 = ρ(uγ+1, ũγ+1),

ϕγ = (1− k)hγgγ ∈ (0, 1),

φγ =

[
3Ψ(ρ(uγ ,M2uγ)) + 2Ψ(ρ(wγ ,M1wγ) + 2Ψ(ρ(vγ ,M1vγ)) + 7ε

(1− k)

]
≥ 0.

Again, following a similar argument in Theorem 3.2, we can show that

lim
γ→+∞

Ψ(ρ(uγ ,M2uγ)) = lim
γ→+∞

Ψ(ρ(wγ ,M1wγ)) = lim
γ→+∞

Ψ(ρ(vγ ,M1vγ)) = 0.

By the hypothesis ũγ → p̃† as γ → +∞ and Lemma 2.3, we obtain

ρ(p†, p̃†) ≤ 7ε

1− k
.

This completes the proof.

4. Convergence analysis for two mappings satisfy-
ing condition (E)

In part of the article, we prove 4-convergence and strong convergence results of
our new method (1.5) for common fixed points of two mappings enriched with the
condition (E). Throughout the remaining part of this article, let (S, ρ,V) be a
complete uniformly convex hyperbolic space with a monotone modulus of convexity
ν.

Theorem 4.1. Let G be a nonempty closed convex subset of S and M1,M2 : G → G
be two mappings enriched with the condition (E). If Ω = F (M1) ∩ F (M2) 6= ∅ and
{uγ} is the sequence generated by (3.12). Then {uγ} 4-converges to an element in
Ω.

Proof. We will divide the proof into three steps as follows:

Step a. Firstly, we prove that lim
γ→+∞

ρ(uγ , p
†) exists for each p† ∈ F (M1)∩F (M2).

By Proposition 2.1, we know that M1 and M2 are quasi-nonexpansive mappings.
Thus, for any p† ∈ F (M1) ∩ F (M2) and by (1.5), we obtain

ρ(wγ , p
†) = ρ((1− hγ)uγ ⊕ hγM2uγ , p

†)

≤ (1− hγ)ρ(uγ , p
†) + hγρ(M2uγ , p

†)

≤ (1− hγ)ρ(uγ , p
†) + hγρ(uγ , p

†)

= ρ(uγ , p
†). (4.1)
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Using (1.5) and (4.1), we have

ρ(vγ , p
†) = ρ((1− hγ)M2uγ ⊕ hγM1wγ , p

†)

≤ (1− hγ)ρ(M2uγ , p
†) + hγρ(M1wγ , p

†)

≤ (1− hγ)ρ(uγ , p
†) + hγρ(wγ , p

†)

≤ (1− hγ)ρ(uγ , p
†) + hγρ(uγ , p

†)

= ρ(uγ , p
†). (4.2)

By (1.5) and (4.2), we have

ρ(uγ+1, p
†) = ρ(M1vγ , p

†)

≤ ρ(vγ , p
†)

≤ ρ(uγ , p
†). (4.3)

This implies that the sequence {ρ(uγ , p
†)} is non-increasing and bounded below.

Thus lim
γ→+∞

d(uγ , p
†) exists for each p† ∈ F (M1) ∩ F (M2).

Step b. Next, we show that

lim
γ→+∞

ρ(uγ ,M1uγ) = lim
γ→+∞

ρ(uγ ,M2uγ) = 0. (4.4)

From Step a, it is shown that for all p† ∈ F (M1) ∩ F (M2), lim
γ→+∞

ρ(uγ , p
†) exists.

Let
lim

γ→+∞
d(uγ , p

†) = z ≥ 0. (4.5)

If z = 0, then we get

ρ(uγ ,M1uγ) ≤ ρ(uγ , p
†) + ρ(M1uγ , p

†)

≤ ρ(uγ , p
†) + ρ(uγ , p

†)

= 2ρ(uγ , p
†)→ 0 as γ → +∞.

Also,

ρ(uγ ,M2uγ) ≤ ρ(uγ , p
†) + ρ(M2uγ , p

†)

≤ ρ(uγ , p
†) + ρ(uγ , p

†)

= 2ρ(uγ , p
†)→ 0 as γ → +∞.

Hence lim
γ→+∞

ρ(uγ ,M1uγ) = 0 and lim
γ→+∞

ρ(uγ ,M2uγ) = 0.

Now, suppose that z > 0. By (4.1), (4.2) and (4.5), we have

lim sup
γ→+∞

ρ(wγ , p
†) ≤ lim sup

γ→+∞
ρ(uγ , p

†) = z (4.6)

and

lim sup
γ→+∞

ρ(vγ , p
†) ≤ lim sup

γ→+∞
ρ(uγ , p

†) = z. (4.7)

Since p† ∈ F (M1) ∩ F (M2) 6= ∅, we know that M1 and M2 are quasi-nonexpansive
mappings. Thus we have

lim sup
γ→+∞

ρ(M1wγ , p
†) ≤ lim sup

γ→+∞
ρ(wγ , p

†) ≤ z (4.8)
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and

lim sup
γ→+∞

ρ(M2uγ , p
†) ≤ lim sup

γ→+∞
ρ(uγ , p

†) = z. (4.9)

By (1.5), we have

ρ(uγ+1, p
†) = ρ(M1vγ , p

†)

≤ ρ(vγ , p
†).

Therefore,

z ≤ lim inf
γ→+∞

ρ(vγ , p
†). (4.10)

By (4.7) and (4.10), we have

z = lim
γ→+∞

ρ(vγ , p
†). (4.11)

From (1.5), we have

z = lim
γ→+∞

ρ(vγ , p
†) = lim

γ→+∞
ρ((1− gγ)M2uγ + gγM1wγ , p

†). (4.12)

From Lemma 2.2, (4.8) and (4.9) and (4.12), we obtain

lim
γ→+∞

ρ(M2uγ ,M1wγ) = 0. (4.13)

From (1.5), (4.11) and (4.13), we have

ρ(vγ , p
†) = ((1− gγ)M2uγ + gγM1wγ , p

†)

≤ ρ(M2uγ , p
†) + gγρ(M1wγ ,M2uγ),

which gives

z ≤ lim inf
γ→+∞

ρ(M2uγ , p
†). (4.14)

Using (4.9) and (4.14), we have

lim
k→+∞

z = ρ(M2uγ , p
†). (4.15)

Also,

ρ(M2uγ , p
†) ≤ ρ(M2uγ ,M1wγ) + ρ(M1wγ , p

†)

≤ ρ(M2uγ ,M1wγ) + ρ(wγ , p
†),

which implies that

z ≤ lim inf
γ→+∞

ρ(wγ , p
†). (4.16)

From (4.6) and (4.16), we obtain

z = lim
γ→+∞

ρ(wγ , p
†). (4.17)
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Finally, by (1.5), we have

lim
γ→+∞

z = ρ(wγ , p
†) = lim

γ→+∞
ρ((1− hγ)uγ ⊕ hγM2uγ , p

†). (4.18)

Now, due to (4.5), (4.9), (4.18) and Lemma 2.2, we have

lim
γ→+∞

ρ(uγ ,M2uγ) = 0. (4.19)

On the other hand, by (1.5) and (4.19), we have

ρ(wγ , uγ) = ρ((1− hγ)uγ ⊕ hγM2uγ , uγ) ≤ hγρ(uγ ,M2uγ)→ 0 as γ → +∞,
(4.20)

and

ρ(wγ ,M1wγ) = ρ((1− hγ)uγ ⊕ hγM2uγ ,M1uγ) (4.21)

≤ (1− hγ)ρ(uγ ,M1wγ) + hγρ(M2uγ ,M1uγ)

≤ (1− hγ)[ρ(uγ ,M2uγ) + ρ(M2uγ ,M1wγ)] + hγρ(M2uγ ,M1wγ).

Now, using (4.13) and (4.19), we have

lim
γ→+∞

ρ(wγ ,M1wγ) = 0. (4.22)

Since M1 satisfies condition (E), we obtain

ρ(uγ ,M1uγ) ≤ d(uγ , wγ) + ρ(wγ ,M1uk)

≤ ρ(uγ , wγ) + µρ(wγ ,M1wγ) + ρ(wγ , uγ)

≤ 2ρ(uγ , wγ) + µρ(wγ ,M1wγ).

By (4.19), (4.20) and (4.22), we have

lim
γ→+∞

ρ(uγ ,M1uγ) = 0. (4.23)

Hence lim
γ→+∞

ρ(uγ ,M1uγ) = lim
γ→+∞

ρ(uγ ,M2uγ) = 0.

Step c. Lastly, we will establish that the sequence {uγ} is 4-convergent to an
element in Ω. Since from Theorem 4.1 Step (a), the sequence {uγ} is bounded.
It follows that {uγ} has a M-convergent subsequence. It is left to show that there
exists a unique 4-limit to every 4-convergent subsequence of {uγ}. Proving by
contradiction, let {uγr} and {uγs} be two subsequences of {uγ} such that {uγr}
and {uγs} are M-convergent to u and v, respectively. Again, from Theorem 4.1
Step (b), we know that {uγr} is bounded and lim

r→+∞
d(M1uγr , uγr ) = 0. So we can

assume that u ∈ F (M1) ∩ F (M2). It follows that

ra({uγr},M1u) = lim sup
r→+∞

ρ(uγr ,M1u).

Since M1 satisfies condition (E), for some µ ≥ 1, we have

ra({uγr},M1u) = lim sup
r→+∞

d(uγr ,M1u)

≤ µ lim sup
r→+∞

ρ(M1uγr , uγr ) + lim sup
r→+∞

ρ(uγr , u)
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= ra({uγr}, u).

Since the asymptotic centre of {uγr} has a unique element, M1u = u.
Similarly, we can obtain M1v = v. Following the same approach, we can show

that M2 = u and M2v = v, respectively. The uniqueness of asymptotic of a sequence
ensures that

lim sup
γ→+∞

ρ(uγ , u) = lim sup
r→+∞

ρ(uγr , u) < lim sup
r→+∞

ρ(uγr , v)

= lim sup
γ→+∞

ρ(uγ , v) = lim sup
s→+∞

ρ(uγs , v)

< lim sup
s→∞

ρ(uγs , u) = lim sup
γ→+∞

ρ(uγ , u),

which is a contradiction, except u = v. This completes the proof.
Next, we establish the following strong convergence theorems.

Theorem 4.2. Let G be a nonempty closed convex subset of S and M1,M2 : G → G
be two mappings enriched with the condition (E). If Ω = F (M1) ∩ F (M2) 6= ∅ and
{uγ} is the sequence generated by (3.12). Then {uγ} converges strongly to a common
fixed point of M1 and M2 if and only if lim inf

γ→+∞
D(uγ , F (M1) ∩ F (M2)) = 0, where

D(uγ , F (M1) ∩ F (M2)) = inf{ρ(uγ , p
†) : p† ∈ F (M1) ∩ F (M2)}.

Proof. Suppose that lim inf
γ→+∞

D(uγ , F (M1) ∩ F (M2)) = 0. By Theorem 4.1 step

(a), we have lim inf
γ→+∞

D(uγ , F (M1) ∩ F (M2)) exists and so

lim
γ→+∞

ρ(uγ , F (M1) ∩ F (M2)) = 0. (4.24)

From (4.24), a subsequence {uγr} of the sequence {uγ} exists such that ρ(uγr , tr) ≤
1
2r for all r ≥ 1, where {tr} is a sequence in F (M1)∩F (M2). By Theorem 4.1 Step
(a), we obtain

ρ(uγr+1
, tr) ≤ ρ(uγr , tr) ≤

1

2r
. (4.25)

Using (4.25), we get

ρ(tr+1, tr) ≤ ρ(tr+1, uγr+1) + ρ(uγr+1 , tr) ≤
1

2r+1
+

1

2r
<

1

2r−1
.

This implies that {tγ} is a Cauchy sequence in G. We know that F (M1) ∩ F (M2)
is closed and {uγ} converges to some t ∈ F (M1) ∩ F (M2). Now,

ρ(uγr , t) ≤ ρ(uγr , tγ) + ρ(tγ , t).

Letting γ → +∞, we obtain that {uγr} converges strongly to t. By Theorem 4.1
Step (a), lim

γ→+∞
ρ(uγ , t) exists. Thus {uγ} converges strongly to t.

Two mappings M1,M2 : S → S are said to satisfy the condition (A) [50] if
there exists a nondecreasing function τ : [0,∞) → [0,∞) satisfying τ(0) = 0 and
τ(r) > 0 for all r ∈ (0,∞) such that ρ(u,M1u) ≥ τ(D(u, F (M1) ∩ F (M2))) or
ρ(u,M2u) ≥ τ(D(u, F (M1) ∩ F (M2))) for all u ∈ S, where D(u, F (M1) ∩ F (M2))
stands for the distance of u from F (M1) ∩ F (M2).
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Theorem 4.3. Let G be a nonempty closed convex subset of S and M1,M2 : G → G
be two mappings enriched with the condition (E). Let Ω = F (M1) ∩ F (M2) 6= ∅
and {uγ} be the sequence generated by (3.12). Suppose that M1 and M2 satisfy
condition (A). Then {uγ} converges strongly to a common fixed point of M1 and
M2.

Proof. By Theorem 4.1 Step (b), it follows that

lim inf
γ→+∞

ρ(M1uγ , uγ) = lim inf
γ→+∞

ρ(M2uγ , uγ) = 0. (4.26)

Since M1 and M2 fulfill condition (A), we get ρ(M1uγ , uγ) ≥ τ(D(uγ , F (M1) ∩
F (M2)) or ρ(M2uγ , uγ) ≥ τ(D(uγ , F (M1) ∩ F (M2)). From (4.26), we obtain

lim inf
γ→+∞

τ(D(uγ , ρ(M1uγ , uγ) ≥ τ(D(uγ , F (M1) ∩ F (M2)))) = 0

or
lim inf
γ→+∞

τ(D(uγ , ρ(M2uγ , uγ) ≥ τ(D(uγ , F (M1) ∩ F (M2)))) = 0.

Again, since the function τ : [0,+∞)→ [0,+∞) is nondecreasing such that %(0) = 0
and τ(r) > 0 for all r ∈ (0,+∞), we have

lim inf
γ→+∞

D(uγ , ρ(M1uγ , uγ) ≥ τ(D(uγ , F (M1) ∩ F (M2))) = 0

or
lim inf
γ→+∞

D(uγ , ρ(M2uγ , uγ) ≥ τ(D(uγ , F (M1) ∩ F (M2))) = 0.

Hence all the assumptions of Theorem 4.2 are fulfilled. Therefore, {uγ} converges
strongly to a common fixed point of F (M1) and F (M2).

Now, we present some nontrivial example with nonlinear convex structure.

Example 4.1. Let S = {(u1, u2, u3) ∈ R3 : u1 > 0, u2 > 0, u3 > 0}. If u =
(u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) ∈ S and δ, ξ, µ ∈ [0, 1] such that
δ + ξ + µ = 1, we define a mapping V : S × S × S × [0, 1]× [0, 1]× [0, 1]→ S by

V(u, v, w, δ, ξ, µ) = (δu1 + ξu2 + µu3, δv1 + ξv2 + µv3, δw1 + ξw2 + µw3).

Also, let ρ : S × S → [0,+∞) be defined by

ρ(u, v) = |u1v1 + u2v2 + u3v3|.

Then (S, ρ,V) is not a normed space, but it is a convex metric space [49].
Now, let G = [ 1

4 , 3]× [ 1
4 , 3]× [ 1

4 , 3] ∈ S and M : G → G be a mapping defined by

M(u1, u2) =

 (1, 1, 1), if u 6= ( 8
5 ,

8
5 ,

8
5 ),(

2
3 ,

2
3 ,

2
3

)
, if u = ( 8

5 ,
8
5 ,

8
5 ).

Then M satisfies condition (E), but it does not satisfy condition (C).
Firstly, we show that M does not satisfy condition (C) for u = (u1, u2, u3) =

( 8
5 ,

8
5 ,

8
5 ) and v = (v1, v2, v3) = (1

3 ,
1
3 ,

1
3 ).

1

2
ρ(u,Mu) =

1

2

∣∣∣∣16

15
+

16

15
+

16

15

∣∣∣∣ =
48

30
≤ 24

15
=

∣∣∣∣ 8

15
+

8

15
+

8

15

∣∣∣∣ = ρ(u, v).
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But

ρ(Mu,Mv) =

∣∣∣∣23 +
2

3
+

2

3

∣∣∣∣ =
6

2
>

24

15
= ρ(u, v). (4.27)

Therefore, M does not satisfy condition (C).
Next, we show that M satisfies condition (E) for µ = 3. We consider the

following cases:

Case I. If u = (u1, u2, u3) 6= ( 8
5 ,

8
5 ,

8
5 ) and v = (v1, v2, v3) = ( 8

5 ,
8
5 ,

8
5 ), then we have

3ρ(u,Mu) + ρ(u, v) = 3|u1 + u2 + u3|+
∣∣∣∣85u1 +

8

5
u2 +

8

5
u3

∣∣∣∣
>

∣∣∣∣23u1 +
2

3
u2 +

2

3
u3

∣∣∣∣ = ρ(u,Mv).

Case II. If u = (u1, u2, u3) = ( 8
5 ,

8
5 ,

8
5 ) and v = (v1, v2, v3) 6= ( 8

5 ,
8
5 ,

8
5 ), then we

have

3ρ(u,Mu) + ρ(u, v) = 3

∣∣∣∣16

15
+

16

15
+

16

15

∣∣∣∣+

∣∣∣∣85v1 +
8

5
v2 +

8

5
v3

∣∣∣∣
=

144

15
+

∣∣∣∣85v1 +
8

5
v2 +

8

5
v3

∣∣∣∣
>

24

5
=

∣∣∣∣85 +
8

5
+

8

5

∣∣∣∣ = ρ(u,Mv).

Case III. If u = (u1, u2, u3) = ( 8
5 ,

8
5 ,

8
5 ) and v = (v1, v2, v3) = ( 8

5 ,
8
5 ,

8
5 ), then we

have

3ρ(u,Mu) + ρ(u, v) = 3

∣∣∣∣16

15
+

16

15
+

16

15

∣∣∣∣+ ρ(u, v) =
144

15
+ ρ(u, v)

>

∣∣∣∣16

15
+

16

15
+

16

15

∣∣∣∣ =
48

15
= ρ(u,Mv).

Case IV. If u = (u1, u2, u3) 6= ( 7
5 ,

7
5 ,

7
5 ) and v = (v1, v2, v3) 6= (7

5 ,
7
5 ,

7
5 ), then we

have

3ρ(u,Mu) + ρ(u, v) = 3|u1 + u2 + u3|+ |u1v1 + u2v2 + u3v3|
> |u1 + u2 + u3| = ρ(u,Mv).

Therefore, M satisfies condition (E) for µ = 3. The fixed point of M is (1, 1, 1).

5. A numerical result

In this section, we compare the applicability and efficiency of the new iterative
method (1.5) with some well known iterative processes in the current literature.
We will present some nontrivial numerical examples which will be used to show
that our new method converges faster to the common fixed point of two mappings
enriched with condition (E) than several other iterative methods.



Mixed-type Picard-S iterative method 1323

Example 5.1. Let S = R2 and G = {g = (g1, g2) : (g1, g2) ∈ [0, 1] × [0, 1]} be a
subset of S with the taxi-cap metric

ρ((u1, u2), (v1, v2)) = |u1 − v1|+ |u2 − v2|,

for all (u1, u2) and (v1, v2) in G. Let M1,M2 : G → G be defined by

M1(u1, u2) =

 (0, 0) , if (u1, u2) ∈ [0, 1
26 )× [0, 1

6 ),(
7u1

8 , 7u2

8

)
, if (u1, u2) ∈ [ 1

26 , 1]× [ 1
6 , 1],

M2(u1, u2) =

 (0, 0) , if (u1, u2) ∈ [0, 1
26 )× [0, 1

6 ),(
4u1

5 , 4u2

5

)
, if (u1, u2) ∈ [ 1

26 , 1]× [ 1
6 , 1].

Now, if u = ( 1
26 ,

1
6 ) and v = ( 1

50 ,
1
23 ), then we have M1u = ( 7

208 ,
7
48 ) and M1v =

(0, 0). Thus

1

2
ρ(u,M1u) =

1

2

(∣∣∣∣ 1

26
− 7

208

∣∣∣∣+

∣∣∣∣16 − 7

48

∣∣∣∣) =
1

78

<
6353

44850
=

∣∣∣∣ 1

26
− 1

50

∣∣∣∣+

∣∣∣∣16 − 1

23

∣∣∣∣ = ρ(u, v),

but

ρ(M1u,M1v) =
1792

9984
>

6353

44850
= ρ(u, v). (5.1)

Thus M1 does not satisfy condition (C).
We now show that M1 satisfies condition (E) for different considered cases as

follows:

Case 1. When u = (u1, u2), v = (v1, v2) ∈ [0, 1
26 )× [0, 1

6 ), we have

ρ(u,M1v) = |u1|+ |u2| ≤ 8(|u1|+ |u2|)
≤ 8(|u1|+ |u2|) + |u1 − v1|+ |u2 − v2|
= 8ρ(u,M1u) + ρ(u, v).

Case 2. When u = (u1, u2), v = (v1, v2) ∈ [ 1
26 , 1]× [ 1

6 , 1], we have

ρ(u,M1v) = |u−M1u|+ |M1u−M1v|

= |u−M1u|+
7

8
(|u1 − v1|+ |u2 − v2|)

≤ |u−M1u|+ (|u1 − v1|+ |u2 − v2|)
≤ 8|u−M1u|+ (|u1 − v1|+ |u2 − v2|)
= 8ρ(u,M1u) + ρ(u, v).

Case 3. When u = (u1, u2) ∈ [0, 1
26 ) × [0, 1

6 ) and v = (v1, v2) ∈ [ 1
26 , 1] × [ 1

6 , 1], we
have

ρ(u,M1v) =

∣∣∣∣u1 −
7v1

8

∣∣∣∣+

∣∣∣∣u2 −
7v2

8

∣∣∣∣
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=

∣∣∣∣8u1 − 7v1

8

∣∣∣∣+

∣∣∣∣8u2 − 7v2

8

∣∣∣∣
=

∣∣∣∣u1 + 7u1 − 7v1

8

∣∣∣∣+

∣∣∣∣u2 + 7u2 − 7v2

8

∣∣∣∣
≤ 1

8
(|u1|+ |u2|) +

7

8
(|u1 − v1|+ |u2 − v2|)

≤ |u1|+ |u2|+ (|u1 − v1|+ |u2 − v2|)
≤ 8(|u1|+ |u2|) + (|u1 − v1|+ |u2 − v2|)
= 8ρ(u,M1u) + ρ(u, v).

Case 4. When u = (u1, u2) ∈ [ 1
26 , 1] × [ 1

6 , 1] and v = (v1, v2) ∈ [0, 1
26 ) × [0, 1

6 ), we
have

ρ(u,M1v) = |u1|+ |u2| = 8
(∣∣∣u1

8

∣∣∣+
∣∣∣u2

8

∣∣∣)
= 8

(∣∣∣∣u1 −
7u1

8

∣∣∣∣+

∣∣∣∣u2 −
7u2

8

∣∣∣∣)
≤ 8

(∣∣∣∣u1 −
7u1

8

∣∣∣∣+

∣∣∣∣u2 −
7u2

8

∣∣∣∣)+ |u1 − v1|+ |u2 − v2|

= 8ρ(u,M1u) + ρ(u, v).

From the above cases, it is clear that M1 satisfies (1.2) with µ = 8. Hence, M1 is a
mapping enriched with the condition (E) for µ = 8. The fixed point of M1 is (0, 0).

Following a similar approach, it can be proved that M2 is a mapping enriched
with condition (E) for µ = 5, but it does not satisfy condition (C) for u = ( 1

26 ,
1
6 )

and v = ( 1
50 ,

1
23 ). The fixed point of M2 is (0, 0).

Observe that F (M1) ∩ F (M2) = {(0, 0)}. Let hγ = hγ = tγ = 1
2 , for all γ ≥ 1

be the control parameters and (0.3, 0.7) be the starting point. We use MATLAB
R2015a to obtain Table 3, Table 4, Figure 3 and Figure 4. Clearly, the mixed-
type Picard-S iterative converges faster to the common fixed point (0,0) than Man,
Ishikawa, S, Noor, Abbas and Picard-Man iterative schemes.

Table 3. Convergence comparison of different iterative algorithms for contraction-like mappings.

uγ Mann Ishikawa S Mixed-Type Picard-S
u1 (0.300000, 0.700000) (0.300000, 0.700000) (0.300000, 0.700000) (0.300000, 0.700000)
u2 (0.281250, 0.656250) (0.273047, 0.637109) (0.254297, 0.593359) (0.195000, 0.455000)
u3 (0.263672, 0.615234) (0.248515, 0.579869) (0.215556, 0.502965) (0.126750, 0.295750)
u4 (0.247192, 0.576782) (0.226188, 0.527771) (0.182718, 0.426341) (0.082388, 0.192237)
u5 (0.231743, 0.540733) (0.205866, 0.480354) (0.154882, 0.361391) (0.053552, 0.124954)
u6 (0.217259, 0.506938) (0.187370, 0.437198) (0.131287, 0.306335) (0.034809, 0.081220)
u7 (0.203680, 0.475254) (0.170536, 0.397918) (0.111286, 0.259667) (0.022626, 0.052793)
u8 (0.190950, 0.445551) (0.155215, 0.362168) (0.094332, 0.220108) (0.014707, 0.034316)
u9 (0.179016, 0.417704) (0.141270, 0.329629) (0.079961, 0.186576) (0.009559, 0.022305)
u10 (0.167827, 0.391597) (0.128577, 0.300014) (0.067780, 0.158152) (0.006214, 0.014498)
u11 (0.157338, 0.367122) (0.117026, 0.273060) (0.057454, 0.134059) (0.004039, 0.009424)
u12 (0.147505, 0.344177) (0.106512, 0.248527) (0.048701, 0.113636) (0.002625, 0.006126)
u13 (0.138285, 0.322666) (0.096942, 0.226198) (0.041282, 0.096324) (0.001706, 0.003982)
u14 (0.129643, 0.302499) (0.088233, 0.205876) (0.034993, 0.081650) (0.001109, 0.002588)
u15 (0.121540, 0.283593) (0.080305, 0.187379) (0.029662, 0.069211) (0.000721, 0.001682)
u16 (0.113944, 0.265869) (0.073090, 0.170544) (0.025143, 0.058667) (0.000469, 0.001093)
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Figure 3. Graph corresponding to Table 3.

Table 4. Convergence comparison of different iterative algorithms for contraction-like mappings.

uγ Noor Abbas Picard-Man Mixed-Type Picard-S

u1 (0.300000, 0.700000) (0.300000, 0.700000) (0.300000, 0.700000) (0.300000, 0.700000)

u2 (0.269458, 0.628735) (0.234302, 0.546704) (0.246094, 0.574219) (0.195000, 0.455000)

u3 (0.242025, 0.564726) (0.182991, 0.426979) (0.201874, 0.471039) (0.126750, 0.295750)

u4 (0.217386, 0.507233) (0.142917, 0.333473) (0.165600, 0.386399) (0.082388, 0.192237)

u5 (0.195254, 0.455593) (0.111619, 0.260445) (0.135843, 0.316968) (0.053552, 0.124954)

u6 (0.175376, 0.409211) (0.087175, 0.203409) (0.111434, 0.260013) (0.034809, 0.081220)

u7 (0.157522, 0.367551) (0.068084, 0.158863) (0.091411, 0.213292) (0.022626, 0.052793)

u8 (0.141485, 0.330131) (0.053174, 0.124073) (0.074985, 0.174966) (0.014707, 0.034316)

u9 (0.127081, 0.296522) (0.041529, 0.096902) (0.061511, 0.143527) (0.009559, 0.022305)

u10 (0.114143, 0.266334) (0.032435, 0.075681) (0.050459, 0.117737) (0.006214, 0.014498)

u11 (0.102523, 0.239219) (0.025332, 0.059107) (0.041392, 0.096581) (0.004039, 0.009424)

u12 (0.092085, 0.214865) (0.019784, 0.046163) (0.033954, 0.079227) (0.002625, 0.006126)

u13 (0.082710, 0.192991) (0.015452, 0.036054) (0.027853, 0.064991) (0.001706, 0.003982)

u14 (0.074290, 0.173343) (0.012068, 0.028158) (0.022848, 0.053313) (0.001109, 0.002588)

u15 (0.066727, 0.155695) (0.009425, 0.021992) (0.018743, 0.043733) (0.000721, 0.001682)

u16 (0.059933, 0.139845) (0.007361, 0.017176) (0.015375, 0.035875) (0.000469, 0.001093)
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Figure 4. Graph corresponding to Table 4.



1326 Ofem, Abuchu, Ugwunnadi, Narain, Aydi & Park

6. Conclusion

(i) In this article, we have introduced the mixed-type Picard-S iterative method
(1.5) in hyperbolic spaces.

(ii) We have proved that our new iterative algorithm converges to the common
fixed points of two contractive-like mappings. The analytical convergence
results are supported with numerical examples. These examples are used
to show that our new method converges faster than many existing iterative
methods.

(iii) We have initiated and studied new notions of data dependence and weak w2-
stability results of iterative algorithm with two mappings.

(iv) Several strong and 4-convergence theorems have proved for common fixed
points of mappings enriched with condition (E).

(v) We provided several novel and nontrivial examples of mappings enriched with
condition (E). Further, we tested the competence of new iterative method
with several existing methods for common fixed pints of mappings satisfying
condition (E).

(vi) Our results are also valid in CAT(0) and linear spaces.
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On a four-step iterative algorithm and its application to delay integral equa-
tions in hyperbolic spaces, Rend. Circ. Mat. Palermo Ser. 2 (in press). DOI:
10.1007/s12215-023-00908-1.

[35] A. E. Ofem and D. I. Igbokwe, A new faster four step iterative algorithm for
Suzuki generalized nonexpansive mappings with an application, Adv. Theory
Nonlinear Anal. Appl., 2021, 5(3), 482–506. DOI: 10.31197/atnaa.869046.a.
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