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1. Introduction

The present paper aims to prove the existence of two positive non-trivial solutions
to the following problem

La(x)
p,q (u) + V (x)

(
|u|p−2u+ a (x) |u|q−2u

)
= g (x) |u|−β−1u+ η

(∫
Ω

H(y, u(y))

|x− y|µ
dy

)
h(x, u) in x ∈ Ω,

u = 0 in x ∈ ∂Ω.

(1.1)

Where Ω ⊆ RN is a smooth bounded domain, La(x)
p,q (u) =

−div
(
|∇u|p−2∇u+ a (x) |∇u|q−2∇u

)
, 0 < µ < N, 1 < p < q < 2r < p∗ =

Np
N−p , 0 < β < 1, a(.) ∈ L∞ (Ω) with min

x∈Ω
a (x) = a0 > 0 and we consider

h : Ω × R → R+ ∪ {0} a continuous function with an odd behavior concerning
the second variable. This function fulfills the subsequent set of assumptions:

(h1) h is a positive homogeneous of degree r − 1, that is,

h (x, tu) = tr−1h (x, u) for all (x, u) ∈ Ω× R.
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(h2) There exists a positive constant C such that

|h (x, t) | ≤ C|t|r for any t ∈ R.

(H1) H is homogeneous of degree r, that is, H (x, tu) = trH (x, u) (t > 0) for
all (x, u) ∈ Ω × R, and h leads to the so-called Euler identity u h (x, u) =
r H (x, u).
The positive continuous function V : Ω→ R satisfies

(V1)
0 < inf

x∈RN
V (x) = V0 < V∞ = lim inf

|x|→∞
V (x) <∞. (1.2)

The Choquard equation has been included in a variety of physical models. For
example, the polaron model of Fröhlich and Pekar postulates that free electrons in
an ionic lattice interact either with phonons associated with lattice deformations
or with the polarization it creates on the medium (interaction of an electron with
its hole) [10, 25]. Also, to simulate a plasma consisting of a single component, Ph.
Choquard developed the Choquard equation in 1976 [15]. The following equation,

−∆u+ V (x)u =

(∫
RN

|u (y) |p

|x− y|µ
dy

)
|u|p−2u in RN ,

known in this context as the Schrödinger-Newton equation, is used as a model
for self-gravitating matter in the work of Moroz-Penrose-Tod [22]. An appropriate
guide to the Choquard-type equation was published in 2017 by Moroz-Van Schaftin-
gen [23], which the reader can consult for more information on applications of the
Choquard term.

This wide range of practical applications has prompted the publication of several
existing results for various equations incorporating choquard terms over the past few
decades. We mention the relevant works of Su-Liu [26], Zhang-Meng-He [30], Gao-
Moroz-Yang-Zhao [11], Anthal-Giacomoni- Sreenadh [3], Yao-Sun-fang Wu [28],
Maia-Pellacci-Schiera [21], Liu-Liao-Pan-Tang [17], Cingolani-Gallo-Tanaka [6], and
Zuo-Choudhuri-Repovš [31].

Following that, we turn our attention to recent research focusing on Choquard
double-phase problems within the realm of mathematics. Arora, Fiscella, Mukher-
jee, and Winkert [4] delved into the examination of ground state solutions’ existence
for quasilinear elliptic equations governed by the double-phase operator, which in-
corporates a Choquard term. Exploring the singularity-perturbed double-phase
problem with a nonlocal Choquard reaction, Zhang, Zhang, and Rădulescu [29] in-
vestigated the multiplicity and concentration phenomena of positive solutions using
variational and topological methods. Additional insights can be found in the work
of Xie, Wang, and Zhang [27] and the associated references. For double-phase prob-
lems devoid of Choquard terms, we highlight the contributions of Aberqi, Bensli-
mane, Elmassoudi, and Ragusa [1], Aberqi, Benslimane, and Knifda [2], Bensli-
mane, Aberqi, and Bennouna [5], Ge and Yuan [13], Liu and Winkert [20], Ge and
Pucci [12], Liu and Dai [18], Crespo, Blanco, Papageorgiou, and Winkert [8], as
well as Liu, Dai, Papageorgiou, and Winkert [19], along with the relevant references
therein.

In this research, motivated by the above works, we will use the variational
approach to study the existence of at least two positive non-trivial solutions to the
problem (1.1) under conditions (h1)− (h2) , (H1) and (V1). The following are some
of the key aspects of this paper:
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i) The problem involves the interaction of a double phase operator with a
Choquard reaction.

ii) The presence of a non-linear singularity.

The homogeneous Choquard term presented in this work is advantageous in double-
phase problems with a singularity term as it provides a mathematical framework
to model long-range interactions in systems exhibiting nonlocal behaviour. This
term is instrumental in capturing the influence of distinct points, contributing to
a more accurate representation of physical phenomena and addressing singularities
that may arise in the mathematical formulation of the problem. Consequently, our
problem stands out as distinct and more intricate compared to prior research. To
the best of our knowledge, the outcomes presented in this work are novel.

The subsequent sections of this paper are structured as follows: The features of
the Musielak-Orlicz Sobolev space W 1,M (Ω) are presented in section 2. The Hardy
Littlewood-Sobolev inequality, which played a significant role in our investigation,
is also reviewed. Section 3 is then devoted to the demonstration of our principal
findings.

2. Preliminaries

We shall review various Musielak-Orlicz space features that can be found in [7, 9,
14,16,24] and references to them.

Set the functionsM (x, t) = tp+a (x) tq and ρ (t) =
∫

Ω
M (x, |t|) dx for 1 < p < q

and a(.) ∈ L∞ (Ω) and minx∈Ω a (x) = a0 > 0.
The Musielak-Orlicz space LM (Ω) is defined by

LM (Ω) =

{
u : Ω −→ R, measurable and

∫
Ω

M (x, |u|) dx <∞
}

endowed with the Luxemburg norm

|u|M = inf

{
λ > 0 :

∫
Ω

M
(
x,
|u|
λ

)
dx ≤ 1

}
.

We use the notation Lqa (Ω) to represent the space comprising all measurable func-
tions u : Ω −→ R, characterized by the following semi-norm

‖u‖q,a =

(∫
Ω

a (x) |u|q dx
) 1
q

<∞.

Since ρ
(
|u|
|u|M

)
= 1 whenever u 6= 0, we have

min (|u|pM, |u|
q
M) ≤ ‖u‖pp + ‖u‖qq,a ≤ max (|u|pM, |u|

q
M) , u ∈ LM (Ω) . (2.1)

While the Musielak-Sobolev spaces W 1,M (Ω) are defined by

W 1,M (Ω) =
{
u ∈ LM (Ω) : |∇u| ∈ LM (Ω)

}
,

and it is equipped with the norm ‖u‖ = |u|M + |∇u|M.
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We denote by W 1,M
0 (Ω) the completion of C∞0 (Ω) in W 1,M (Ω) and it can be

equivalently equipped by ‖u‖ = |∇u|M.

LM (Ω), W 1,M (Ω) and W 1,M
0 (Ω) are separable reflexive Banach spaces with

the above norms. For more details, see [24].

By Proposition 2.15 in [7], W 1,M
0 (Ω) ↪→ Lr (Ω) is continuous embedding since

r < p∗, and by (2.1), we have

min (|∇u|pM, |∇u|
q
H) ≤ ‖∇u‖pp + ‖∇u‖qq,a ≤ max (|∇u|pM, |∇u|

q
M) , u ∈W 1,M

0 (Ω)
(2.2)

and

‖u‖r ≤ Cr|∇u|M. (2.3)

We denote E = W 1,M
0 (Ω) and ‖u‖E = |∇u|M.

And we define %E as

%E (u) =

∫
Ω

|u|p dx+

∫
Ω

a (x) |u|q dx.

Lemma 2.1. (see [8]) Let u ∈ E = W 1,M
0 (Ω) then

i) ‖u‖E = a⇔ %E
(
u
a

)
= 1.

ii) ‖u‖E < 1 (resp. > 1,= 1) ⇔ %E (u) < 1 (resp. > 1,= 1).

iii) ‖u‖E < 1⇒ ‖u‖qE ≤ %E (u) ≤ ‖u‖pE and ‖u‖E > 1⇒ ‖u‖pE ≤ %E (u) ≤ ‖u‖qE.

vi) ‖u‖E → 0⇔ %E (u)→ 0 and ‖u‖E →∞⇔ %E (u)→∞.

Lemma 2.2. (see [14]) Let u ∈W 1,M
0 then

i) W 1,M
0 (Ω) ↪→ LM (Ω).

ii) LM (Ω) ↪→ Lqa (Ω)

iii) W 1,M
0 (Ω) ↪→ Lr (Ω) is continuous for all r ∈ [1, p∗] and compact for r ∈ [p, p∗).

Proposition 2.1. (see [16]) Let t, r > 1 and 0 < µ < N with 1
t + 1

r + µ
N = 2,

h ∈ Lt
(
RN
)

and k ∈ Lr
(
RN
)
. There exists a constant C (t, r, µ,N) independent

of h and k, such that∫
RN

∫
RN

h (x) k (y)

|x− y|µ
dx dy ≤ C (t, r, µ,N) ‖h‖Lt(RN )‖k‖Lr(RN ). (2.4)

If t = r = 2N
2N−µ , then C (t, r, µ,N) = π

µ
2

Γ(N−µ2 )
Γ(N−µ2 )

(
Γ(N2 )
Γ(N)

)−1+ µ
N

.

In this case there is equality in (2.4) if and only if h ≡ Ck and

k (x) = A
(
γ2 + |x− a|2

)−N+µ
2 for some A ∈ C, 0 6= γ ∈ R and a ∈ R.

In the following, we denote

‖u‖s,a =

∫
Ω

a (x) |u|sdx, and ‖u‖s,V a =

∫
Ω

V (x) a (x) |u|sdx , for every s > 1.
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3. Main result

Definition 3.1. We say that a function u ∈ E is a weak solution to problem (1.1)
if ∫

Ω

(
|∇u|p−2∇u+ a (x) |∇u|q−2∇u

)
∇ϕdx

+

∫
Ω

V (x)
(
|u|p−2u+ a (x) |u|q−2u

)
ϕ dx

=

∫
Ω

g (x) |u|−β−1uϕdx+ η

∫
Ω

∫
Ω

H (y, u)h (x, u)

|x− y|µ
ϕ (x) dx dy

for all ϕ ∈ E.

Theorem 3.1. Let (h1)−− (V1) hold. Then there exists η∗ > 0 such that for any
η ∈ (0, η∗), the problem (1.1) admits at least two nonnegative weak solutions.

Consider the functional Jη : E → R associated to the problem (1.1) defined by

Jη (u)

=

∫
Ω

(
1

p
|∇u|p dx+

1

q
a (x) |∇u|q

)
dx+

∫
Ω

V (x)

(
1

p
|u|p dx+

1

q
a (x) |u|q

)
dx

− 1

1− β

∫
Ω

g (x) |u|1−βdx− η

2

∫
Ω×Ω

H (y, u)H (x, u)

|x− y|µ
dx dy.

We have Jη ∈ C1 (E,R), and〈
J ′η (u) , ϕ

〉
=

∫
Ω

(
|∇u|p−2∇u+ a (x) |∇u|q−2∇u

)
∇ϕ dx

+

∫
Ω

V (x)
(
|u|p−2u+ a (x) |u|q−2u

)
ϕ dx

−
∫

Ω

g(x)| u|−β−1uϕdx− η
∫

Ω

1

|x|µ
∗H (y, u) dy

∫
Ω

h (x, u)ϕ dx

for all u, ϕ ∈ E = W 1,M
0 (Ω).

Remark 3.1. • Since f is an odd function, we can easily have Jη(u) = Jη (|u|),
and the minimizer of Jη will be a nonegative function.

• One can easily notice that any critical point of Jη is a weak solution of problem
(1.1).

We define the fibering map Φη : R+ → R as Φη (t) = Jη (tu),

Φ′η(t) =tp−1‖∇u‖pp + tq−1‖∇u‖qq,a + tp−1‖u‖pp,V + tq−1‖u‖qq,V a

− t−β
∫

Ω

g(x)|u|1−βdx− ηr
∫

Ω×Ω

t2r−1H(y, u)H(x, u)

|x− y|r
dxdy,

Φ′′η(t) =
(
(p− 1)tp−2‖∇u‖pp + (q − 1)tq−2‖∇u‖qq,a

)
+
(

(p− 1)tp−2‖u‖pp,V + (q − 1)tq−2‖∇u‖qq,V a
)

+ βt−β−1

∫
Ω

g(x)|u|1−βdx− ηr(2r − 1)

∫
Ω×Ω

t2r−2H(y, u)H(x, u)

|x− y|µ
dxdy



2114 O. Benslimane, A. Aberqi & M. Elmassoudi

and

Nη = {u ∈ E \ {0};< J ′η(u), u >= 0}.

It’s obvious that tu ∈ Nη if and only if Φ′′η(t) = 0 so, u ∈ Nη if and only if Φ′′η(1) = 0.
Let’s divide Nη into three subsets as follows:

N+
η = {u ∈ E \ {0}; Φ′′η(1) > 0},

N 0
η = {u ∈ E \ {0}; Φ′′η(1) = 0},

N−η = {u ∈ E \ {0}; Φ′′η(1) < 0}.

Lemma 3.1. Jη is coercive and bounded below on Nη.

Proof. Let u ∈ Nη, using (h2) and iii) of Lemma 2.2, there exists a positive
constant c > 0 such that∫

Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy ≤ C‖H(., u(.))‖2Ls(Ω) ≤ c

(∫
Ω

|u|rsdx
) 2
s

= C‖u‖2rLsr ,

(3.1)
where 1

s = 1− µ
2N .

Since p ≤ sr ≤ p∗, we get∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy ≤ C‖u‖2r.

On the other hand, using the Hölder inequality and the embedding iii) of Lemma
2.2, we obtain∫

Ω

g(x)|u|1−βdx ≤ ‖g‖L∞(Ω)|Ω|
p−1+β
p ‖u‖1−βLp(Ω) ≤ C‖g‖L∞(Ω)|Ω|

p−1+β
p ‖u‖1−β .

Return now to Jη(u), since u ∈ Nη, then

‖∇u‖p + ‖∇u‖qq,a + ‖u‖pp,V + ‖u‖qq,V a −
∫

Ω

g(x)|u|1−βdx

=ηr

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy, (3.2)

thus

Jη(u) =
1

p

(
‖∇u‖pp + ‖u‖pp,V

)
+

1

q

(
‖∇u‖qq,a + ‖u‖qq,V a

)
− 1

1− β

∫
Ω

g(x)|u|1−βdx

− 1

2r

(
‖∇u‖pp + ‖u‖pp,V + ‖∇u‖qq,a + ‖u‖qq,V a −

∫
Ω

g(x)|u|1−βdx
)

=
2r − p

2rp

(
‖∇u‖pp + ‖u‖pp,V

)
+

2r − q
2rq

(
‖∇u‖qq,a + ‖u‖qq,V a

)
+

1− β − 2r

2r(1− β)

∫
Ω

g(x)|u|1−βdx

≥ 2r − q
2rq

min(1, V0)%(u)− (2r + β − 1)

2r(1− β)
C‖g‖L∞(Ω)|Ω|

p−1+β
p ‖u‖1−β .
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Taking ‖u‖ > 1, then

Jη(u) ≥ 2r − q
2rq

min(1, V0)‖u‖p − (2r + β − 1)

2r(1− β)
C‖g‖L∞(Ω)|Ω|

p−1+β
p ‖u‖1−β .

The fact that 0 < β < 1 implies that Jη is coercive.

Lemma 3.2. Under the assumptions (h1) − −(V1), there exists η0 > 0 such that
N 0
η = ∅, for any η ∈ (0, η0).

Proof. Through a method of contradiction, we assume that for every value of η,
there exists u ∈ E \ {0} such that < J ′η(u), u >= 0 and Φ′′η(1) = 0. Then

‖∇u‖p + ‖∇u‖qq,a + ‖u‖pp,V + ‖u‖qq,V a

=

∫
Ω

g(x)|u|1−βdx+ ηr

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy, (3.3)

and

(p− 1)‖∇u‖p + (q − 1)‖∇u‖qq,a + (p− 1)‖u‖pp,V + (q − 1)‖u‖qq,V a

=− β
∫

Ω

g(x)|u|1−βdx+ ηr(2r − 1)

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy. (3.4)

Multiplying (3.3) with β and adding it to (3.4) yields

(p+ β − 1)‖∇u‖p + (q + β − 1)‖∇u‖qq,a
+ (p+ β − 1)‖u‖pp,V + (q + β − 1)‖u‖qq,V a

=ηr(2r + β − 1)

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy. (3.5)

Subtracting (3.4) from (3.3) multiplied by (2r − 1), we obtain

(2r − p)‖∇u‖pp + (2r − q)‖∇u‖qq,q + (2r − p)‖u‖pp,V + (2r − q)‖u‖qq,V a

=(2r + β − 1)

∫
Ω

g(x)|u|1−βdx.
(3.6)

Defining the functional Tη : N → R as

Tη(u) =
1

r(2r + β − 1)

[
(p+ β − 1)‖∇u‖pp + (q + β − 1)‖∇u‖qq,a

+ (p+ β − 1)‖u‖pp,V + (q + β − 1)‖u‖qq,V a
]
− η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy.

From (3.3) and (3.4), we see that Tη(u) = 0 for all u ∈ N 0.
We get

Tη(u) ≥ (p+ β − 1)

r(2r + β − 1)
‖∇u‖pp − η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy

≥ (p+ β − 1)

r(2r + β − 1)
‖∇u‖pp − ηc‖u‖2rLsr .
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Since p < 2r and using Poincarée inequality, we obtain that

Tη(u) ≥ (p+ β − 1)

r(2r + β − 1)
‖∇u‖pp − ηC‖∇u‖2rp

then

Tη(u) ≥ ‖∇u‖2rp
[

(p+ β − 1)

r(2r + β − 1)
‖∇u‖p−2r

p − 2ηC

]
. (3.7)

Using (3.6), we get

(2r − p)‖∇u‖pp ≤ (2r + β − 1)

∫
Ω

g(x)|u|1−βdx

≤ (2r + β − 1)‖g‖∞‖u‖1−βp ,

and by the Poincarée inequality, we have

(2r − p)‖∇u‖pp ≤ C(2r + β − 1)‖g‖∞‖∇u‖1−βp ,

then

‖∇u‖pp ≤
C(2r + β − 1)

(2r − p)
‖g‖∞‖∇u‖1−βp .

Thus

‖∇u‖p ≤
(
C(2r + β − 1)

(2r − p)
‖g‖∞

) 1
p−β+1

. (3.8)

Combining (3.7) and (3.8), we obtain

Tη(u) ≥ ‖∇u‖2rp

[
(p+ β − 1)

r(2r + β − 1)

(
C(2r + β − 1)

(2r − p)
‖g‖∞

) p−2r
p−β+1

− 2ηC

]
.

Taking

η0 =
(p+ β − 1)

2r(2r + β − 1)C

[
C(2r + β − 1)

(2r − p)
‖g‖∞

] p−2r
p−β+1

,

then for any η ∈ (0, η0), we have Tη(u) > 0 which contradicts that Tη(u) = 0 for all
u ∈ N 0.

Lemma 3.3. For u ∈ E, there exists η1 > 0 such that for any η ∈ (0, η1). Then,
there exists tmax = tmax(u) > 0, t2 = t2(u), t1 = t1(u) > 0, with t1 < tmax < t2
such that t1u ∈ N+

η , t2u ∈ N−η , and Jη(t1u) = min
0≤t≤tmax

Jη(tu),

Jη(t2u) = min
t>tmax

Jη(tu).

Proof. We can write Φ′η(t) as

Φ′η(t) = t2r−1

(
Ψ(t)− ηr

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy

)
, (3.9)

where

Ψ(t) =tp−2r
(
‖∇u‖pp + ‖u‖pp,V

)
+ tq−2r

(
‖∇u‖qq,a + ‖u‖qq,V a

)
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− t−β−2r+1

∫
Ω

g(x)|u|1−βdx.

Evidently, the condition for tu ∈ N is equivalent to the statement that Ψ(t) =

ηr

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy,

lim
t→0+

Ψ(t) = −∞, lim
t→+∞

Ψ(t) = 0 and Ψ(t) > 0, for t large enough.

Let tu ∈ E \ {0}, then

0 =Ψ′(t)

= (p− 2r) tp−2r−1
(
‖∇u‖pp + ‖u‖pp,V

)
+ (q − 2r) tq−2r−1

(
‖∇u‖qq,a + ‖u‖qq,V a

)
− (−β − 2r + 1)t−β−2r

∫
Ω

g(x)|u|1−βdx,

equivalent to

(p− 2r)tp+β−1
(
‖∇u‖pp + ‖u‖pp,V

)
+ (q − 2r)tq+β−1

(
‖∇u‖qq,a + ‖u‖qq,V a

)
=(−β − 2r + 1)

∫
Ω

g(x)|u|1−βdx.

(3.10)
Let set

Θ(t) =(p− 2r)tp+β−1
(
‖∇u‖pp + ‖u‖pp,V

)
+ (q − 2r)tq+β−1

(
‖∇u‖qq,a + ‖u‖qq,V a

)
, t > 0.

Since p < q < 2r, one can has lim
t→0+

Θ(t) = 0, lim
t→+∞

Θ(t) = −∞, and Θ′(t) < 0.

Thus, through the application of the Intermediate Value Theorem, there exists a
unique tmax > 0 such that (3.10) holds.

Moreover, if we consider Ψ′(t) > 0, then in place of (3.10) we get, Θ(t) >

(−β−2r+1)

∫
Ω

g(x)|u|1−βdx, for t < tmax, since Θ is strictly decreasing. Similarly

for Ψ′(t) < 0 and t > tmax. In addition Ψ(tmax) = max
t>0

Ψ(t). Moreover, we have

lim
t→0+

Ψ(t) = 0, lim
t→+∞

Ψ(t) = −∞.

Observe that

Ψ(t) ≥tp−2r‖∇u‖pp − t−β−2r+1

∫
Ω

g(x)|u|1−βdx

≥tp−2r‖∇u‖pp − t−β−2r+1‖g‖∞‖∇u‖1−βp .

Set

ψ(t) = tp−2r‖∇u‖pp − t−β−2r+1‖g‖∞‖∇u‖1−βp ,

we have

ψ′(t) = (p− 2r)tp−2r−1‖∇u‖pp − (−β − 2r + 1)t−β−2r‖g‖∞‖∇u‖1−βp .
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Taking

t0 =
1

‖∇u‖p

(
(−β − 2r + 1)‖g‖∞

(p− 2r)

) 1
p+β−1

,

then

max
t>0

ψ(t) = ψ(t0).

It is clear that Ψ(t) ≥ ψ(t), and since Ψ is increasing in (0, tmax), we have

Ψ(tmax) ≥ Ψ(t0) ≥ ψ(t0),

where

ψ(t0) = tp−2r
0 ‖∇u‖pp − t

−β−2r+1
0 ‖g‖∞‖∇u‖1−βp

= ‖∇u‖2rp
(
p+ β − 1

2r − p
‖g‖∞

)[
β + 2r − 1

2r − p
‖g‖∞

]−β−2r+1
p+β−1

= A‖∇u‖2rp ,

with

A =

(
p+ β − 1

2r − p
‖g‖∞

)[
β + 2r − 1

2r − p
‖g‖∞

]−β−2r+1
p+β−1

.

Return now to

Ψ(tmax)− ηr
∫

Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy ≥ A‖∇u‖2rp − ηC‖∇u‖2rp

= (A− ηC)‖∇u‖2rp .

Taking η1 = A
C , then for any η ∈ (0, η1), we have

Ψ(tmax)− ηr
∫

Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy > 0. (3.11)

Now, by (3.11) and the variation of Ψ allows us to conclure that there exist t1 ∈
(0, tmax) and t2 ∈ (tmax,+∞), with t1 < tmax < t2 such that, Ψ(t1) =

ηr

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|r
dxdy = Ψ(t2) and Ψ′(t1) > 0 > Ψ′(t2), that means t1u ∈

N+
η and t2u ∈ N−η .

Let define J +
η = infu∈N+

η
Jη(u), J−η = infu∈N−η Jη(u), and taking η∗ =

min(η0, η1).

Proposition 3.1. For any η ∈ (0, η∗), we have

J +
η < 0, (3.12)

and there exists u+ ∈ N+
η such that

J +
η = Jη(u+). (3.13)

.
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Proof. Let u ∈ N , then we have

‖∇u‖pp + ‖∇u‖qq,a + ‖u‖pp,V + ‖u‖qq,a

−
∫

Ω

g(x)| u|1−βdx− ηr
∫

Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy = 0,

thus

Jη(u)

=
(1− β − p)
p(1− β)

(
‖∇u‖pp + ‖u‖pp,V

)
+

(1− β − q)
q(1− β)

(
‖∇u‖qq,a + ‖u‖qq,V a

)
+

(2r + β − 1)

2(1− β)
η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy

≤ 1

q(1− β)

[
(1− β − p)

(
‖∇u‖pp + ‖u‖pp,V

)
+ (1− β − q)

(
‖∇u‖qq,a + ‖u‖qq,V a

)]
+

(2r + β − 1)

2(1− β)
η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy.

Since u ∈ N+
η , we have

(1− β − p)
(
‖∇u‖pp + ‖u‖pp,V

)
+ (1− β − q)

(
‖∇u‖qq,a + ‖u‖qq,V a

)
<− (2r + β − 1) rη

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dx dy.

Thus

Jη(u) ≤ (2r + β − 1)(q − 2r)

2q(1− β)
η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy < 0,

which implies that
J +
η = inf

u∈N+
η

Jη(u) < 0.

Now let {un} ⊂ N+
η such that lim

n→+∞
Jη(un) = J +

η . By Lemma 3.1, {un} is bounded

in E, then there exists a subsequence still denoted by {un} and a function u+ ∈ E
such that

un ⇀ uη inE, un → u+ in Lα(Ω) and un → u+ a.e. in Ω for any α ∈ [1, p∗).
(3.14)

Let’s prove the equi-absolutely continuous of

∫
Ω

g(x)|un|1−βdx. Indeed, form (3.14),

{un} is bounded in Lα(Ω), then there exists a positive constant c1 such that
‖un‖p∗ ≤ c1 for all n ∈ N.

Let F ⊂ Ω be a measurable set, we have that∫
F

g(x)|un|1−βdx ≤ ‖g‖L∞c1−β1 |F |
p∗−1+β
p∗ ,

and ∫
F×F

H(y, un)H(x, un)

|x− y|µ
dxdy ≤ c

(∫
F

|u|rsdx
) 2
s

≤ cc2r1 |F |
p∗−rs
p∗ .
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For any ε > 0, there exists δ > 0 such that for any measurable set F ⊂ Ω with
|F | < δ, we have∫

F

g(x)|un|1−βdx ≤ ε and

∫
F×F

H(y, un)H(x, un)

|x− y|µ
dxdy ≤ ε, for any n ∈ N.

By Vitali’s convergence Theorem, we get

lim
n→∞

∫
Ω

g(x)|un|1−βdx =

∫
Ω

g(x)|u+|1−βdx, (3.15)

and

lim
n→∞

∫
Ω×Ω

H(y, un)H(x, un)

|x− y|µ
dxdy =

∫
Ω×Ω

H(y, u+)H(x, u+)

|x− y|µ
dxdy. (3.16)

With the same arguments as above, we obtain

lim
n→∞

∫
Ω

V (x) (|un|p + a (x) |un|q) dx =

∫
Ω

V (x)
(
|u+|p + a (x) |u+|q

)
dx, (3.17)

the weak lower semicontinuity of the norms leads to

Jη(u+) ≤ lim inf
n→+∞

Jη (un) < 0 = Jη(0),

which implies that u+ 6= 0 and by lemma 3.3, there exists t1 such that t1u
+ ∈ N+

η .

Now, suppose that lim inf
n→∞

%(∇un) > %(∇u+), then using (3.17), (3.15) and

(3.16), we have lim inf
n→∞

Φ′un(t1) > Φ′u+(t1) = 0, thus Φ′un(t1) > 0 for n large enough.

On the other hand, Φ′un(t) < 0 for t ∈ (0, 1) and Φ′un(1) = 0. And as we have
t1 > 1 and Φu+ is decreasing in (0, t1], we obtain

J +
η ≤ J(t1u

+) ≤ J(u+) < inf
u∈N+

η

Jη(u) = J +
η ,

which is absurd. Hence un → u+ strongly in E and Jη(u+) = J +
η .

Proposition 3.2. For any η ∈ (0, η∗), we have

J−η > 0, (3.18)

and there exists
u− ∈ N−η such that J−η = Jη(u−). (3.19)

Proof. Let u ∈ N , then we have

‖∇u‖pp + ‖∇u‖qq,a + ‖u‖pp,V + ‖u‖qq,a

−
∫

Ω

g(x)| u|1−βdx− ηr
∫

Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy = 0,

thus

Jη(u) =
(1− β − p)
p(1− β)

(
‖∇u‖pp + ‖u‖pp,V

)
+

(1− β − q)
q(1− β)

(
‖∇u‖qq,a + ‖u‖qq,V a

)
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+
(2r + β − 1)

2(1− β)
η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy

>
1

2r(1− β)

[
(1− β − p)

(
‖∇u‖pp + ‖u‖pp,V

)
+(1− β − q)

(
‖∇u‖qq,a + ‖u‖qq,V a

)]
+

(2r + β − 1)

2(1− β)
η

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy.

Since u ∈ N−η , we have

(1− β − p)
(
‖∇u‖pp + ‖u‖pp,V

)
+ (1− β − q)

(
‖∇u‖qq,a + ‖u‖qq,V a

)
>− (2r + β − 1) rη

∫
Ω×Ω

H(y, u)H(x, u)

|x− y|µ
dxdy,

thus
Jη(u) > 0,

and
J−η = inf

u∈N−η
Jη(u) ≥ 0.

Let now {un}n ⊂ N−η as a sequence such that lim
n→∞

Jη(un) = inf
u∈N−η

Jη(u) = J−η .

By Lemma 3.1, {un}n is bounded in E and then, there exists u− ∈ E such that up
to a subsequence

un ⇀ u− in E and un → u− in Lα(Ω) for α ∈ [1, p∗).

And as above, we find that

lim
n→∞

∫
Ω

g(x)|un|1−βdx =

∫
Ω

g(x)|u−|1−βdx, (3.20)

lim
n→∞

∫
Ω×Ω

H(y, un)H(x, un)

|x− y|µ
dxdy =

∫
Ω×Ω

H(y, u−)H(x, u−)

|x− y|µ
dxdy, (3.21)

and

lim
n→∞

∫
Ω

V (x) (|un|p + a(x)|un|q) dx =

∫
Ω

V (x)
(
|u−|p + a(x)|u−|q

)
dx. (3.22)

Let assume that un 9 u− strongly in E, then we have∫
Ω

(
1

p
|∇u−|p +

1

q
a(x)|∇u−|q

)
dx < lim inf

n→∞

∫
Ω

(
1

p
|∇un|p +

1

q
a(x)|∇un|q

)
dx.

On the other hand, there exists t2 > 0 such that t2u
− ∈ N−η . Moreover, as un ∈ N−η ,

the map t→ Jη(tun) attains its maximum at t = 1.

Jη(t2u
−) < lim inf

n→∞
Jη(t2un) ≤ lim inf

n→∞
Jη(un) = J−η ,

which contradicts the fact that t2u
− ∈ N−η . Therefore un → u− strongly in E and

Jη(u−) = J−η .
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Proposition 3.3. Let (h1)−−(V1) hold. Let s ∈W 1,M (Ω) and η ∈
(
0, η
]
. Then,

there exists c2 > 0 such that for all t ∈ [0, c2] we have

Jη
(
u+
)
≤ Jη

(
u+ + ts

)
.

Proof. Let introduce ζs : [0; +∞)→ R given by

ζs (t) = (p− 1)
(
‖∇u+ t∇s‖p + ‖u+ ts‖pp,V

)
+ (q − 1)

(
‖∇u+ t∇s‖qq,a + ‖u+ ts‖qq,V a

)
+ β

∫
Ω

g(x) |u|1−β dx− ηr (2r − 1)

∫
Ω×Ω

H (y, u)H (x, u+ ts)

|x− y|µ
dxdy.

Since u+ ∈ N+
η , we have ζs (0) > 0. Thanks to [20, Proposition 3.5], there exists

ϕ (t) > 0 for all t ∈ [0, c2] such that

ϕ (t)
(
u+ + ts

)
∈ N+

η and ϕ (t)→ 1 as t→ 0+. (3.23)

By Proposition 3.1, we have

J +
η = Jη

(
u+
)
≤ Jη

(
ϕ (t)

(
u+ + ts

))
∀t ∈ [0, c2] .

By (3.23) and the previous fact, there exists κ ∈ [0, c2] sufficiently small such that

J +
η = Jη

(
u+
)
≤ Jη

(
u+ + ts

)
for all t ∈ [0, κ] .

Since the continuity of Φ′′ in t, and Φ′′u+(1) > 0 we obtain Φ′′u++ts(1) > 0 for all
t ∈ [0, κ] with κ ∈ (0, c2]. which achieve the proof.

Proof of Theorem 3.1. To demonstrate that the minimizers found in Propositions
3.1 and 3.2 are non-trivial solutions to the problem (1.1). We use similar arguments
to [20, propositions 3.6 and 3.9], which complete the proof of Theorem 3.1.
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[14] P. Harjulehto and P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces,
Springer, 2019.

[15] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s
nonlinear equation, Stud. Appl. Math., 1977, 57, 93–105.

[16] E. H. Lieb and M. Loss, “Analysis”, Gradute Studies in Mathematics, AMS,
Providence, Rhode island, 2001, 2.

[17] J. Liu, J. F. Liao, H. L. Pan and C. L. Tang, On the Choquard equations under
the effect of a general nonlinear term, Top. Meth. Nonlinear Anal., 2022, 1–14.

[18] W. Liu and G. Dai, Multiplicity results for double phase problems in RN , J.
Math. Phy., 2020, 61, 091508.

[19] W. Liu, G. Dai, N. S. Papageorgiou and P. Winkert, Existence of solutions for
singular double phase problems via the Nehari manifold method, Anal. Math.
Phy., 2022, 12, 75.

[20] W. Liu and P. Winkert, Combined effects of singular and superlinear nonlin-
earities in singular double phase problems in RN , J. Math. Anal. Appl., 2022,
507, 125762.



2124 O. Benslimane, A. Aberqi & M. Elmassoudi

[21] L. Maia, B. Pellacci and D. Schiera, Symmetric positive solutions to nonlinear
Choquard equations with potentials, Cal. Var. Par. Diff. Equ., 2022, 61, 1–34.

[22] I. M. Moroz, R. Penrose and P. Tod, Spherically-symmetric solutions of the
Schrödinger-Newton equations, Classical and Quan. Gravity, 1998, 15, 2733.

[23] V. Moroz and J. Van Schaftingen, A guide to the Choquard equation, J. Fix.
Point Theory and Appl., 2017, 19, 773–813.

[24] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol.
1034, Springer, 1983, Berlin.

[25] S. I. Pekar, Untersuchungen uber die Elektronentheorie der Kristalle,
Akademie-Verlag, 1954, Berlin.

[26] Y. Su and S. Liu, Ground state solutions for critical Choquard equation with
singular potential: Existence and regularity, J. Fix. Point Theory and Appl.,
2023, 25, 23.

[27] X. Xie, T. Wang and W. Zhang, Existence of solutions for the (p, q)-Laplacian
equation with nonlocal Choquard reaction, Appl. Math. Lett., 2023, 135, 108418.

[28] S. Yao, J. Sun and T. f. Wu, Positive solutions to a class of Choquard type equa-
tions with a competing perturbation, J. Math. Anal. Appl., 2022, 516, 126469.
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