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THE CLOSED-FORM SOLUTIONS OF A
DIFFUSIVE

SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE
EPIDEMIC MODEL

Rehana Naz1,†, Gangwei Wang2 and Saba Irum1,∗

Abstract We establish the closed-form solutions of the Susceptible-Infectious-
Susceptible (SIS) epidemic model with diffusion using Lie point symmetries.
The model admits a four-dimensional Lie algebra. We use different combina-
tions of Lie symmetries to construct the closed-form solutions. We consider
appropriate initial and boundary conditions to explore the biological relevance
of these closed-form solutions. We utilize the closed-form solutions to study
the transmission dynamics of an influenza outbreak with Gaussian initial dis-
tributions. We plot graphs for the susceptible and infected populations. We
consider the lower diffusion coefficient and higher diffusion coefficient cases to
analyze the transmission dynamics of the influenza outbreak.
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1. Introduction

Several mathematical models have been developed to study the transitional dy-
namics of infectious disease. Nonlinear ordinary differential equations (ODEs)
and partial differential equations (PDEs) are the powerful tools for providing a
broad perspective of disease persistence or extinction. The ODE epidemic mod-
els are based on the assumption that population distribution is homogenous across
space. However, the population interaction and distribution are greatly influenced
by spatial dispersal, we refer the reader to excellent surveys [3,24,27] and reference
therein. Noble [19] studied the geographic and temporal development of plagues.
The reaction-diffusion equations are utilized to predict the spread of rabies in red
fox hosts across Europe [14–17,26].

Allen et al [1] developed the SIS epidemic reaction-diffusion models and utilized
the Neumann boundary condition to study the effect of spatial heterogeneity of the
environment and individual movement on the extinction and persistence of a disease.
The rates of disease transmission and recovery were dependent on the location.
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It was shown that the Disease-Free Equilibrium (DFE) is globally asymptotically
stable when the basic reproduction number R0 < 1 and unstable for R0 > 1.
The existence and uniqueness of Endemic Equilibrium (EE) was guaranteed for
R0 > 1. Moreover, the asymptotic profiles of the EE were determined when the
migration rate for susceptible individuals is sufficiently small. Later on, Peng and
Liu [22] established global stability of EE for the same diffusion coefficients or by
keeping the ratio of disease transmission and recovery rates constant. Allen et al [1]
only assessed low and high risk locations, whereas Peng and Liu [22] also included
moderate risk areas. Huang et al [12] conducted a subsequent study of a diffusive
SIS epidemic model with logistic growth and Dirichlet boundary condition. Later
on, Ding et al [6] established the traveling wave solutions linking the DFE and EE
for the diffusive SIS epidemic model with constant rates of disease transmission
and recovery. We apply the Lie symmetry methods to establish several closed-form
solutions of the diffusive SIS epidemic model. Ding et al. [6] proposed the following
SIS model:

St = δSxx − Ω(S, I)I,

It = δIxx +Ω(S, I)I,
(1.1)

where Ω(S, I) = βS−γ(S+I)
S+I . Here S(t, x) denotes the density of susceptible individ-

uals, I(t, x) denotes the density of infected individuals, β > 0 denotes the infection
rate, γ > 0 is the recovery rate and δ is diffusion coefficient. The total population
N(t, x) = S(t, x) + I(t, x) satisfies Nt = δNxx. Our focus is on addressing the
following questions: Does a closed-form solution exist for the diffusive SIS model
governed by two nonlinear PDEs? How do varying rates of diffusion both higher and
lower impact the spatiotemporal dynamics of influenza transmission? Moreover, we
examine how this insight can contribute to the development of effective strategies
to control and mitigate the spread of the disease.

The Lie group techniques are effective instruments for methodically construct-
ing closed-form solutions to the differential equations arising in different fields of
applied Mathematics. We refer the reader to excellent books [2, 13, 20, 21] on the
classical Lie symmetry method and elegant softwares for computation of symme-
tries [4, 5, 9, 10, 23]. Hereman [11] carried out a comprehensive review of symbolic
software developed for Lie symmetry analysis. The symmetry methods are suc-
cessfully applied to derive Lie symmetries, first integrals and exact solutions for
the epidemic models (see [7, 8]. In [18], the closed-form solutions were utilized to
analyze the transmission dynamics of COVID-19 and policies to contain the virus
were provided.

This paper is organised as follows: For the diffusive SIS model, we explore the
Lie symmetries, closed-form solutions, and reductions in Section 2. We manage to
reduce the given system of two second-order PDEs to a more manageable system of
two second-order ODEs by starting with the most general Lie symmetry generator.
We construct closed-form solutions for two distinct scenarios using a combination of
three Lie symmetries. In Section 3, a connection is established between the closed-
form solution derived in section 2 for one of scenarios and a real-world scenario to
understand the transmission dynamics of influenza. The appropriate initial condi-
tions and boundary conditions are employed. The effect of varying rates of diffusion
both higher and lower on the spatiotemporal dynamics of influenza transmission is
addressed. Moreover, the development of effective strategies to control and mitigate
the spread of the disease are provided. Finally, the concluding remarks are provided
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in Section 4.

2. Lie symmetries, reductions and closed-form so-
lutions of SIS epidemic model

Our focus in this section is to addressing the following questions: Does a closed-
form solution exist for the diffusive SIS model governed by two nonlinear PDEs?
We utilize computer package SADE [23] to establish Lie symmetries of the diffusive
SIS model. Then, Lie symmetries are employed to identify reductions and obtain
closed-form solutions for the diffusive SIS model. By applying Lie symmetry trans-
formations, we can simplify the system of PDEs governing the model into a more
manageable system of ODEs. We explore three scenarios: first, the most general
Lie symmetry generator; second, the combination of three symmetries; and third,
the combination of two symmetries. The most general Lie symmetry generator re-
sults in the reduction of the system of two PDEs to a system of two second-order
ODEs, which cannot be solved for closed-form solutions. However, the two more
combinations of Lie symmetries are utilized to reduce the system of PDEs (1.1) to
a system of two first-order ODEs. It was possible to find the closed-form solutions
of the reduced system of ODEs, thus providing us with the closed-form solution of
the original system of PDEs.

The Lie symmetries of system (1.1) are

X1 = ∂t,

X2 = ∂x,

X3 = S∂S + I∂I ,

X4 = 2δt∂x − xS∂S − xI∂I .

(2.1)

One can use any computer package [4, 5, 9, 10,23] to find these Lie symmetries.

2.1. Reductions using Lie symmetries X1, X2, X3 and X4

The most general symmetry infinitesimal generator is

X = c1∂x + c2∂t + c3(S∂S + I∂I) + c4(2δt∂x − xS∂S − xI∂I). (2.2)

Now, from the invariance surface conditions, [2, 13,20,21], we have

(c1 + 2c4δt)Sx + c2St = (c3 − c4x)S, (2.3)

(c1 + 2c4δt)Ix + c2It = (c3 − c4x)I. (2.4)

Equations (2.3) and (2.4) for c1 ̸= 0, yield the group invariant solution of system
(1.1) as

S(t, x) = F1(ξ)e
t(4c24δt2−6c1c4x+3c2c4t+6c1c3)

6c21 ,

I(t, x) = F2(ξ)e
t(4c24δt2−6c1c4x+3c2c4t+6c1c3)

6c21 ,

ξ =
c1x− c2t− c4δt

2

c1
.

(2.5)
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The system of PDEs (1.1) reduces to the following system of ODEs:

c1δ(F1 + F2)F
′′
1 + c2(F1 + F2)F

′
1 − (c3 − c4ξ)F

2
1 + c1γF

2
2

+ (c1γ − c1β + c4ξ − c3)F1F2 = 0,

c1δ(F1 + F2)F
′′
2 + c2(F1 + F2)F

′
2 − (c1γ − c4ξ + c3)F

2
2

− (c1γ − c1β − c4ξ + c3)F1F2 = 0,

(2.6)

provided c1 ̸= 0. One can utilize any mathematical software to obtain numerical
solutions for system (2.6). However, it is important to note that our current focus
is not on constructing numerical solutions. Our primary focus lies in the derivation
of closed-form solutions. This involves considering different combinations of Lie
symmetries to obtain closed-form solutions for the system of PDEs (1.1).

It is important to mention here that we can obtain several reductions of diffusive
SIS model (1.1) by setting one, two, or three of the constants c2, c3, c4 to zero while
keeping c1 ̸= 0 in the system of reduced second-order ODEs (2.6). Each combination
of Lie symmetries corresponds to a distinct reduction. For example, when we set
c2 = 0 in the system of the reduced second-order ODEs (2.6), this corresponds to
the reduction via X1, X3, and X4. By making such adjustments to the constants,
we can explore various reduction possibilities for the original system of two second-
order PDEs (1.1) representing the diffusive SIS model.

Next, we explore the possibility of closed-form solutions using different combi-
nations of Lie symmetries X2, X3 and X4.

2.2. The closed-from solution using Lie symmetries X2, X3 and
X4

We set c1 = 0 in the most general symmetry infinitesimal generator (2.2), which is
equivalent to considering the combination of Lie symmetries X2, X3, and X4. Then
the group invariant solution of system (1.1) is given by

S(t, x) = F1(t)e
− (c3−c4x)2−c23

2c4(2c4δt+c2) ,

I(t, x) = F2(t)e
− (c3−c4x)2−c23

2c4(2c4δt+c2) .

(2.7)

The system of PDEs (1.1) reduces to the following system of ODEs

4

(
c4δt+

1

2
c2

)2

(F1 + F2)F
′
1 +

(
2c24δ

2t+ c2c4δ − c23δ
)
F 2
1

− 4γ

(
c4δt+

1

2
c2

)2

F 2
2 − 4

[(
γt− βt− 1

2

)
c24δ

2t

+

(
γt− βt− 1

4

)
c2c4δ +

1

4
c23δ +

1

4
c22 (γ − β)

]
F1F2 = 0,(

c4δt+
1

2
c2

)2

(F1 + F2)F
′
2 +

[(
γt+

1

2

)
c24δ

2t

+

(
γt+

1

4

)
c2c4δ −

1

4
c23δ +

1

4
γc22

]
F 2
2 +

[(
γt− βt+

1

2

)
c24δ

2t

+

(
γt− βt+

1

4

)
c2c4δ −

1

4
c23δ +

1

4
c22 (γ − β)

]
F1F2 = 0.

(2.8)
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The solution of reduced system of ODEs (2.8) is

F1(t) =

(
e−(β−γ)tA1β −A2γ

)
e
− c23

2c4(2c4δt+c2)

√
2c4δt+ c2 (e−(β−γ)tA1 −A2)A2

,

F2(t) =
e

−c23
2c4(2c4δt+c2) (γ − β)√

2c4δt+ c2 (e−(β−γ)tA1 −A2)
,

(2.9)

provided c4 ̸= 0. Here A1 and A2 are arbitrary constants of integration. Substi-
tuting the expressions for F1(t) and F2(t) from (2.9) into equation (2.7), the form
of the final group invariant solution of system (1.1), using a combination of Lie
symmetries X2 , X3 and X4 with c4 ̸= 0, is as follows:

S(t, x) =
e
− (c3−c4x)2

2c4(2c4δt+c2)
(
e−(β−γ)tA1β −A2γ

)
√
2c4δt+ c2

(
e−(β−γ)tA1 −A2

)
A2

,

I(t, x) =
e
− (c3−c4x)2

2c4(2c4δt+c2) (γ − β)√
2c4δt+ c2

(
e−(β−γ)tA1 −A2

) .
(2.10)

It is important to mention that the closed-form solution of the diffusive SIS
system (1.1), as provided in equation (2.10), serves as the benchmark for deduc-
ing closed-form solutions through various combinations of Lie symmetries X2, X3,
and X4. Specifically, it corresponds to the closed-form solution obtained via the Lie
symmetry X4 when both c2 and c3 are set to zero. Furthermore, this closed-form so-
lution represents the solution resulting from the combination of the Lie symmetries
X2 and X4 when c3 is set to zero. Additionally, when c2 is set to zero, it corre-
sponds to the closed-form solution involving the combination of Lie symmetries X3

and X4.

2.3. The closed-form solution using symmetries X2 and X3

We set c1 = 0 and c4 = 0 in the most general symmetry infinitesimal generator
(2.2) , which is equivalent to considering the combination of Lie symmetries X2 and
X3. Then the group invariant solution of system (1.1) is given by

S(t, x) = F1(t)e
c3
c2

x,

I(t, x) = F2(t)e
c3
c2

x,
(2.11)

where c2 ̸= 0. The system of PDEs (1.1) reduces to the following system of ODEs

c22(F1 + F2)F
′
1 − c23δF

2
1 − γc22F

2
2 −

[
c23δ + c22 (γ − β)

]
F1F2 = 0,

c22(F1 + F2)F
′
2 +

(
γc22 − c23δ

)
F 2
2 −

[
c23δ − c22 (γ − β)

]
F1F2 = 0.

(2.12)

The solution of reduced system of ODEs (2.12) is

F1(t) =
e
(c23δ−(β−γ)c22)t

c22 A3β − e
c23δt

c22 A4γ

(e−(β−γ)tA3 −A4)A4
,

F2(t) =
e

c23δt

c22 (γ − β)

e−(β−γ)tA3 −A4
,

(2.13)
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where A3 and A4 are arbitrary constants of integration. We substitute the expres-
sions for F1(t) and F2(t) from (2.13) into equation (2.11). The final form of the
group invariant solution of system (1.1) via combination of Lie symmetries X2 and
X3 is as follows:

S(t, x) =
e

c3(c3δt+c2x)

c22 (e−(β−γ)tA3β −A4γ)

(e−(β−γ)tA3 −A4)A4
,

I(t, x) =
e

c3(c3δt+c2x)

c22 (γ − β)

e−(β−γ)tA3 −A4
,

(2.14)

provided c2 ̸= 0.
Note that the closed-form solution of the diffusive SIS system (1.1) provided by

(2.14) corresponds to the closed-form solution via X2 when we set c3 = 0.
We have considered all possible combinations of Lie symmetries to obtain reduc-

tions and closed-form solutions of the diffusive SIS model. For the case when c1 ̸= 0,
the system of two second-order PDEs (1.1), representing the diffusive SIS model,
reduces to a system of two second-order ODEs. Closed-form solutions are possible
when c1 = 0 in the most general symmetry generator. We have established two
possible closed-form solutions for this case: one when c4 ̸= 0 and the other when
c4 = 0. We have explained in detail how the reductions and closed-form solutions
for all other possible combinations can be directly deduced from the results pre-
sented in this section. This completes the search for the reductions and closed-form
solutions of the diffusive SIS epidemic model (1.1) via Lie symmetry analysis.

3. The transmission dynamics of an influenza out-
break

In this section, we establish a connection between the closed-form solutions derived
in section 2 and a real-world scenario to understand the transmission dynamics
of influenza. We consider both the initial conditions and appropriate boundary
conditions. Our focus is on addressing the following question: How do varying
coefficients of diffusion-both higher and lower-impact the spatiotemporal dynamics
of influenza transmission? Moreover, we examine how this insight can contribute
to the development of effective strategies to control and mitigate the spread of the
disease.

3.1. Initial and boundary conditions

We aim to find expressions for S(t, x) and I(t, x) that satisfy the initial and bound-
ary conditions for 0 ≤ x ≤ L and 0 ≤ t ≤ T . The initial conditions are defined as
follows

S(0, x) = S0G(x), 0 ≤ x ≤ L,

I(0, x) = I0G(x), 0 ≤ x ≤ L,
(3.1)

where I0 and S0 are scaling constants representing the initial densities of susceptible
and infected individuals, and G(x) is the initial distributions of susceptible and
infected individuals along the domain.
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Allen et al [1] utilized the Neumann boundary condition to study the effect of
spatial heterogeneity of the environment and individual movement on the extinction
and persistence of a disease for SIS epidemic reaction-diffusion models. Huang et
al [12] studied a diffusive SIS epidemic model with logistic growth and Dirichlet
boundary condition. We consider a homogeneous Neumann boundary condition
at x = 0 and a time-dependent non-homogeneous Dirichlet boundary condition at
x = L

∂S

∂x
(t, 0) = 0, 0 ≤ t ≤ T,

∂I

∂x
(t, 0) = 0, 0 ≤ t ≤ T,

S(t, L) = H1(t), 0 ≤ t ≤ T,

I(t, L) = H2(t), 0 ≤ t ≤ T.

(3.2)

The condition ∂S
∂x (t, 0) = 0 ensures that there are no additional incoming sus-

ceptible individuals from the outside at the boundary x = 0. Similarly, ∂I
∂x (t, 0) = 0

indicates no additional incoming infected individuals at the boundary x = 0, which
aligns with the concept that infected individuals are not entering from outside the
modeled region. The conditions S(t, L) = H1(t) and I(t, L) = H2(t) allow to spec-
ify the behavior of susceptible and infected individuals at the boundary x = L over
time. This is important because it allows to model scenarios where interventions,
population behaviors, or other factors at the boundary have a time-varying impact
on the spread of the disease. For instance, H1(t) and H2(t) could represent vaccina-
tion campaigns, quarantine measures, or other time-dependent interventions that
affect the dynamics of the disease.

We consider the case discussed in subsection 2.2, note that the closed-form so-
lution (2.10) is defined at the initial time t = 0 provided c2 > 0. After straightfor-
ward calculations and using the initial conditions (3.1) and homogeneous Neumann
boundary condition at x = 0 from (3.2), we obtain the symmetry constant c3 = 0,

F1(0) = S0, F2(0) = I0, (3.3)

and the following expression for the initial distribution G(x) of susceptible and
infected individuals:

G(x) = e−
c4
2c2

x2

. (3.4)

It is straightforward to establish the solution of reduced system of ODEs (2.8)
subject to initial conditions (3.3) and thus the final form of closed-form solution
(2.7) is

S(t, x) =
(I0 + S0)

√
c2√

2c4δt+ c2
× e

−c4x2

2(2c4δt+c2)

× ((γ − β)S0 + γI0) e
−(β−γ)t − γI0

((γ − β)S0 + γI0) e−(β−γ)t − βI0
,

I(t, x) =
(I0 + S0)

√
c2√

2c4δt+ c2
× e

−c4x2

2(2c4δt+c2)

× (γ − β)I0
((γ − β)S0 + γI0) e−(β−γ)t − βI0

.

(3.5)
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The closed-form solution (3.5) is not defined when γ = β. It is worth mentioning
that when we take x = L in equation (3.5), we obtain following expressions for
H1(t) and H2(t)

H1(t) =
(I0 + S0)

√
c2√

2c4δt+ c2
× e

−c4L2

2(2c4δt+c2)

× ((γ − β)S0 + γI0) e
−(β−γ)t − γI0

((γ − β)S0 + γI0) e−(β−γ)t − βI0
,

H2(t) =
(I0 + S0)

√
c2√

2c4δt+ c2
× e

−c4L2

2(2c4δt+c2)

× (γ − β)I0
((γ − β)S0 + γI0) e−(β−γ)t − βI0

.

(3.6)

and this ensures that the time-dependent non-homogeneous Dirichlet boundary con-
dition at x = L is satisfied.

This completes the closed-form solution of the diffusive SIS model subject to
the initial conditions (3.1) and boundary conditions (3.2).

3.2. Influenza outbreak

In the context of studying the spread of influenza within a localized community, the
diffusive SIS model offers valuable insights into the dynamics of infection transmis-
sion. To gain a comprehensive understanding, we explore the closed-form solutions
and visualize the initial distribution of susceptible and infected individuals graph-
ically. It is vital to understand the initial spatial distribution of susceptible and
infected individuals for control and prevention strategies for influenza outbreak.
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Figure 1. The graphs of initial distribution of susceptible and infected individuals across the domain
for different values of λ =

c4
2c2

when 0 ≤ x ≤ 10.

We can re-write the initial distribution of susceptible and infected individuals
G(x) across the domain:

G(x) = e−λx2

, λ =
c4
2c2

. (3.7)
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The graphical representation of the initial distribution of susceptible and infected
individuals is presented in Figure 1. This graph illustrates the distribution across
the domain for different values of the parameter λ = c4

2c2
when 0 ≤ x ≤ 10. The

parameter λ = c4
2c2

controls the spread and extent of the initial distribution of
susceptible and infected individuals along the domain. As λ decreases, the graph
expands and spreads out to the right. Thus the smaller values of λ indicate a more
spread-out initial distribution. This means that the individuals are more uniformly
distributed along the spatial axis.

Now, we examine the closed-form solution for susceptible individuals (S) and in-
fected individuals (I) provided in equation (3.5), utilizing specific parameter values
sourced from existing literature [18, 22, 25]. The following parameter values have
been selected: c2 = 10, c4 = 1, β = 0.4, γ = 0.2, S0 = 105 − 200, and I0 = 200. We
consider the spatial range 0 ≤ x ≤ 10 and the time interval 0 ≤ t ≤ 200 to visualize
the closed-form solution (3.5) graphically.

We consider the lower diffusion coefficient, δ = 0.02, and the higher diffusion
coefficient, δ = 0.1, to analyze the effect of diffusion coefficient on the trans-
mission dynamics of influenza outbreak. Figure 2 illustrates the relationship be-
tween susceptible individuals S(x) and infected individuals I(x) for fixed values of
t = 20, 30, 50, 70, 200 for the lower diffusion coefficient δ = 0.02 and higher diffusion
coefficient δ = 0.1. Similarly, Figure 3 illustrates the behavior of S(t) and I(t)
for fixed value of x = 0, 2, 4, 6, 10. The surface plots illustrating the behavior of
S(t, x) and I(t, x) are provided in Figure 4. The path of susceptible and infected
individuals follow a lower trajectory for higher values of distance, x. This indicates
that the density of susceptible and infected individuals decreases with distance from
the source of infection. The number of susceptible individuals, S, decreases with
time and then stabilizes. The number of infected individuals increases with time,
reaches a peak, and then decreases. This pattern reflects an initial rapid spread
of infection followed by recovery and susceptibility. Similar dynamics are observed
across different locations for both lower and higher diffusion coefficients.

Upon closer examination of figures 2-4, we gain significant observations regarding
the behavior of both the infected and susceptible populations which allow us to
analyze the effect of the diffusion coefficient on the transmission dynamics of an
influenza outbreak. A unique pattern emerges at the boundaries: the source of the
disease at x = 0 and a distant location at x = 10. For the higher diffusion coefficient,
δ = 0.1, the reduction in the number of susceptible individuals is more evident at
x = 0 as time t progresses. In contrast, with a lower diffusion coefficient δ = 0.02,
the decline in susceptible individuals at x = 0 is less significant over the same time
period. Meanwhile, at the boundary x = 10, a different trend emerges. As time t
progresses, the number of susceptible individuals increases more rapidly when the
diffusion coefficient is higher δ = 0.1 compared to when it is lower δ = 0.02. In the
rest of spatial domain 0 < x < 10, as time t approaches t = 50, there is a distinct
and sudden decline in the susceptible population, corresponding to the period of
rapid infection spread. This decline coincides with the rise in the number of infected
individuals, indicating a swift expansion of the influenza outbreak. Beyond t = 50,
as the number of infected individuals starts to decrease, the susceptible population
stabilizes. These trends highlight the accelerated spread of influenza through the
population with an elevated diffusion coefficient. Such dynamics in the susceptible
population’s response emphasize the substantial influence of the diffusion coefficient
δ on the course of influenza transmission.
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Figure 2. Graphs of S(x) and I(x) for lower (δ = 0.02) and higher (δ = 0.1) diffusion coefficients with
c2 = 10, c4 = 1, β = 0.4, γ = 0.2, S0 = 105 − 200, I0 = 200, over spatial range 0 ≤ x ≤ 10.

0 50 100 150 200

t

2

4

6

8

S
(t

) 
fo

r 
 =

 0
.0

2

104

0 50 100 150 200

t

1

2

3

4

I(
t)

 f
o

r 
 =

 0
.0

2

104

0 50 100 150 200

t

2

4

6

8

S
(t

) 
fo

r 
 =

 0
.1

104
x = 0

x = 2

x = 4

x = 6

x = 10

0 50 100 150 200

t

1

2

3

I(
t)

 f
o

r 
 =

 0
.1

104

Figure 3. Graphs of S(t) and I(t) for lower (δ = 0.02) and higher (δ = 0.1) diffusion coefficients with
c2 = 10, c4 = 1, β = 0.4, γ = 0.2, S0 = 105 − 200, I0 = 200, over time interval 0 ≤ t ≤ 200.

Shifting focus to the infected population, a careful analysis of figures 2-4 reveals
that the number of infected individuals increases as time t approaches t = 50,
subsequently declining as time progresses and same trend is observed across different
values of x. Notably, at the boundary x = 0, the number of infected individuals is
significantly higher for δ = 0.02 than for δ = 0.1. This finding aligns well with our
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expectations, as a higher diffusion coefficient δ signifies increased mobility, leading
to fewer individuals clustering near the boundary x = 0. For higher values of both x
and t, a noticeable increase in the number of infected individuals is observed when
δ = 0.1 than for δ = 0.02. This pattern corresponds to the intuitive understanding
that a greater diffusion coefficient expedites the movement of infected individuals,
thereby accelerating the propagation of the influenza outbreak.

These insights have important implications for developing efficient public health
strategies. The speed at which the influenza spreads is significantly related to dif-
fusion coefficients, as shown by our investigation of how influenza spreads over
time and across spatial domain. This indicates that we can specifically target
places where the infection is expected to spread more quickly when planning in-
terventions, especially within neighborhood boundaries. We can more effectively
distribute resources, such as vaccination programmes, quarantine measures, and
medical facilities by identifying these high-risk areas. This will help to limit the
outbreak’s adverse effects. By considering the specific factors that influence dis-
ease transmission at boundaries, this particular strategy holds great potential as an
effective means of managing and containing infectious disease epidemics.

Figure 4. Surface plots of S and I for lower (δ = 0.02) and higher (δ = 0.1) diffusion coefficients with
parameters: c2 = 10, c4 = 1, β = 0.4, γ = 0.2, S0 = 105 − 200, I0 = 200 over time interval 0 ≤ t ≤ 200
and spatial range 0 ≤ x ≤ 10.

4. Conclusions

We established the closed-form solutions of the diffusive SIS epidemic model us-
ing Lie point symmetries. The model admitted a four-dimensional Lie algebra.
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We utilized different combinations of Lie symmetries to obtain reductions and
closed-form solutions for the diffusive SIS model. The most general Lie symme-
try generator led to the reduction of the given system of two second-order PDEs
to a system of two second-order ODEs (2.6). The combination of Lie symmetries
X2, X3, and X4 yielded the closed-form solution (2.10). Another closed-form solu-
tion, provided in equation (2.14), was established by utilizing the combination of
Lie symmetries X2 and X3. We explained in detail that reductions and closed-form
solutions for all other combinations of Lie symmetries can be directly deduced from
these results.

We considered appropriate initial and boundary conditions to explore the biolog-
ical relevance of these closed-form solutions. We utilized the closed-form solutions
to study the transmission dynamics of an influenza outbreak with Gaussian initial
distributions. We plotted graphs for the susceptible and infected populations. We
considered the lower diffusion coefficient and higher diffusion coefficient to analyze
the transmission dynamics of the influenza outbreak.
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