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EXPLICIT PEAKON SOLUTIONS TO A
FAMILY OF WAVE-BREAKING EQUATIONS

Lijun Zhang1,†, Jianming Zhang2, Yuzhen Bai3, Robert Hakl4

Abstract The singular traveling wave solutions of a general 4-parameter fam-
ily equation which unifies the Camass-Holm equation, the Degasperis-Procesi
equation and the Novikov equation are investigated in this paper. At first, we
obtain the explicit peakon solutions for one of its specific case that a = (p+2)c,
b = (p + 1)c and c = 1, which is referred to a generalized Camassa-Holm-
Novikov (CHN) equation, by reducing it to a second-order ordinary differ-
ential equation (ODE) and solving its associated first-order integrable ODE.
By observing the characteristics of peakon solutions to the CHN equation,
we construct the peakon solutions for the general 4-parameter breaking wave
equation. It reveals that singularities of the peakon solutions come up only
when the solutions attain singular points of the equation, which might be a
universal principal for all singular traveling wave solutions for wave breaking
equations.

Keywords wave-breaking equations, singular wave solutions, peakon solu-
tions, singular line.
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1. Introduction

There have been a considerable amount of nonlinear wave equations proposed in
recent decades to describe the propagation of shallow water waves, especially the e-
quation in form ut−utxx = f(u, ux, uxx, uxxx) to model breaking waves, for instance
the Camassa-Holm equation [3]

ut − utxx + 3uux − 2uxuxx − uuxxx = 0, (1.1)

the Degasperis-Procesi equation [5]

ut − utxx + 4uux − 3uxuxx − uuxxx = 0, (1.2)

the Novikov equation [21]

ut − utxx + 4u2ux − 3uuxuxx − u2uxxx = 0, (1.3)
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the b−equation [9, 23]

ut − utxx + (b+ 1)uux − buxuxx − uuxxx = 0 (1.4)

and the θ−class equation [10]

ut − utxx + uux + (θ − 1)uxuxx − θuuxxx = 0. (1.5)

Among these equations, the first three ones have been shown to be integrable in
the sense of possessing a Lax pair, a bi-Hamiltonian structure, as well as local
conservation laws, and all to admit peakon solutions [19] in the form

u(x, t) = αe−|x−vt|. (1.6)

It is testified [10] that the θ−class equation (1.5) admits peakon solutions for the
case when 0 < θ < 1

2 , while every strong solution exists globally in time for the
case when 1

2 ≤ θ ≤ 1. Actually, by a time rescaling transformation t→ t/θ, (1.5) is
transformed to (1.4) with b = 1/θ − 1, thus equations (1.4) and (1.5) are of same
family.

Recently a more general 4-parameter family equation, which unifies the Camassa-
Holm equation, the Degasperis-Procesi equation and the Novikov equation, is pro-
posed [1] and given by

ut − utxx + aupux − bup−1uxuxx − cupuxxx = 0, (1.7)

where a, b and c are not all zero parameters and p 6= 0. It has been proven that
[1] (1.7), as well as the Camassa-Holm and the Novikov equations, admits single-
solitary peakon solutions of the form (1.6) and multi-peakon solutions if and only
if its parameters satisfy b = (p + 1)c, a = (p + 2)c and p > −1. In this case, (1.7)
reduces to a one-parameter family of equation which can be written as

mt + (p+ 1)up−1uxm+ upmx = 0, m = u− uxx, (1.8)

via the scaling transformation t → t/c. Equation (1.8) is referred to a generalized
Camassa-Holm-Novikov equation since it unifies the Camassa-Holm equation and
the Novikov equation. For two specific cases of equation (1.8) that p = 2 and p = 3
have been investigated in [26] recently. It is well known that the peakon solution is
charactered by having discontinuities in the first derivative at its peak. The peakon
solutions of the Camassa-Holm equation are orbital stable in the H1 norm [4], which
means that these wave patterns are physically recognizable.

As is well known, the traveling wave solutions are a class of invariant solutions
of PDEs which usually [20, 24] admit the two Lie point symmetries X1 = ∂

∂x and

X2 = ∂
∂t , and thus ξ = x − vt is an invariant which can be applied to reduce

nonlinear PDEs to ODEs. Under the traveling wave frame, that is, by supposing
u(x, t) = φ(ξ), equation (1.7) becomes the following third-order ODE

(v − cφp)φ′′′ − bφp−1φ′φ′′ + (aφp − v)φ′ = 0, (1.9)

and equation (1.8) leads to

(v − φp)φ′′′ − (p+ 1)φp−1φ′φ′′ + ((p+ 2)φp − v)φ′ = 0, (1.10)

where ′ denotes the derivative with respect to ξ.
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From the mathematical point of view, it is easy to interpret the solutions of
the third-order ODEs (1.9) and (1.10) in C3(R) space. However, the ”blow-up”
phenomena has been seen often in application world which implies that the solutions
of some nonlinear wave equations arising in the investigation of some fundamental
physical problem may lose their smoothness, that is to say that the solutions may
blow up some times [14,15,23,26]. Therefore, it is necessary to extend the classical
solutions to weak solutions which are usually named as singular wave solutions for
nonlinear wave equations. Clearly, equation (1.9) has singularities when v − cφp =
0. There have been various methods proposed [2, 6–8, 11, 12, 16–18, 22, 25, 27, 28]
to investigate the exact solutions of nonlinear wave equations, among which the
dynamical system method has been well applied to study the bifurcations and exact
traveling wave solutions of some nonlinear wave equations, especially integrable
equations and singular wave equations [7, 12,16,17,19,26,27].

In the current paper, we pay attentions to the problem how to define or extend
the solutions of nonlinear wave equations with singularities which approach or reach
the straight lines and examine the exact singular traveling wave solutions. We will
show that the general nonlinear wave equation (1.7) possess singular traveling wave
solutions as well as one of its specific case when b = (p+1)c, a = (p+2)c and c = 1,
namely, the integrable equation (1.8) by using the singular line and their solvable
sub-equation.

This paper is arranged as follows. In Section 2, we introduce the definition of
weak traveling wave solutions for the general four-parameter equation (1.7) and
the definition of singular traveling wave solutions of a specific case of its, namely
equation (1.8), which include solitary peakon, periodic peakon, solitary cuspon and
periodic cuspon. The explicit peakon solutions of equation (1.8) are investigated via
(2.5) in Section 3. For some specific case of (1.7) with a = (p+1)c and b = (p+2)c,
motivated by the derived exact peakon solutions for (1.8), we find a sub-equation
of the associated traveling wave equation (1.9) from which we obtain some explicit
peakon solutions of equation (1.7) in Section 4.

2. Preliminary

The weak singular traveling wave solutions for a wave equation are interpreted as
functions satisfying the model equation in the sense of distributions [7,12,13]. That
is, after multiplying the higher-order differential equation in φ by a test function ψ ∈
C∞0 (R), and integrating over R, reducing the orders of the derivatives in φ by using
integral by parts and leaving at most first-order derivative of φ in the integral, the
higher-order differential equation of φ is transformed into a first-order differential
equation involving an arbitrary test function. For the general 4-parameter family
equation (1.7) we present the definition of weak traveling wave solutions as follows.

Definition 2.1. We say that φ(ξ) = φ(x− vt) is a weak traveling wave solution of
(1.7), if φ(ξ) ∈W 1,3

loc (R) and satisfies∫
R

(v(ψ′′ − ψ)φ′ + (aψ − cψ′′)φpφ′) dξ +
1

2
(b− 3cp)

∫
R
φp−1φ′2ψ′dξ

+
1

2
(p− 1)(b− cp)

∫
R
φp−2φ′3ψdξ = 0,

(2.1)

for any test function ψ ∈ C∞0 (R).



1990 L. Zhang, J. Zhang, Y. Bai & R. Hakl

It is easy to see that this definition generalizes the classical traveling wave solu-
tions significantly. However, it turns out that this concept is too rude to make the
weak solutions meaningful in the physical point of view. For instance, it is shown
in [13] that the Camassa-Holm equation can have traveling wave solutions (by this
definition) in the form u = φ(ξ) such that some of its level sets {φ(ξ) = k} are
cantor sets, which might be only mathematical meaningful. Consequently, besides
the condition (2.1), some extra restriction should be imposed on the definition of
traveling wave solutions.

For equation (1.10), that is, the specific case of equation (1.9) with a = (p+ 1)c,
b = (p+2)c and c = 1, after multiplying by φ on its both sides and then integrating
once with respect to the new variable ξ, one has the following second-order ODE:

2φ(v − φp)φ
′′
− v(φ′)2 + φ2(2φp − v) = g, (2.2)

where g is the constant of integration. For any φ ∈ C2(R) having φ(v − φp) 6= 0, it
admits that

d

dξ

(
1

φ
[v − φp]

1
p (φ′2 +

g

v
− φ2)

)
=

φ′

φ2[v − φp]
p−1
p

(
2φ(v − φp)φ

′′
− v(φ′)2 + φ2(2φp − v)− g

)
.

(2.3)

Here and hereafter we denote [v − φp] = |v − φp| if p is an even number and
[v − φp] = v − φp if p is an odd integer. Consequently, any classical solution of
(1.10) with φ(v − φp) 6= 0 naturally satisfies

1

φ
[v − φp]

1
p

(φ′2 +
g

v
− φ2) = h (2.4)

for some constant h ∈ R. We rewrite (2.4) as

[v − φp]
1
p

(φ′2 +
g

v
− φ2)− hφ = 0 (2.5)

to include the case that φ = 0. Clearly for a solution φ(ξ) of (2.2), we can see that
if φ(ξ0) = 0 then φ′(ξ0) = − gv , so it satisfies (2.5) too. Therefore, any classical
solution of (1.10) or (2.2) with φp(ξ) 6= v must satisfy (2.5) for some constant h
automatically.

Inversely, we consider the solutions of (2.5). If φp(ξ) 6= v, (2.5) can be rewritten
as

φ′2 =
hφ

[v − φp]
1
p

+ φ2 − g

v
. (2.6)

Furthermore, for arbitrary real number h and an open interval I ⊂ R, if φ(ξ) ∈
C1(I) is not identically a constant on any subinterval of I, then we have

φ′′ = φ+ sgn(v − φp) hv

2[v − φp]
p+1
p

(2.7)

by differentiating (2.6) once with respect to ξ (refer to [12] for more detail). Sub-
stituting (2.6) and (2.7) into (2.2) makes (2.2) an identity, which implies that φ(ξ)
defined by (2.4) solves (2.2). Consequently, we have the following conclusion.
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Lemma 2.1. Suppose that I is an open interval and φ ∈ C2(I). If φp 6= v, then
φ solves (2.2) if and only if there are some values of g and h such that φ satisfies
(2.5).

From Lemma 2.1, one knows that the classical solutions of (2.5) with φ′ 6≡ 0 on
any interval are also the classical solutions of (2.2). Therefore, (2.5) can be applied
to study the classical solutions of (2.2 ) and then derive the smooth traveling wave
solutions of (1.8). Since (2.5) is well defined when φ = 0 for the case when vg < 0,
the singularity appears only at φ = φe, where φpe = v.

Based on the previous analysis and Lemma 2.1, we impose further conditions
on the definition of traveling wave solutions of (1.8).

Definition 2.2. We say that a non-constant function φ(ξ) = φ(x−vt) is a traveling
wave solution of (1.8), if φ(ξ) ∈W 1,3

loc (R) and satisfies the following statements:
(1) It satisfies (2.1) with a = p+ 2, b = p+ 1 and c = 1;
(2) There exist some g and h such that (2.5) holds for φ(ξ) in the limit sense,

that is, φ(ξ) satisfies

lim
ξ→ξ0

(
|v − φp|

1
p

(φ′2 +
g

v
− φ2)− hφ

)
= 0 (2.8)

for arbitrary ξ0 ∈ R.
Furthermore, we say that φ(ξ) = φ(x− vt) is a singular traveling wave solution

if φ(ξ) ∈W 1,3
loc (R)\C2(R), namely, there exists ξ0 where φ(ξ) loses its smoothness.

Obviously, the classical solutions of (1.8) with v − φp 6= 0 satisfy the above
definition naturally. It follows from Definition 2.2 that for a singular traveling wave
solution of (1.8) φ(ξ) = φ(x − vt), if there is ξ0 ∈ R such that φp(ξ0) = v, then
lim
ξ→ξ0

φ′2 =∞ for h 6= 0, and lim
ξ→ξ0

(φ′2 − φ2 + g
v ) = 0 for h = 0.

There are two possible cases that this definition extend the classical solution set
of (1.8):

Case (1) φ′(ξ)→ ±A (A 6= 0) as ξ → ξ±0 , where |A| =
√
v

2
p − g

v ;

Case (2) φ′(ξ)→ ±∞ as ξ → ξ±0 .
Here ξ → ξ+0 (resp. ξ → ξ−0 ) means ξ > ξ0 (resp. ξ > ξ0 ) and ξ → ξ0. For

Case (1) and Case (2), we know that φ′(ξ0) fails to exist but (2.5) holds for some
h in the sense of limit and thus φ might be a singular traveling wave solution of
(1.8). Note that some well-known singular traveling wave solutions, such as solitary
peakon, solitary cuspon, periodic peaked and periodic cusped wave solutions, are
right the traveling wave solutions having some points where the derivatives satisfy
Case (1) or Case (2). Here we recall the definitions.

Definition 2.3. For nonlinear wave equation, we say that a traveling wave solution
φ(ξ) = φ(x− vt) is a

(1) solitary peakon if there exist ξ0 ∈ R and some constants A and A′ such that

lim
ξ→ξ+0

φ′(ξ) = −lim
ξ→ξ−0

φ′(ξ) = A 6= 0; (2.9)

and
lim

ξ→∞φ
′(ξ) = 0, lim

ξ→∞φ(ξ) = A′ (2.10)

(2) periodic peakon if φ(ξ) is periodic solution which attains its peak (or valley)
at ξ = ξ0 + kT, (k ∈ Z), and satisfies (2.9);
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(3) solitary cuspon if φ(ξ) satisfies (2.10) and

lim
ξ→ξ+0

φ′(ξ) = −lim
ξ→ξ−0

φ′(ξ) =∞; (2.11)

(4) periodic cuspon if φ(ξ) is periodic solution which attains its peak (or valley)
at ξ = ξ0 + kT, (k ∈ Z), and satisfies (2.11).

In this paper, we consider the peakon solutions of the generalized Camassa-
Holm-Novikov equation (1.8) as well as the more general equation (1.7) based on
the definitions and analysis presented in this section.

3. Explicit peakon solutions of the generalized
Camassa-Holm-Novikov equation (1.8)

In this section, we focus on the singular traveling wave solutions of the generalized
Camassa-Holm-Novikov equation (1.8). For two specific cases when p = 2 and p = 3,
bifurcations and all possible phase portraits of equation (2.2) as well as peakon and
cuspon solutions of equation (1.8) have been studied by using planar dynamical
system method in [26]. We have noticed from literature, for instance [12,16,17,26],
that the singular traveling wave solutions of nonlinear wave equations always appear
with the presence of singular lines in their associated traveling wave systems.

Let φe be a zero of v−φp = 0, then the line φ = φe will be a singular line of ODE
(2.2) as well as (2.5) for arbitrary positive integer p. Consequently, we predict that
the singular traveling wave solutions of equation (1.8), namely the singular solutions
of third-order ODE (1.10) or second-order ODE (2.2) with certain value of g, have
singularities when φ approaches φe. We know from the definition of peakon solution
that φ → φe and φ′(ξ) → ±A (A 6= 0) as ξ → ξ±0 . Substituting these limits into
(2.4) yields that h = 0. It implies that peakon solutions appear only when h = 0.
When h = 0, equation (2.6) reduces to

φ′2 = φ2 − g

v
. (3.1)

Clearly, solving (3.1) gives

φ(ξ) =


±
√
− gv sinh(ξ) vg < 0,

±
√

g
v cosh(ξ) vg > 0,

α e±ξ g = 0,

(3.2)

for ξ ∈ R and arbitrary α. The solutions defined by (3.2) are unbounded traveling
wave solutions of (1.8) passing through the singular straight line φ = φe. The phase
orbits of (3.1) which intersect with singular lines are presented in Figure 1 and
Figure 2. Integrating along these bounded orbits (orbits not passing through the
singular lines) yields the peakon solutions of equation (1.8).
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cg > 0 cg < 0 g = 0

Figure 1. The orbits determined by (3.1) and the singular lines for p = 2n.

c > 0 & g > 0 c < 0 & g < 0

c > 0 & g = 0 c < 0 & g = 0

Figure 2. The orbits determined by (3.1) and the singular line for p = 2n+ 1.

Theorem 3.1. For the peakon solutions of the generalized Camassa-Holm-Novikov
equation (1.8), we have the following conclusions.

(1) for arbitrary v > 0 and p = 2n, (n ∈ Z+), equation (1.8) has two solitary
peakons

φ(ξ) = ±v
1
p e−|x−vt|; (3.3)

a family of periodic peakons

φ(ξ) =


√
− gv sinh(ξ − 4kξ0) (4k − 1)ξ0 < ξ ≤ (4k + 1)ξ0,

−
√
− gv sinh(ξ − (4k + 2)ξ0) (4k + 1)ξ0 < ξ ≤ (4k + 3)ξ0,

(3.4)
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where k ∈ Z, ξ = x− vt and ξ0 = arcsinh
(
v

1
p (−vg )

1
2

)
for arbitrary g < 0; and two

families of periodic peakons

φ(ξ) = ±
√
g

v
cosh(ξ − 2kξ0), (2k − 1)ξ0 < ξ ≤ (2k + 1)ξ0, (3.5)

where ξ0 = arccosh
(
v

1
p ( vg )

1
2

)
for arbitrary 0 < g < v1+

2
p ;

(2) for arbitrary v 6= 0 and p = 2n− 1, (n ∈ Z+), equation (1.1) has a solitary
peakon

φ(ξ) = v
1
p e−|x−vt|, (3.6)

and two families of periodic peakons

φ(ξ) = sign(v)

√
g

v
cosh(ξ − 2kξ0), (2k − 1)ξ0 < ξ ≤ (2k + 1)ξ0, (3.7)

where ξ0 = arccosh
(

(v/g)
1
2 v(

1
p )
)

for arbitrary g satisfying 0 < vg < v2+
2
p .

Clearly, to prove that the functions defined above are peakon solutions of (1.8),
we only need to prove that they satisfy (2.1), which will be accomplished in the
following section.

4. Explicit peakon solutions of the general 4-parameter
family equation (1.7)

Inspired by the peakon solutions of the generalized Camassa-Holm-Novikov equation
(1.8) derived by solving the first-order ODE (3.1), we show now that equation (3.1)
also defines peakon solutions for the general 4-parameter family equation (1.7) with
a = b+ c.

Lemma 4.1. Let φ = φ(ξ) be a non-trivial solution of φ′′ = φ, then it solves
equation (1.9) if and only if a = b+ c.

Proof. If φ = φ(ξ) satisfies φ′′ = φ, then φ′′′ = φ′. Substituting φ′′ = φ and
φ′′′ = φ′ into (1.9) gives (a − b − c)φpφ′ = 0. Consequently, φ = φ(ξ) defined by
φ′′ = φ is a non-trival solution of equation (1.9) if and only if a = b+ c.

Theorem 4.1. Equation (1.7) with a = b+c admits the peakon solutions as follows:
(1) for arbitrary cv > 0 and p = 2n, (n ∈ Z+), (1.7) has two solitary peakons:

φ(ξ) = ±
(v
c

) 1
p

e−|x−vt|; (4.1)

a family of periodic peakons:

φ(ξ) =

A sinh(ξ − 4kξ0) (4k − 1)ξ0 < ξ ≤ (4k + 1)ξ0,

−A sinh(ξ − (4k + 2)ξ0) (4k + 1)ξ0 < ξ ≤ (4k + 3)ξ0,
(4.2)

where k ∈ Z, ξ = x − vt and ξ0 = arcsinh
(

1
A

(
v
c

) 1
p

)
for arbitrary A > 0; and two

families of periodic peakons:

φ(ξ) = ±A cosh(ξ − 2kξ0), (2k − 1)ξ0 < ξ ≤ (2k + 1)ξ0, (4.3)
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where ξ0 = arccosh
(

1
A

(
v
c

) 1
p

)
for arbitrary 0 < A <

(
v
c

) 1
p ;

(2) for arbitrary v 6= 0 and p = 2n− 1, (n ∈ Z+), (1.7) has a solitary peakon:

φ(ξ) =
(v
c

) 1
p

e−|x−vt|; (4.4)

and a family of periodic peakons:

φ(ξ) = sign(cv)A cosh(ξ − 2kξ0), (2k − 1)ξ0 < ξ ≤ (2k + 1)ξ0, (4.5)

where ξ0 = arccosh
(

1
A

(
v
c

) 1
p

)
for arbitrary 0 < A < |vc |

1
p .

Proof. It has been proven in [1] that functions (3.3) and (3.6) are solitary peakons
for equation (1.7) with c = 1. In a similar way, one can easily see that both (4.1) and
(4.4) are solitary peakons for equation (1.7). To shown that (4.2), (4.3) and (4.5)
are singular traveling wave solutions of (1.7), we examine that (4.2), (4.3) and (4.5)
satisfy (2.1). Now, we testify that it holds for solution (4.2). The other conclusions
can be proved in a similar way. Notice that (4.2) satisfies φ′2 = φ2+A2, φ′′ = φ and
φ′′′ = φ′. One can see that it holds for φ defined by (4.2) that φp((2k + 1)ξ0) = v

c
and φp((2k)ξ0) = 0 for arbitrary k ∈ Z. By using all these information, we can
prove that (4.2) satisfies (2.1).

The first term in equation (2.1) yields, after integration by parts,

∞∑
k=−∞

(∫ (4k+1)ξ0

(4k−1)ξ0
v(ψ′′ − ψ)φ′dξ +

∫ (4k+3)ξ0

(4k+1)ξ0

v(ψ′′ − ψ)φ′dξ

)

=v

∞∑
k=−∞

(φ′ψ′ − φ′′ψ)|(4k+1)ξ0
(4k−1)ξ0 +

∞∑
k=−∞

(φ′ψ′ − φ′′ψ)|(4k+3)ξ0
(4k+1)ξ0

=v

∞∑
k=−∞

(φ′ψ′ − φψ)|(4k+1)ξ0
(4k−1)ξ0 +

∞∑
k=−∞

(φ′ψ′ − φψ)|(4k+3)ξ0
(4k+1)ξ0

=2v
∞∑

k=−∞

φ′ψ′|(4k+1)ξ0
(4k−1)ξ0 .

(4.6)

The second term in (2.1) gives

∞∑
k=−∞

∫ (2k+1)ξ0

(2k−1)ξ0
aφpφ′ψdξ − 2c

∞∑
k=−∞

φpφ′ψ′|(4k+1)ξ0
(4k−1)ξ0

+

∞∑
k=−∞

c

∫ (2k+1)ξ0

(2k−1)ξ0
ψ′(φpφ′)′dξ = −2c

∞∑
k=−∞

φpφ′ψ′|(4k+1)ξ0
(4k−1)ξ0

∞∑
k=−∞

∫ (2k+1)ξ0

(2k−1)ξ0
(aφp − c(p+ 1)2φp − cp(p− 1)A2φp−2)φ′ψdξ.

(4.7)
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Substituting φ′2 = φ2 +A2 in the sum of the third and fourth term of (2.1) leads to

1

2
(b− 3cp)

∞∑
k=−∞

∫ (2k+1)ξ0

(2k−1)ξ0
φp−1(φ2 +A2)ψ′dξ

+
1

2
(p− 1)(b− cp)

∫ (2k+1)ξ0

(2k−1)ξ0
φp−2(φ2 +A2)φ′ψdξ

=− 1

2
(b− 3cp)

∞∑
k=−∞

∫ (2k+1)ξ0

(2k−1)ξ0
((p+ 1)φp +A2(p− 1)φp−2)φ′ψdξ

+
1

2
(p− 1)(b− cp)

∫ (2k+1)ξ0

(2k−1)ξ0
(φp +A2φp−2)φ′ψdξ.

(4.8)

Combining (4.6)-(4.8) and substituting them in the left side of (2.1), we have

∞∑
k=−∞

2(v − cφp)φ′ψ′|(4k+1)ξ0
(4k−1)ξ0 +

∞∑
k=−∞

∫ (2k+1)ξ0

(2k−1)ξ0
(a− b− c)φpφ′ψdξ,

which is equivalent to 0 since a − b − c = 0 and φp((2k + 1)ξ0) = v
c for arbitrary

k ∈ Z. Similarly, we can prove that (4.2) and (4.3) also satisfy (2.1), which implies
that functions (4.1)-(4.3) satisfy (2.9) in the sense of distribution, that is, they
are weak traveling wave solutions of (1.7). One can easily see from the formula of
function (4.2) that it satisfies Definition 2.3 for periodic peakon. It completes the
proof.
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