[1]
|
D. Hilbert, Mathematical problems(M. Newton, Transl.), Bull. Amer. Math., 8(1902), 437-479.
Google Scholar
|
[2]
|
N. N. Bautin, On the number of limit cycles which appear with the variation of coe-cients from an equilibrium position of focus or center type, Mat. Sbornik (N.S.), 30(1952), 181-196.
Google Scholar
|
[3]
|
J. Li and J. Bai, The cyclicity of multiple Hopf bifurcation in planar difierential cubic systems:M(3) ≥ 7, Preprint, Hunming Institute Technology, 1989.
Google Scholar
|
[4]
|
C. J. Christopher and N. G. Lloyd, On the paper of Jin and Wang concerning the conditions for a centre in certain cubic systems, Bull. London Math. Soc., 22(1990), 5-12.
Google Scholar
|
[5]
|
N. G. Lloyd, T. R. Blows, M. C. Kalenge, Some cubic systems with several limit cycles, Nonlinearity, 1(1988), 653-669.
Google Scholar
|
[6]
|
A. P. Sadovskii, Cubic systems of nonlinear oscillations with seven limit cycles, Difierential Equations, 39(2003), 505-516. (Translated from Difierentsial'nye Uravneniy, 39(4)(2003),472-481.
Google Scholar
|
[7]
|
E. M. James, N. G. Lloyd, A cubic system with eight small-amplitude limit cycles, IMA J. Appl. Math., 47(1991), 163-171.
Google Scholar
|
[8]
|
P. Yu and R. Corless, Symbolic computation of limit cycles associated with Hilbert's 16th problem, Communications in Nonlinear Science and Numerical Simulation, 14(2009), 4041-4056.
Google Scholar
|
[9]
|
M. Han, Y. Lin and P. Yu, A study on the existence of limit cycles of a planar system with 3rd-degree polynomials, Int. J. Bifurcation and Chaos, 14(2004), 41-60.
Google Scholar
|
[10]
|
J. Li, Hilbert's 16th problem and bifurcations of planar polynomial vector flelds, Int. J. Bifurcations and Chaos, 13(2003), 47-106.
Google Scholar
|
[11]
|
T. Zhang, H. Zang and M. Han, Bifurcation of limit cycles in a cubic system, Chaos, Solitons and Fractals, 20(2004), 629-638.
Google Scholar
|
[12]
|
P. Yu and M. Han, Twelve limit cycles in a 3rd-order planar system with Z2 symmetry, Communication on Pure and Applied Analysis, 3(2004), 515-526.
Google Scholar
|
[13]
|
P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, Int. J. Bifurcation and Chaos, 15(2005), 2191-2205.
Google Scholar
|
[14]
|
P. Yu and M. Han, Small limit cycles bifurcating from flne focus points in cubic order Z2-equivariant vector flelds, Chaos, Solitons and Fractals, 24(2005), 329-348.
Google Scholar
|
[15]
|
C. Li, L. Liu and J. Yang, A cubic system with thirteen limit cycles, J. Difi. Eqns 246(2009), 3609-3619.
Google Scholar
|
[16]
|
Y. Liu and J. Li, New results on the study of Zq-equivariant planar polynomial vector flelds, Qual. Theory Dyn. Syst., 9(2010), 167-219.
Google Scholar
|
[17]
|
J. Yang, M. Han, J. Li and P. Yu, Existence conditions of thirteen limit cycles in a cubic system, Int. J. Bifurcation and Chaos, 20(2010), 2569-2577.
Google Scholar
|
[18]
|
H. Żolądek, _Quadratic systems with center and their perturbations, J. Difi. Eqns., 109(1994), 223-273.
Google Scholar
|
[19]
|
P. Yu, Computation of normal forms via a perturbation technique, J. Sound and Vib., 211(1998), 19-38.
Google Scholar
|