[1]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(I) Saddle loop and two saddle cycle, J. Differential Equations, 176(2001), 114-157.
Google Scholar
|
[2]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(Ⅱ) Cuspidal loop, J. Differential Equations, 175(2001), 209-243.
Google Scholar
|
[3]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four:(IV) Figure eight-loop, J. Differential Equations, 88(2003), 512-514.
Google Scholar
|
[4]
|
F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems, Springer-Verlag Berlin Heidelberg, 2006.
Google Scholar
|
[5]
|
L. Gavrilov, I.D. Iliev, Complete hyperelliptic integrals of the first kind and their non-oscillation, Trans. Amer. Math. Soc., 356(2004), 1185-1207.
Google Scholar
|
[6]
|
M. Grau, F. Mañosas and J. Villadelprat, A Chebyshev criterion for Abelian integrals, Trans. Amer. Math. Soc., 363(2011), 109-129.
Google Scholar
|
[7]
|
M. Han, Liapunov constants and Hopf cyclicity of Liénard systems, Ann. Differential Equations, 15(1999), 113-126.
Google Scholar
|
[8]
|
M. Han, J. Yang and P.Yu, Hopf bifurcations for near-Hamiltonian systems, Int. J. Bifur. Chaos, 19:12(2009), 4117-4130.
Google Scholar
|
[9]
|
G.S. Rychkov, Some criteria for the presence and absence of limit cycles in a second order dynamical system, Sibirsk. Mat. Z., (1966), 1425-1431.[in Russian]
Google Scholar
|
[10]
|
X. Sun, M. Han and J. Yang, Bifurcation of limit cycles from a heteroclinic loop with a cusp, Nonlinear Analysis, 74(2011), 2948-2965.
Google Scholar
|
[11]
|
J. Wang and D. Xiao, On the number of limit cycles in small perturbations of a class of hyper-elliptic Hamiltonian systems with one nilpotent saddle, J. Differential Equations, 250(2011), 2227-2243.
Google Scholar
|
[12]
|
D. Xiao, Bifurcations on a five-parameter family of planar vector field, J Dyn Differ Eqn, 20:4(2008), 961-980.
Google Scholar
|
[13]
|
J. Yang and M. Han, Limit cycle bifurcations of some Liénard systems with a cuspidal loop and a homoclinic loop, Chaos, Solitons and Fractals, 44(2011), 269-289.
Google Scholar
|