[1]
|
S. Anita, Analysis and Control of Age-Dependent Population Dynamics, Kluwer, Dordrecht, 2000.
Google Scholar
|
[2]
|
O. Arino, E. Sanchez, R. Bravo de la Parra and P. Auger, A singular perturbation in an age-structured population model, SIAM J. Appl. Math., 60(1999), 408-436.
Google Scholar
|
[3]
|
D.P. Armtsrong, R. S. Davidson, J.K. Perrott, J. Roygard and L. Buchanan, Density-dependent population growth in a reintroduced population of North Island saddlebacks, Journal of Animal Ecology, 74(2005), 160-170.
Google Scholar
|
[4]
|
A.G. Blundell and D.R. Peart, Density-dependent population dynamics of a dominant rain forest canopy tree,Ecology, 85(2004), 704-715.
Google Scholar
|
[5]
|
R. Bravo de la Parra, E. Sanchez, O. Arino and P. Auger, Time Scales in Density Dependent Discrete Models, Journal of Biological Systems, 5(1997), 111-129.
Google Scholar
|
[6]
|
R. Bravo de la Parra, E. Sanchez, O. Arino and P. Auger, A discrete model with density dependent fast migration,Mathematical Biosciences, 157(1999), 91-109.
Google Scholar
|
[7]
|
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2010.
Google Scholar
|
[8]
|
T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford Sciences Publications, 2006.
Google Scholar
|
[9]
|
J. Cushing, An Introduction to Structured Population Dynamics, SIAM, Philadelphia, 1998.
Google Scholar
|
[10]
|
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
Google Scholar
|
[11]
|
W.S. Gurney and R. M. Nisbet, Age-and density-dependent population dynamics in static and variable environments, Theor. Popul. Biol., 17(1980), 321-344.
Google Scholar
|
[12]
|
J.E. Franke and A.Yakubu, Mutual exclusion versus coexistence for discrete competitive systems, Journal of Mathematical Biology, 30(1991), 161-168.
Google Scholar
|
[13]
|
M. Iannelli, Mathematical theory of age-structured population dynimics, Giadini Editori in Pisa, 1994.
Google Scholar
|
[14]
|
L. Liu and J. E. Cohen, Equilibrium and local stability in a logistic matrix model for age-structured populations, Journal of Mathematical Biology, 25(1987), 73-88.
Google Scholar
|
[15]
|
K. Lorenzen and K. Enberg, Density-dependent growth as a key mechanism in the regulation of fish populations:evidence from among-population comparisons, Proc. R. Soc. Lond. B, 269(2002), 49-54.
Google Scholar
|
[16]
|
P. Magal, and S. Ruan, On Integrated Semigroups and Age Structured Models in Lp Spaces, Differential and Integral Equations, 20(2007), 197-139.
Google Scholar
|
[17]
|
P. Magal and S. Ruan, On Semilinear Cauchy Problems with Non-dense Domain, Advances in Differential Equations, 14(2009), 1041-1084.
Google Scholar
|
[18]
|
P. Magal and S. Ruan, Center Manifolds for Semilinear Equations with Nondense Domain and Applications to Hopf Bifurcation in Age Structured Models, Memoirs of the American Mathematical Society, 202:951(2009).
Google Scholar
|
[19]
|
R. H. Martin, Nonlinear Operators and Differential Equations in Banach spaces, John Wiley & Sons, 1976.
Google Scholar
|
[20]
|
B. Perthame, Transport equations in biology, Frontiers in Mathematics. Birkhäuser Verlag, Basel, 2007.
Google Scholar
|
[21]
|
R.J. Putman, J. Langbein, A.J. M. Hewison and S.K. Sharma, Relative roles of density-dependent and density-independent factors in population dynamics of British deer, Mammal Review, 26(2008), 81-101.
Google Scholar
|
[22]
|
W.E. Ricker, Stock and recruitment, J. Fish. Res. Board Can., 11(1954), 559-623.
Google Scholar
|
[23]
|
W.E. Ricker, Computation and interpretation of biological studies of fish populations, Bull. Fish. Res. Board Can., 191(1975).
Google Scholar
|
[24]
|
C. Rorres, Stability of an age specific population with density dependent fertility, Theor. Popul. Biol., 10(1976), 26-46.
Google Scholar
|
[25]
|
C. Rorres, Local stability of a population with density-dependent fertility, Theor. Popul. Biol., 16(1979), 283-300.
Google Scholar
|
[26]
|
C. Rorres, A nonlinear model of population growth in which fertility is dependent on birth rate, SIAM J. Appl. Math., 37:2(1979), 423-432.
Google Scholar
|
[27]
|
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.
Google Scholar
|
[28]
|
H.R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152(1990), 416-447.
Google Scholar
|
[29]
|
H. R. Thieme, Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem, J. Evol. Equ., 8(2008), 283-305.
Google Scholar
|
[30]
|
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.
Google Scholar
|
[31]
|
S. Tang and L. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences, Journal of Mathematical Biology, 44(2002), 185-199.
Google Scholar
|
[32]
|
G.F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, 1985.
Google Scholar
|