[1]
|
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.Japan, 2(1950), 64-66.
Google Scholar
|
[2]
|
T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math., 11:3(2003), 687-705.
Google Scholar
|
[3]
|
T.Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst., 151(2005), 513-547.
Google Scholar
|
[4]
|
R. Biswas, Fuzzy inner product space and fuzzy norm functions, Inform. Sci., 53(1991), 185-190.
Google Scholar
|
[5]
|
I.S. Chang and H.M. Kim, On the Hyers-Ulam Stability of Quadratic Functional Equations, J. Inequal. Pure Appl. Math., 3(2002), Art. 33.
Google Scholar
|
[6]
|
S.C. Cheng and J.N.Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcuta Math. Soc., 86(1994), 429-436.
Google Scholar
|
[7]
|
P.W.Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984) 76-86.
Google Scholar
|
[8]
|
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ.Hamburg, 62(1992), 59-64.
Google Scholar
|
[9]
|
C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst., 48(1992), 239-248.
Google Scholar
|
[10]
|
P.Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436.
Google Scholar
|
[11]
|
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(1941), 222-224.
Google Scholar
|
[12]
|
K. W. Jun and H. M. Kim, The Generalized Hyers-Ulam-Rassias Stability of a Cubic Functional Equation, J. Math. Anal. Appl., 274(2002), 867-878.
Google Scholar
|
[13]
|
Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27(1995), 368-372.
Google Scholar
|
[14]
|
A.K.Katsaras, Fuzzy topological vector spaces Ⅱ, Fuzzy Sets Syst., 12(1984), 143-154.
Google Scholar
|
[15]
|
I.Kramosil and J.Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11(1975), 326-334.
Google Scholar
|
[16]
|
A.K.Mirmostafaee and M.S.Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets Syst., 159(2008), 720-729.
Google Scholar
|
[17]
|
A.K.Mirmostafaee and M.S. Moslehian, Fuzzy almost quadratic functions, Results Math., doi:10.1007/s00025-007-0278-9.
Google Scholar
|
[18]
|
A. Najati and C. Park, On the Stability of a Cubic Functional Equation, to appear in the Acta Math. Sinica (English Series).
Google Scholar
|
[19]
|
K. H. Park and Y.S. Jung, Stability for a cubic functional equation, Bull. Korean Math. Soc., 41:2(2004), 347-357.
Google Scholar
|
[20]
|
J.M. Rassias, On approximation of approximately linear mappings by linear mapping, J.Funct. Anal., 46:1(1982), 126-130.
Google Scholar
|
[21]
|
J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull.Sci. Math. (2), 108:4(1984), 445-446.
Google Scholar
|
[22]
|
Th. M. Rassias, On the stability of the linear mapping in Banacb spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
Google Scholar
|
[23]
|
K.Ravi, P. Narasimman and R. Kishore Kumar, Generalized Hyers-Ulam-Rassias stability and J.M. Rassias stability of a quadratic functional equation, IJMSEA, 3:2(2009), 79-94.
Google Scholar
|
[24]
|
K.Ravi, R. Kodandan and P.Narasimman, Ulam stability of a quadratic Functional Equation, International Journal of Pure and Applied Mathematics, 51:1(2009), 87-101.
Google Scholar
|
[25]
|
K.Ravi, M.Arunkumar, J.M.Rassias, On the Ulam stability for the Orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematics and statistics, 7(2007), 143-156.
Google Scholar
|
[26]
|
B.Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci., 178(2008), 1961-1967.
Google Scholar
|
[27]
|
F. Skof, Local properties and approximations of operators, Rend. Sem. Mat., Fis Milano, 53(1983), 113-129.
Google Scholar
|
[28]
|
S.M. Ulam, A Colloection of the Mathematical Problems, Interscience Publ., New York, 1960.
Google Scholar
|
[29]
|
Cpmgxin Wu and Jinxuan Fang, Fuzzy generalization of Klomogoroffs theorem, J.Harbin Inst. Technol., 1(1984), 1-7.
Google Scholar
|