[1]
|
S. Abbasbandy, Numerical method for non-linear wave and diffusion equations by the variational iteration method, Internat.J.Numer.Methods Engrg., 73(2008), 1836-1843.
Google Scholar
|
[2]
|
S. Abbasbandy and A. Shirzadi, The variational iteration method for a class of eight-order boundary value differential equations, Zeitschrift Naturforschung A., 63(2008), 745-751.
Google Scholar
|
[3]
|
S. Abbasbandy and E. Shivanian, Application of the variational iteration method for nonlinear Volterra's integro-differential equations, Zeitschrift Naturforschung A., 63(2008), 538-542.
Google Scholar
|
[4]
|
T.A. Abassy, El-Tawil and H.El. Zoheiry, Toward a modified variational iteration method (MVIM), J.Comput.Apll.Math., 207(2007), 137-147.
Google Scholar
|
[5]
|
T.A. Abassy, El-Tawil and H.El. Zoheiry, Modified variational iteration method for Boussinesq equation, Comput.Math.Appl., 54(2007), 955-965.
Google Scholar
|
[6]
|
A.K. Alomari, M.S.M. Noorani and R. Nazar,Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Comm. in Nonlinear Science and Num.Simul., 14(2009), 1196-1207.
Google Scholar
|
[7]
|
J. Biazar, R. Ansari, K. Hosseini and P.Gholamian, Solution of the linear and nonlinear Schrödinger equations using homotopy perturbation and Adomian decomposition methods, Int.Math.Forum., 38(2008), 1891-1897.
Google Scholar
|
[8]
|
J. Biazar and H. Gholamian,Exact solutions for Schrödinger equations by He's homotopy perturbation method, Phys.Lett.A., 366(2007), 79-84.
Google Scholar
|
[9]
|
N. Burq, P. Gerard and N. Tzvetkov,An instability property of the nonlinear Schrödinger equation on the sd, Mathematical Researches Letters., 9(2002), 323-335.
Google Scholar
|
[10]
|
A. Doosthoseini and H. Shahmohamadi, Variational iteration method for solving coupled Schrödinger-KdV equation, Appl.Math.Sci., 4(2010), 823-837.
Google Scholar
|
[11]
|
M.A. Fariborzi Araghi and Sh.S. Behzadi, Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using homotopy analysis method, J.Appl.Math.Comput., In press, 2010.
Google Scholar
|
[12]
|
M.A. Fariborzi Araghi and Sh.S. Behzadi, Solving nonlinear VolterraFredholm integro-differential equations using He's variational iteration method, Int.J.Comput.Math., In press, 2010.
Google Scholar
|
[13]
|
A. Hasegawa, Solitons in optical communications, Clarendon press, Oxford, NY., (1995).
Google Scholar
|
[14]
|
J.H. He, Variational principle for some nonlinear partial differential equations with variable cofficients, Chaos, Solitons and Fractals., 19(2004), 847-851.
Google Scholar
|
[15]
|
J.H. He, Variational iteration method for autonomous ordinary differential system, Appl. Math. Comput., 114(2000), 115-123.
Google Scholar
|
[16]
|
J.H. He and S.Q. Wang,Variational iteration method for solving integrodifferential equations, Physics Letters A., 207(2007), 3-17.
Google Scholar
|
[17]
|
J.H. He, Variational iteration method some recent results and new interpretations, J. Comp. and Appl. Math., 367(2007), 188-191.
Google Scholar
|
[18]
|
F. Khani, S. Hamedi-Nezhad and A. Molabahrami,A reliable treatment for nonlinear Schrödinger equations, Physics Letters A., 371(2007), 234-240.
Google Scholar
|
[19]
|
I.E. Kougias and S. Louvros, Exact analytic Solutions of Schrödinger linear and nonlinear equations, Appl.Math. Comp., In press, 2010.
Google Scholar
|
[20]
|
S.J. Liao, Beyond Perturbation:Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, (2003).
Google Scholar
|
[21]
|
S.J. Liao, Notes on the homotopy analysis method:some definitions and theorems, Communication in Nonlinear Science and Numerical Simulation., 14(2009), 983-997.
Google Scholar
|
[22]
|
M. Onorato, A. R. Osborne, M. Serio and S. Bertone, Freak waves in random oceanic sea states, Phy.Rev.Lett., 86(2001), 5831-5834.
Google Scholar
|
[23]
|
A. Sadeghi and D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations, a study with homotopy perturbation and Adomian decomposition methods, Physics Letter A., 372(2008), 465-469.
Google Scholar
|
[24]
|
N.H. Sweilam,Variational iteration method for solving cubic nonlinear Schrödinger equations, J.Comput.Appl.Math., 207(2007), 155-163.
Google Scholar
|
[25]
|
H. Wang, Numerical studies on the split-step difference method for nonlinear Schrödinger equations, Appl.Math.Comput., 170(2005), 17-35.
Google Scholar
|
[26]
|
A.M. Wazwaz, A study on linear and nonlinear Schrödinger equations by variation iteration method, Chaos Soliton and Fractals., 37(2008), 1136-1142.
Google Scholar
|
[27]
|
S. Yu and G. P. Agrawal, Optical solutions:From Fibers to photonic crystals, Academic press, San diego., (2003).
Google Scholar
|
[28]
|
V.E. Zakharov,Collapse of Langmuir wave, Sov, Phys.JETP., 35(1972), 908-914.
Google Scholar
|