2011 Volume 1 Issue 4
Article Contents

Sh. Sadigh Behzadi. SOLVING SCHRÖDINGER EQUATION BY USING MODIFIED VARIATIONAL ITERATION AND HOMOTOPY ANALYSIS METHODS[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 427-437. doi: 10.11948/2011029
Citation: Sh. Sadigh Behzadi. SOLVING SCHRÖDINGER EQUATION BY USING MODIFIED VARIATIONAL ITERATION AND HOMOTOPY ANALYSIS METHODS[J]. Journal of Applied Analysis & Computation, 2011, 1(4): 427-437. doi: 10.11948/2011029

SOLVING SCHRÖDINGER EQUATION BY USING MODIFIED VARIATIONAL ITERATION AND HOMOTOPY ANALYSIS METHODS

  • In this paper, a nonlinear Schrödinger equation is solved by using the variational iteration method (VIM), modified variational iteration method (MVIM) and homotopy analysis method (HAM) numerically. For each method, the approximate solution of this equation is calculated based on a recursive relation which its components are computed easily. The existence and uniqueness of the solution and the convergence of the proposed methods are proved. A numerical example is studied to demonstrate the accuracy of the given algorithms.
    MSC: 35A15;34B15;34C15
  • 加载中
  • [1] S. Abbasbandy, Numerical method for non-linear wave and diffusion equations by the variational iteration method, Internat.J.Numer.Methods Engrg., 73(2008), 1836-1843.

    Google Scholar

    [2] S. Abbasbandy and A. Shirzadi, The variational iteration method for a class of eight-order boundary value differential equations, Zeitschrift Naturforschung A., 63(2008), 745-751.

    Google Scholar

    [3] S. Abbasbandy and E. Shivanian, Application of the variational iteration method for nonlinear Volterra's integro-differential equations, Zeitschrift Naturforschung A., 63(2008), 538-542.

    Google Scholar

    [4] T.A. Abassy, El-Tawil and H.El. Zoheiry, Toward a modified variational iteration method (MVIM), J.Comput.Apll.Math., 207(2007), 137-147.

    Google Scholar

    [5] T.A. Abassy, El-Tawil and H.El. Zoheiry, Modified variational iteration method for Boussinesq equation, Comput.Math.Appl., 54(2007), 955-965.

    Google Scholar

    [6] A.K. Alomari, M.S.M. Noorani and R. Nazar,Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Comm. in Nonlinear Science and Num.Simul., 14(2009), 1196-1207.

    Google Scholar

    [7] J. Biazar, R. Ansari, K. Hosseini and P.Gholamian, Solution of the linear and nonlinear Schrödinger equations using homotopy perturbation and Adomian decomposition methods, Int.Math.Forum., 38(2008), 1891-1897.

    Google Scholar

    [8] J. Biazar and H. Gholamian,Exact solutions for Schrödinger equations by He's homotopy perturbation method, Phys.Lett.A., 366(2007), 79-84.

    Google Scholar

    [9] N. Burq, P. Gerard and N. Tzvetkov,An instability property of the nonlinear Schrödinger equation on the sd, Mathematical Researches Letters., 9(2002), 323-335.

    Google Scholar

    [10] A. Doosthoseini and H. Shahmohamadi, Variational iteration method for solving coupled Schrödinger-KdV equation, Appl.Math.Sci., 4(2010), 823-837.

    Google Scholar

    [11] M.A. Fariborzi Araghi and Sh.S. Behzadi, Numerical solution of nonlinear Volterra-Fredholm integro-differential equations using homotopy analysis method, J.Appl.Math.Comput., In press, 2010.

    Google Scholar

    [12] M.A. Fariborzi Araghi and Sh.S. Behzadi, Solving nonlinear VolterraFredholm integro-differential equations using He's variational iteration method, Int.J.Comput.Math., In press, 2010.

    Google Scholar

    [13] A. Hasegawa, Solitons in optical communications, Clarendon press, Oxford, NY., (1995).

    Google Scholar

    [14] J.H. He, Variational principle for some nonlinear partial differential equations with variable cofficients, Chaos, Solitons and Fractals., 19(2004), 847-851.

    Google Scholar

    [15] J.H. He, Variational iteration method for autonomous ordinary differential system, Appl. Math. Comput., 114(2000), 115-123.

    Google Scholar

    [16] J.H. He and S.Q. Wang,Variational iteration method for solving integrodifferential equations, Physics Letters A., 207(2007), 3-17.

    Google Scholar

    [17] J.H. He, Variational iteration method some recent results and new interpretations, J. Comp. and Appl. Math., 367(2007), 188-191.

    Google Scholar

    [18] F. Khani, S. Hamedi-Nezhad and A. Molabahrami,A reliable treatment for nonlinear Schrödinger equations, Physics Letters A., 371(2007), 234-240.

    Google Scholar

    [19] I.E. Kougias and S. Louvros, Exact analytic Solutions of Schrödinger linear and nonlinear equations, Appl.Math. Comp., In press, 2010.

    Google Scholar

    [20] S.J. Liao, Beyond Perturbation:Introduction to the Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, (2003).

    Google Scholar

    [21] S.J. Liao, Notes on the homotopy analysis method:some definitions and theorems, Communication in Nonlinear Science and Numerical Simulation., 14(2009), 983-997.

    Google Scholar

    [22] M. Onorato, A. R. Osborne, M. Serio and S. Bertone, Freak waves in random oceanic sea states, Phy.Rev.Lett., 86(2001), 5831-5834.

    Google Scholar

    [23] A. Sadeghi and D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations, a study with homotopy perturbation and Adomian decomposition methods, Physics Letter A., 372(2008), 465-469.

    Google Scholar

    [24] N.H. Sweilam,Variational iteration method for solving cubic nonlinear Schrödinger equations, J.Comput.Appl.Math., 207(2007), 155-163.

    Google Scholar

    [25] H. Wang, Numerical studies on the split-step difference method for nonlinear Schrödinger equations, Appl.Math.Comput., 170(2005), 17-35.

    Google Scholar

    [26] A.M. Wazwaz, A study on linear and nonlinear Schrödinger equations by variation iteration method, Chaos Soliton and Fractals., 37(2008), 1136-1142.

    Google Scholar

    [27] S. Yu and G. P. Agrawal, Optical solutions:From Fibers to photonic crystals, Academic press, San diego., (2003).

    Google Scholar

    [28] V.E. Zakharov,Collapse of Langmuir wave, Sov, Phys.JETP., 35(1972), 908-914.

    Google Scholar

Article Metrics

Article views(1572) PDF downloads(1399) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint