[1]
|
P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening, Physica D, 43(1990), 335-348.
Google Scholar
|
[2]
|
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92(1986), 205-245.
Google Scholar
|
[3]
|
X. Chen and Y. Qi, Travelling waves of auto-catalytic chemical reaction of general order-An elliptic approach, J. Differential Equations, 246(2009) 3038-3057.
Google Scholar
|
[4]
|
E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, 1995.
Google Scholar
|
[5]
|
P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, SpringerVerlag, Berlin-New York, 1979.
Google Scholar
|
[6]
|
G. J. Fix, Phase filed methods for free boundary problems, Free Boundary Problems:Theory and Applications, Eds. A. Fasano, M. Primicero, Pitman, London, 1983, 580-589.
Google Scholar
|
[7]
|
M. E. Gurtin and H. Matano, On the structure of equilibrium phase transitions within of the gradient theory of fluids, Quart. Appl. Math., 46(1988) 301-317.
Google Scholar
|
[8]
|
D. Henry, Geometric Theory of Semilinear Parabolic Equations, SpringerVerlag, Berlin-New York, 1981.
Google Scholar
|
[9]
|
Y. Hosono, Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems, Discrete and Cont. Dynam. System, Series-B, 8(2007) 115-125.
Google Scholar
|
[10]
|
T. Ikeda, M. Nagayama and H. Ikeda, Bifurcation of helical wave from travelling wave, Japan J. Indust. Appl. Math., 21(2004) 405-424.
Google Scholar
|
[11]
|
S. Ishihara, M. Otsuji and A. Mochizuki, Transient and steady state of massconserved reaction-diffusion systems, Physical Review E, 75(2007), 015203(R).
Google Scholar
|
[12]
|
M. Mimura and M. Nagayma, Nonannihilation dynamics in an exothermic reaction-diffusion system with mono-stable excitability, Chaos, 7(1997), 817-826.
Google Scholar
|
[13]
|
Y. Morita and T. Ogawa, Stability and bifurcation of nonconstant solutions to a reaction-diffusion system with conservation of mass, Nonlinearity, 23(2010), 1387-1411.
Google Scholar
|
[14]
|
M. Otsuji, S. Ishihara, C. Co, K. Kaibuchi, A. Mochizuki and S. Kuroda, A mass conserved reaction-diffusion system captures properties of cell polarity, PLoS Computational Biology, 3(2007), 1040-1054.
Google Scholar
|
[15]
|
T. Suzuki and S. Tasaki, Stationary Fix-Caginalp equation with non-local term, Nonlinear Anal., 71(2009), 1329-1349.
Google Scholar
|