[1]
|
J. Angulo, Non-linear stability of periodic travelling-wave solutions for the Schrödinger and modified Korteweg-de Vries equation, J. Differential Equations, 235(2007), 1-30.
Google Scholar
|
[2]
|
J. Angulo and F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions, SIAM:J. Math. Anal., 40(2008), 1123-1151.
Google Scholar
|
[3]
|
J. Angulo, J. Bona and M. Scialom, Stability of cnoidal waves, Adv. Differential Equations, 11(2006), 1321-1374.
Google Scholar
|
[4]
|
J. Angulo and F. Linares, Periodic pulses of coupled nonlinear Schrödinger equations in optics, Indiana Univ. Math. J., 56(2007), 847-878.
Google Scholar
|
[5]
|
J. Angulo and F. Natali, Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations, Physica D, 238(2009), 603-621.
Google Scholar
|
[6]
|
L. Cairó and J. Llibre, Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2, Nonlinear Analysis, 67(2007), 327-348.
Google Scholar
|
[7]
|
A. Chen and J. Li, Single peak solitary wave solutions for the osmosis K(2,2) equation under inhomogeneous boundary condition, J. Math. Anal. Appl., 369(2010), 758-766.
Google Scholar
|
[8]
|
S. Deng, B. Guo and T. Wang, Travelling wave solutions of a generalized Camassa-Holm-Degasperis-Procesi equation, Sci. China. Math., 54(2011), 555-572.
Google Scholar
|
[9]
|
T. Gallay and M. Hǎrǎgus, Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dynam. Differential Equations, 19(2007), 825-865.
Google Scholar
|
[10]
|
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 74(1987), 160-197.
Google Scholar
|
[11]
|
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry Ⅱ, J. Funct. Anal., 94(1990), 308-348.
Google Scholar
|
[12]
|
B. Guo and Z. Liu, Peaked wave solutions of CH-γ equation, Sci. China. Ser A, 46(2003), 696-709.
Google Scholar
|
[13]
|
B. Guo and Z. Liu, Two new types of bounded waves of CH-γ equation, Sci. China, Ser. A., 48(2005), 1618-1630.
Google Scholar
|
[14]
|
S. Hakkaev, I. Iliev and K. Kirchev, Stability of periodic traveling waves for complex modified Korteweg-de Vries equation, J. Differential Equations, 248(2010), 2608-2627.
Google Scholar
|
[15]
|
S. Hakkaev, I. Iliev and K. Kirchev, Stability of periodic travelling shallowwater waves determined by Newton's equation, J. Phys. A, 41(2008), 085203, 31.
Google Scholar
|
[16]
|
M. Johnson, On the stability of periodic solutions of the generalized BenjaminBona-Mahony equation, Physica D, 239(2010), 1892-1908.
Google Scholar
|
[17]
|
J. Li and Z. Liu, Smooth and non-smooth travelling waves in a nonlinearly dispersive equation, Appl. Math. Modelling, 25(2000), 41-56.
Google Scholar
|
[18]
|
J. Li, Bifurcations of travelling wave solutions for two generalized Boussinesq systems, Sci. China. Ser A, 51(2008), 1577-1592.
Google Scholar
|
[19]
|
G. Liu, The pth-order periodic solutions for a family of N-coupled nonlinear Schrödinger equations, Chinese Physics, 15(2006), 2500-2506.
Google Scholar
|
[20]
|
C. Li and J. Llibre, The cyclicity of period annulus of a quadratic reversible Lotka-Volterra system, Nonlinearity, 22(2009), 2971-2979.
Google Scholar
|
[21]
|
C. Li and K. Lu, The period function of hyperelliptic Hamiltonians of degree 5 with real critical points, Nonlinearity, 21(2008), 465-483.
Google Scholar
|
[22]
|
C. Li and Z. Zhang, A criterion for determining the monotonicity of the ratio of two abelian integrals, J. Differential Equations, 124(1996), 407-424.
Google Scholar
|
[23]
|
H. Liang and Y. Zhao, On the period function of reversible quadratic centers with their orbits inside quartics, Nonlinear Analysis, 71(2009), 5655-5671.
Google Scholar
|
[24]
|
F. Natali and A. Pastor, Stability and instability of periodic standing wave solutions for some Klein-Gordon equations, J. Math. Anal. Appl., 347(2008), 428-441.
Google Scholar
|
[25]
|
M. Tang and W. Zhang, Four types of bounded wave solutions of CH-γ equation, Sci. China, Ser. A., 50(2007), 132-152.
Google Scholar
|
[26]
|
J. Zhou and L. Tian, A type of bounded traveling wave solutions for the Fornberg-Whitham equation, J. Math. Anal. Appl., 346(2008), 255-261.
Google Scholar
|
[27]
|
Y. Zhao, The period function for a quadratic integrables system with cubic orbits, J. Math. Anal. Appl., 301(2005), 295-312.
Google Scholar
|
[28]
|
Y. Zhao, On the monotonicity of the period function for codimension four quadratic system Q4, J. Differential Equations, 185(2002), 370-387.
Google Scholar
|