2012 Volume 2 Issue 3
Article Contents

Orsolya Sáfár. INVERSE EIGENVALUE PROBLEMS FOR SMOOTH POTENTIAL[J]. Journal of Applied Analysis & Computation, 2012, 2(3): 315-324. doi: 10.11948/2012023
Citation: Orsolya Sáfár. INVERSE EIGENVALUE PROBLEMS FOR SMOOTH POTENTIAL[J]. Journal of Applied Analysis & Computation, 2012, 2(3): 315-324. doi: 10.11948/2012023

INVERSE EIGENVALUE PROBLEMS FOR SMOOTH POTENTIAL

  • We consider the inverse eigenvalue problem of the one-dimensional Schrödinger operator for finite intervals. We give sufficient conditions for finitely many partially known spectra and partial information on the potential to determine the Schrödinger operator on the whole interval.
    MSC: 35R30
  • 加载中
  • [1] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Mathematica, 78(1946), 1-96.

    Google Scholar

    [2] G. Borg, Uniqueness theorems in spectral theory of y'' +(λ-q(x))y=0, Proc. 11th Scandinavian Congress of Mathematicians, Oslo, 1952, 276-287,.

    Google Scholar

    [3] M. Horváth, On the inverse spectral theory of Schrö dinger and Dirac operators, Transactions of the American Mathematical Society, 4353(2001), 4155-4171.

    Google Scholar

    [4] M. Horváth, Inverse spectral problems and closed exponential systems, Annals of Mathematics, 162(2005), 885-918.

    Google Scholar

    [5] E. Korotyaev and D. Chelkak, The inverse Sturm-Liouville problem with mixed boundary conditions, St. Petersburg Math. J., 21(2009), 114-137.

    Google Scholar

    [6] B. J. Levin, Distribution of Zeros of Entire Functions, AMS Bookstore, 1980.

    Google Scholar

    [7] N. Levinson, Gap and Density Theorems, AMS, 1940.

    Google Scholar

    [8] B. M. Levitan and A. A. Danielyan, On the asymptotic behaviour of the WeylTichmarsh m-function, USSR Izv., 36(1991), 487-496.

    Google Scholar

    [9] B. Lieberman and H. Hochstadt, An inverse Sturm-Liouville problem with mixed given data, SIAM Journal Applied Mathematics, 34(1978), 676-680.

    Google Scholar

    [10] A. I. Markushevich and R. A. Silverman, Theory of Functions of a Complex Variable vol. 1, AMS, 2005.

    Google Scholar

    [11] S. I. Sargsjan and B. M. Levitan, Introduction to spectral theory (in Russian), Nauka, Moscow, 1970.

    Google Scholar

    [12] B. Simon and F. Gesztesy, Inverse spectral analysis with partial information on the potential, Ⅱ. the case of discrete spectrum, Transaction of the American Mathematical Society, 352(2000), 2765-2787.

    Google Scholar

    [13] A. Zettl, Sturm-Liouville theory, AMS, 2005.

    Google Scholar

Article Metrics

Article views(1298) PDF downloads(710) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint