[1]
|
S. Čelikovský and G. Chen, On the generalized Lorenz canonical form, Chaos, Solitons & Fractals, 26(2005), 1271-1276.
Google Scholar
|
[2]
|
G. Chen and X. Dong, From chaos to order:methodologies, perspectives and applications, world Scientific, Singapore, 1998.
Google Scholar
|
[3]
|
G, Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9(1999), 1465-1466.
Google Scholar
|
[4]
|
B. Hassard, N. Kazarinoff and Y. Wan, Theory and application of Hopf bifurcation, Cambridge University Press, Cambridge, 1981.
Google Scholar
|
[5]
|
T. Li, G. Chen and Y.Tang, On stability and bifurcation of Chen's system, Chaos, Solitons & Fractals, 19(2004), 1269-1282.
Google Scholar
|
[6]
|
Y. Liu, Theory of center-focus for a class of higher-degree critical points and infinite points, Science in China (Series A), 44(2001), 37-48.
Google Scholar
|
[7]
|
Y. Liu and W. Huang, A cubic system with twelve small amplitude limit cycles, Bulletin des Sciences Mathématiques, 129(2005), 83-98.
Google Scholar
|
[8]
|
J. Lü, T. Zhou, G. Chen and S. Zhang, Local bifurcation of the Chen system, International Journal of Bifurcation and Chaos, 12(2002), 2257-2270.
Google Scholar
|
[9]
|
C. Sparrow, The Lorenz Equations:Bifcations, Chaos, and Strange Attractors, Springer-Verlag, New York, 1982.
Google Scholar
|
[10]
|
Q. Wang, W. Huang and B. Li, Limit cycles and singular point quantities for a 3D Lotka-Volterra system, Applied Mathematics and Computation, 217(2011), 8856-8859.
Google Scholar
|
[11]
|
Q. Wang, Y. Liu and H. Chen, Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems, Bulletin des Sciences Mathématiques, 134(2010), 786-798.
Google Scholar
|
[12]
|
P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, International Journal of Bifurcation and Chaos, 15(2005), 2191-2205.
Google Scholar
|