2012 Volume 2 Issue 4
Article Contents

Qinlong Wang, Jing Li, Wentao Huang. EXISTENCE OF MULTIPLE LIMIT CYCLES IN CHEN SYSTEM[J]. Journal of Applied Analysis & Computation, 2012, 2(4): 441-447. doi: 10.11948/2012033
Citation: Qinlong Wang, Jing Li, Wentao Huang. EXISTENCE OF MULTIPLE LIMIT CYCLES IN CHEN SYSTEM[J]. Journal of Applied Analysis & Computation, 2012, 2(4): 441-447. doi: 10.11948/2012033

EXISTENCE OF MULTIPLE LIMIT CYCLES IN CHEN SYSTEM

  • Fund Project:
  • In this paper, the existence of multiple limit cycles for Chen system are investigated. By using the method of computing the singular point quantities, the simple and explicit parametric conditions can be determined to the number and stability of multiple limit cycles from Hopf bifurcation. Especially, at least 4 limit cycles can be obtained for the Chen system as a three-dimensional perturbed system.
    MSC: 34C23;34C28;34C40;37G15
  • 加载中
  • [1] S. Čelikovský and G. Chen, On the generalized Lorenz canonical form, Chaos, Solitons & Fractals, 26(2005), 1271-1276.

    Google Scholar

    [2] G. Chen and X. Dong, From chaos to order:methodologies, perspectives and applications, world Scientific, Singapore, 1998.

    Google Scholar

    [3] G, Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9(1999), 1465-1466.

    Google Scholar

    [4] B. Hassard, N. Kazarinoff and Y. Wan, Theory and application of Hopf bifurcation, Cambridge University Press, Cambridge, 1981.

    Google Scholar

    [5] T. Li, G. Chen and Y.Tang, On stability and bifurcation of Chen's system, Chaos, Solitons & Fractals, 19(2004), 1269-1282.

    Google Scholar

    [6] Y. Liu, Theory of center-focus for a class of higher-degree critical points and infinite points, Science in China (Series A), 44(2001), 37-48.

    Google Scholar

    [7] Y. Liu and W. Huang, A cubic system with twelve small amplitude limit cycles, Bulletin des Sciences Mathématiques, 129(2005), 83-98.

    Google Scholar

    [8] J. Lü, T. Zhou, G. Chen and S. Zhang, Local bifurcation of the Chen system, International Journal of Bifurcation and Chaos, 12(2002), 2257-2270.

    Google Scholar

    [9] C. Sparrow, The Lorenz Equations:Bifcations, Chaos, and Strange Attractors, Springer-Verlag, New York, 1982.

    Google Scholar

    [10] Q. Wang, W. Huang and B. Li, Limit cycles and singular point quantities for a 3D Lotka-Volterra system, Applied Mathematics and Computation, 217(2011), 8856-8859.

    Google Scholar

    [11] Q. Wang, Y. Liu and H. Chen, Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems, Bulletin des Sciences Mathématiques, 134(2010), 786-798.

    Google Scholar

    [12] P. Yu and M. Han, Twelve limit cycles in a cubic case of the 16th Hilbert problem, International Journal of Bifurcation and Chaos, 15(2005), 2191-2205.

    Google Scholar

Article Metrics

Article views(2020) PDF downloads(710) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint