2013 Volume 3 Issue 1
Article Contents

G. A. Afrouzi, N. T. Chung, M. Mirzapour. EXISTENCE OF SOLUTIONS FOR A DEGENERATE QUASILINEAR ELLIPTIC SYSTEM IN BOUNDED DOMAIN[J]. Journal of Applied Analysis & Computation, 2013, 3(1): 1-9. doi: 10.11948/2013001
Citation: G. A. Afrouzi, N. T. Chung, M. Mirzapour. EXISTENCE OF SOLUTIONS FOR A DEGENERATE QUASILINEAR ELLIPTIC SYSTEM IN BOUNDED DOMAIN[J]. Journal of Applied Analysis & Computation, 2013, 3(1): 1-9. doi: 10.11948/2013001

EXISTENCE OF SOLUTIONS FOR A DEGENERATE QUASILINEAR ELLIPTIC SYSTEM IN BOUNDED DOMAIN

  • Using variational methods, we study the existence of weak solutions for the degenerate quasilinear elliptic system { -div(h1(x)|∇u|p-2u)=Fu(x, u, v) in Ω, -div(h2(x)|∇u|p-2u)=Fu(x, u, v) in Ω, u=v=0 on ∂Ω, where Ω ⊂ RN is a smooth bounded domain, ∇F=(Fu, Fv) stands for the gradient of C1-function F:Ω×R2 → R, the weights hi, i=1, 2 are allowed to vanish somewhere, the primitive F(x, u, v) is intimately related to the first eigenvalue of a corresponding quasilinear system.
    MSC: 35J60;35B30;35B40
  • 加载中
  • [1] G.A. Afrouzi, S. Mahdavi and Nikolaos B. Zographopoulos, Existence of solutions for non-uniformly nonlinear elliptic systems, Electron. J. Diff. Equ., 167(2011), 1-9.

    Google Scholar

    [2] G.A. Afrouzi and S. Mahdavi, Existence results for a class of degenerate quasilinear elliptic systems, Lithuanian Math. J., 51(2011), 451-460.

    Google Scholar

    [3] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical points theory and applications, J. Funct. Anal., 4(1973), 349-381.

    Google Scholar

    [4] L. Boccardo and D.G. De Figueiredo, Some remarks on a system of quasilinear elliptic equations, Nonlinear Diff. Equ. Appl. (NoDEA), 9(2002), 309-323.

    Google Scholar

    [5] P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear Diff. Equ. Appl. (NoDEA), 7(2000), 187-199.

    Google Scholar

    [6] N.T. Chung, Existence of infinitely many solutions for degenerate and singular elliptic systems with indefinite concave nonlinearities, Electron. J. Diff. Equ., 30(2011), 1-12.

    Google Scholar

    [7] N.T. Chung and H.Q. Toan, On a class of degenerate and singular elliptic systems in bounded domain, J. Math. Anal. Appl., 360(2009), 422-431.

    Google Scholar

    [8] D.G. Costa, On a class of elliptic systems in RN, Electron. J. Diff. Equ., 7(1994), 1-14.

    Google Scholar

    [9] A. Djellit and S. Tas, Existence of solutions for a class of elliptic systems in RN involving the p-Laplacian, Electron. J. Diff. Equ., 56(2003), 1-8.

    Google Scholar

    [10] P. Drabek, A. Kufner and F. Nicolosi, Quasilinear elliptic equations with degeneration and singularities, Walter de Gruyter and Co., Berlin, 1997.

    Google Scholar

    [11] D.D. Hai and R. Shivaji, An existence result on positive solutions of p-Laplacian systems, Nonlinear Anal., 56(2004), 1007-1010.

    Google Scholar

    [12] D.W. Huang and Y.Q. Li, Multiplicity of solutions for a noncooperative pLaplacian elliptic system in RN, J. Differential Equations, 215(2005), 206-223.

    Google Scholar

    [13] S. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Analysis, 73(2010), 3856-3872.

    Google Scholar

    [14] J.M.B. do Ó, Solutions to perturbed eigenvalue problems of the p-Laplacian in RN, Electron. J. Diff. Equ., 11(1997), 1-15.

    Google Scholar

    [15] T.F. Wu, The Nehari manifold for a semilinear elliptic system involving signchanging weight functions, Nonlinear Analysis, 68(2008), 1733-1745.

    Google Scholar

    [16] G. Zhang and Y. Wang, Some existence results for a class of degenerate semilinear elliptic systems, J. Math. Anal. Appl., 333(2007), 904-918.

    Google Scholar

    [17] N.B. Zographopoulos, On the principal eigenvalue of degenerate quasilinear elliptic systems, Math. Nachr., 281(2008), No. 9, 1351-1365.

    Google Scholar

    [18] N.B. Zographopoulos, On a class of degenarate potential elliptic system, Nonlinear Diff. Equ. Appl. (NoDEA), 11(2004), 191-199.

    Google Scholar

    [19] N.B. Zographopoulos, p-Laplacian systems on resonance, Appl. Anal., 83(2004), 509-519.

    Google Scholar

Article Metrics

Article views(1833) PDF downloads(805) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint