[1]
|
J. Cao and X. Zhang, Dynamics of the Lorenz system having an invariant algebraic surface, J. Math. Phys., 48(2007), 082702, 13 pp.
Google Scholar
|
[2]
|
M.M. Carnicer, The Poincaré problem in the nondicritical case, Annals of Math., 140(1994), 289-294.
Google Scholar
|
[3]
|
J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Differential Equations, 194(2003), 116-139.
Google Scholar
|
[4]
|
J. Chavarriga and M. Grau, A Family of non-Darboux integrable quadratic polynomial differential systems with algebraic solutions of arbitrarily high degree, Applied Math. Letters, 16(2003), 833-837.
Google Scholar
|
[5]
|
J. Chavarriga, J. Llibre and J. Sorolla, Algebraic limit cycles of degree 4 for quadratic systems, Journal of Differential Equations, 200(2004), 206-244.
Google Scholar
|
[6]
|
J. Chavarriga, J. Llibre and J. Sotomayor, Algebraic solutions for polynomial systems with emphasis in the quadratic case, Expositiones Math., 15(1997), 161-173.
Google Scholar
|
[7]
|
C. Chen, J. Cao and X. Zhang, The topological structure of the Rabinovich system having an invariant algebraic surface, Nonlinearity, 21(2008), 211-220.
Google Scholar
|
[8]
|
C. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburgh, 124(1994), 1209-1229.
Google Scholar
|
[9]
|
C. Christopher, Liouvillian first integrals of second order polynomial differential equations, Electron. J. Differential Equations, 49(1999), 1-7.
Google Scholar
|
[10]
|
C. Christopher and C. Li, Limit cycles of differential equations, Birkhäuser, Basel, 2007.
Google Scholar
|
[11]
|
C. Christopher and J. Llibre, Algebraic aspects of integrability for polynomial systems, Qualitative Theory of Dynamical Systems, 1(1999), 71-95.
Google Scholar
|
[12]
|
C. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar polynomial differential systems, Annals of Differential Equations, 16(2000), 5-19.
Google Scholar
|
[13]
|
C. Christopher and J. Llibre, A family of quadratic polynomial differential systems with invariant algebraic curves of arbitrarily high degree without rational first integrals, Proc. Amer. Math. Soc., 130(2002), 2025-2030.
Google Scholar
|
[14]
|
C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Inverse problems in Darboux' theory of integrability, Acta Appl. Math., 120(2012), 101-126.
Google Scholar
|
[15]
|
C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Darboux integrating factors:inverse problems, J. Differential Equations, 250(2011), 1-25.
Google Scholar
|
[16]
|
C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Inverse problems for invariant algebraic curves:explicit computations, Proc. Roy. Soc. Edinburgh Sect. A, 139(2009), 287-302.
Google Scholar
|
[17]
|
C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Inverse problems for multiple invariant curves, Proc. Roy. Soc. Edinburgh Sect. A, 137(2007), 1197-1226.
Google Scholar
|
[18]
|
C. Christopher, J. Llibre, C. Pantazi and X. Zhang, Darboux integrability and invariant algebraic curves for planar polynomial systems, J. Phys. A, 35(2002), 2457-2476.
Google Scholar
|
[19]
|
C. Christopher, J. Llibre and J.V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. Math., 229(2007), 63-117.
Google Scholar
|
[20]
|
G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bulletin des Sciences Mathématiques 2ème série, 2(1878), 60-96; 123-144; 151-200.
Google Scholar
|
[21]
|
G. Darboux, De l'emploi des solutions particulières algébriques dans l'intégration des systèmes d'équations différentielles algébriques, C. R. Math. Acad. Sci. Paris, 86(1878), 1012-1014.
Google Scholar
|
[22]
|
F. Dumortier, J. Llibre and J.C. Artés, Qualitative theory of planar differential systems, UniversiText, Springer-Verlag, New York, 2006.
Google Scholar
|
[23]
|
W. Fulton, Algebraic curves:an introduction to algebraic geometry, The Benjamin/Cummings Publisheing Company, INC., London, 1969.
Google Scholar
|
[24]
|
J.P. Jouanolou, Equations de Pfaff algébriques, in Lectures Notes in Mathematics, Springer-Verlag, New York/Berlin, 708(1979).
Google Scholar
|
[25]
|
S. Lang, Algebra, Graduate Texts in Mathematics (third ed.), Springer-Verlag, New York, 211(2002).
Google Scholar
|
[26]
|
J. Llibre, Integrability of polynomial differential systems, in Handbook of differential equations, Elsevier, Amsterdam, 2004, 437-532.
Google Scholar
|
[27]
|
J. Llibre and G. Świrszsz, An example of a cubic Liénard system with linear damping having invariant algebraic curves of arbitrary degree, preprint.
Google Scholar
|
[28]
|
J. Llibre and X. Zhang, Invariant algebraic surfaces of the Rikitake system, J. Phys. A, 33(2000), 7613-7635.
Google Scholar
|
[29]
|
J. Llibre and X. Zhang, Invariant algebraic surfaces of the Lorenz systems, J. Mathematical Physics, 43(2002), 1622-1645.
Google Scholar
|
[30]
|
J. Llibre and X. Zhang, Darboux integrability for the Rössler system, Internat. J. Bifur. Chaos, 12(2002), 421-428.
Google Scholar
|
[31]
|
J. Llibre and X. Zhang, Darboux integrability of real polynomial vector fields on regular algebraic hypersurfaces, Rendiconti del circolo matematico di Palermo, Serie Ⅱ, LI (2002), 109-126.
Google Scholar
|
[32]
|
J. Llibre and X. Zhang, Darboux theory of integrability in Cn taking into account the multiplicity, J. of Differential Equations, 246(2009), 541-551.
Google Scholar
|
[33]
|
J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in Cn taking into account the multiplicity at infinity, Bulletin des Sciences Mathématiques, 133(2009), 765-778.
Google Scholar
|
[34]
|
J. Llibre and X. Zhang, Rational first integrals in the Darboux theory of integrability in Cn, Bulletin des Sciences Mathématiques, 134(2010), 189-195.
Google Scholar
|
[35]
|
J. Llibre and X. Zhang, On the Darboux integrability of polynomial differential systems, Qual. Theory Dyn. Syst., 11(2012), 129-144.
Google Scholar
|
[36]
|
J. Lützen, Joseph Liouville 1809-1882:master of pure and applied mathematics, Springer-Verlag, New York, 1990.
Google Scholar
|
[37]
|
P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 107(1993).
Google Scholar
|
[38]
|
J.V. Pereira, Vector fields, invariant varieties and linear systems, Annales de l'institut Fourier, 51(2001), 1385-1405.
Google Scholar
|
[39]
|
H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré I and Ⅱ, Rendiconti del Circolo Matematico di Palermo, 5(1891), 161-191; 11(1897), 193-239.
Google Scholar
|
[40]
|
M.J. Prelle and M.F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc., 279(1983), 215-229.
Google Scholar
|
[41]
|
M. Rosenlicht, Integration in finite terms, American Mathematical Monthly, 79(1972), 963-972.
Google Scholar
|
[42]
|
D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center, Trans. Amer. Math. Soc., 338(1993), 799-841.
Google Scholar
|
[43]
|
M.F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc., 333(1992), 673-688.
Google Scholar
|