2013 Volume 3 Issue 1
Article Contents

Yangyou Pan, Xiang Zhang. ALGEBRAIC ASPECTS OF INTEGRABILITY FOR POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2013, 3(1): 51-69. doi: 10.11948/2013005
Citation: Yangyou Pan, Xiang Zhang. ALGEBRAIC ASPECTS OF INTEGRABILITY FOR POLYNOMIAL DIFFERENTIAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2013, 3(1): 51-69. doi: 10.11948/2013005

ALGEBRAIC ASPECTS OF INTEGRABILITY FOR POLYNOMIAL DIFFERENTIAL SYSTEMS

  • Fund Project:
  • In this article we summarize the results on algebraic aspects of integrability for polynomial differential systems and its application, which include the Darboux, elementary and Liouvelle integrability. Darboux theory of integrability was found by Darboux in 1878, and it becomes extremely useful in study of the center focus problem, of bifurcation, of limit cycle problem and of global dynamics. The importance of Darboux theory of integrability is also presented by the Singer's theorem for planar polynomial differential system. That is, if a polynomial system is Liouville integrable, then it is Darboux integrable, i.e. the system has a Darboux first integral or a Darboux integrating factor.
    MSC: 34A34;34C20;34C41;37G05
  • 加载中
  • [1] J. Cao and X. Zhang, Dynamics of the Lorenz system having an invariant algebraic surface, J. Math. Phys., 48(2007), 082702, 13 pp.

    Google Scholar

    [2] M.M. Carnicer, The Poincaré problem in the nondicritical case, Annals of Math., 140(1994), 289-294.

    Google Scholar

    [3] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Differential Equations, 194(2003), 116-139.

    Google Scholar

    [4] J. Chavarriga and M. Grau, A Family of non-Darboux integrable quadratic polynomial differential systems with algebraic solutions of arbitrarily high degree, Applied Math. Letters, 16(2003), 833-837.

    Google Scholar

    [5] J. Chavarriga, J. Llibre and J. Sorolla, Algebraic limit cycles of degree 4 for quadratic systems, Journal of Differential Equations, 200(2004), 206-244.

    Google Scholar

    [6] J. Chavarriga, J. Llibre and J. Sotomayor, Algebraic solutions for polynomial systems with emphasis in the quadratic case, Expositiones Math., 15(1997), 161-173.

    Google Scholar

    [7] C. Chen, J. Cao and X. Zhang, The topological structure of the Rabinovich system having an invariant algebraic surface, Nonlinearity, 21(2008), 211-220.

    Google Scholar

    [8] C. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburgh, 124(1994), 1209-1229.

    Google Scholar

    [9] C. Christopher, Liouvillian first integrals of second order polynomial differential equations, Electron. J. Differential Equations, 49(1999), 1-7.

    Google Scholar

    [10] C. Christopher and C. Li, Limit cycles of differential equations, Birkhäuser, Basel, 2007.

    Google Scholar

    [11] C. Christopher and J. Llibre, Algebraic aspects of integrability for polynomial systems, Qualitative Theory of Dynamical Systems, 1(1999), 71-95.

    Google Scholar

    [12] C. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar polynomial differential systems, Annals of Differential Equations, 16(2000), 5-19.

    Google Scholar

    [13] C. Christopher and J. Llibre, A family of quadratic polynomial differential systems with invariant algebraic curves of arbitrarily high degree without rational first integrals, Proc. Amer. Math. Soc., 130(2002), 2025-2030.

    Google Scholar

    [14] C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Inverse problems in Darboux' theory of integrability, Acta Appl. Math., 120(2012), 101-126.

    Google Scholar

    [15] C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Darboux integrating factors:inverse problems, J. Differential Equations, 250(2011), 1-25.

    Google Scholar

    [16] C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Inverse problems for invariant algebraic curves:explicit computations, Proc. Roy. Soc. Edinburgh Sect. A, 139(2009), 287-302.

    Google Scholar

    [17] C. Christopher, J. Llibre, C. Pantazi and S. Walcher, Inverse problems for multiple invariant curves, Proc. Roy. Soc. Edinburgh Sect. A, 137(2007), 1197-1226.

    Google Scholar

    [18] C. Christopher, J. Llibre, C. Pantazi and X. Zhang, Darboux integrability and invariant algebraic curves for planar polynomial systems, J. Phys. A, 35(2002), 2457-2476.

    Google Scholar

    [19] C. Christopher, J. Llibre and J.V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, Pacific J. Math., 229(2007), 63-117.

    Google Scholar

    [20] G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bulletin des Sciences Mathématiques 2ème série, 2(1878), 60-96; 123-144; 151-200.

    Google Scholar

    [21] G. Darboux, De l'emploi des solutions particulières algébriques dans l'intégration des systèmes d'équations différentielles algébriques, C. R. Math. Acad. Sci. Paris, 86(1878), 1012-1014.

    Google Scholar

    [22] F. Dumortier, J. Llibre and J.C. Artés, Qualitative theory of planar differential systems, UniversiText, Springer-Verlag, New York, 2006.

    Google Scholar

    [23] W. Fulton, Algebraic curves:an introduction to algebraic geometry, The Benjamin/Cummings Publisheing Company, INC., London, 1969.

    Google Scholar

    [24] J.P. Jouanolou, Equations de Pfaff algébriques, in Lectures Notes in Mathematics, Springer-Verlag, New York/Berlin, 708(1979).

    Google Scholar

    [25] S. Lang, Algebra, Graduate Texts in Mathematics (third ed.), Springer-Verlag, New York, 211(2002).

    Google Scholar

    [26] J. Llibre, Integrability of polynomial differential systems, in Handbook of differential equations, Elsevier, Amsterdam, 2004, 437-532.

    Google Scholar

    [27] J. Llibre and G. Świrszsz, An example of a cubic Liénard system with linear damping having invariant algebraic curves of arbitrary degree, preprint.

    Google Scholar

    [28] J. Llibre and X. Zhang, Invariant algebraic surfaces of the Rikitake system, J. Phys. A, 33(2000), 7613-7635.

    Google Scholar

    [29] J. Llibre and X. Zhang, Invariant algebraic surfaces of the Lorenz systems, J. Mathematical Physics, 43(2002), 1622-1645.

    Google Scholar

    [30] J. Llibre and X. Zhang, Darboux integrability for the Rössler system, Internat. J. Bifur. Chaos, 12(2002), 421-428.

    Google Scholar

    [31] J. Llibre and X. Zhang, Darboux integrability of real polynomial vector fields on regular algebraic hypersurfaces, Rendiconti del circolo matematico di Palermo, Serie Ⅱ, LI (2002), 109-126.

    Google Scholar

    [32] J. Llibre and X. Zhang, Darboux theory of integrability in Cn taking into account the multiplicity, J. of Differential Equations, 246(2009), 541-551.

    Google Scholar

    [33] J. Llibre and X. Zhang, Darboux theory of integrability for polynomial vector fields in Cn taking into account the multiplicity at infinity, Bulletin des Sciences Mathématiques, 133(2009), 765-778.

    Google Scholar

    [34] J. Llibre and X. Zhang, Rational first integrals in the Darboux theory of integrability in Cn, Bulletin des Sciences Mathématiques, 134(2010), 189-195.

    Google Scholar

    [35] J. Llibre and X. Zhang, On the Darboux integrability of polynomial differential systems, Qual. Theory Dyn. Syst., 11(2012), 129-144.

    Google Scholar

    [36] J. Lützen, Joseph Liouville 1809-1882:master of pure and applied mathematics, Springer-Verlag, New York, 1990.

    Google Scholar

    [37] P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Springer-Verlag, New York, 107(1993).

    Google Scholar

    [38] J.V. Pereira, Vector fields, invariant varieties and linear systems, Annales de l'institut Fourier, 51(2001), 1385-1405.

    Google Scholar

    [39] H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré I and Ⅱ, Rendiconti del Circolo Matematico di Palermo, 5(1891), 161-191; 11(1897), 193-239.

    Google Scholar

    [40] M.J. Prelle and M.F. Singer, Elementary first integrals of differential equations, Trans. Amer. Math. Soc., 279(1983), 215-229.

    Google Scholar

    [41] M. Rosenlicht, Integration in finite terms, American Mathematical Monthly, 79(1972), 963-972.

    Google Scholar

    [42] D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center, Trans. Amer. Math. Soc., 338(1993), 799-841.

    Google Scholar

    [43] M.F. Singer, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc., 333(1992), 673-688.

    Google Scholar

Article Metrics

Article views(1993) PDF downloads(1196) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint