2013 Volume 3 Issue 2
Article Contents

E. Azroul, M. B. Benboubker, S. Ouaro. ENTROPY SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS NEUMANN PROBLEMS INVOLVING THE GENERALIZED P(X)-LAPLACE OPERATOR[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 105-121. doi: 10.11948/2013009
Citation: E. Azroul, M. B. Benboubker, S. Ouaro. ENTROPY SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS NEUMANN PROBLEMS INVOLVING THE GENERALIZED P(X)-LAPLACE OPERATOR[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 105-121. doi: 10.11948/2013009

ENTROPY SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS NEUMANN PROBLEMS INVOLVING THE GENERALIZED P(X)-LAPLACE OPERATOR

  • In this work we investigate a class of nonlinear p(x) Laplace problems with Neumann nonhomogeneous boundary conditions and L1 data. The techniques of entropy solutions for elliptic equations are used to prove the existence of a solution.
    MSC: 35J20;35J25;35D30;35B38;35J60
  • 加载中
  • [1] E. Azroul and M. B. Benboubker & M. Rhoudaf, Entropy solution for some p(x)-Quasilinear problems with right-hand side measure, Afr. diaspora J. Math., 13(2012), 23-44.

    Google Scholar

    [2] E. Azroul, H. Redwane and C. Yazough, Strongly nonlinear nonhomogeneous elliptic unilateral problems with L1 data and no sign conditions, Electron. J. Diff. Equ.,79(2012), 1-20.

    Google Scholar

    [3] F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, L1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Ins. H. Poincaré Anal. Non Linéaire, 20(2007), 61-89.

    Google Scholar

    [4] F. Andreu, J. M. Mazón, S. Segura De Léon and J. Toledo, Quasi-linear elliptic and parabolic equations in L1 with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7(1997), 183-213.

    Google Scholar

    [5] S. Antontsev and J. F. Rodrigues, On stationary thermorheological viscous flows. Ann. Univ. Ferrara Sez. VⅡ Sci. Mat., 52(2006), 19-36.

    Google Scholar

    [6] M. B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growth, Electron. J. Diff. Equ., 62(2011), 1-16.

    Google Scholar

    [7] M. Bendahmane and P. Wittbold, Renormalized solutions for nonlinear elliptic equations with variable exponents and L1-data, Nonlinear Anal., 70(2009), 567-583.

    Google Scholar

    [8] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L1 theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22(1995), 241-273.

    Google Scholar

    [9] Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(2006), 1383-1406.

    Google Scholar

    [10] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 2017(2011).

    Google Scholar

    [11] X.L. Fan and D. Zhao, On the generalised Orlicz-Sobolev Space Wk.p(x)(Ω), J. Gansu Educ. College, 12(1998), 1-6.

    Google Scholar

    [12] P. Halmos, Measure Theory, D. Van Nostrand, New York, 1950.

    Google Scholar

    [13] S. Ouaro and S. Soma, Weak and entropy solutions to nonlinear Neumann boundary problems with variable exponent, Complex Var. Elliptic Equ., 56(2011), 829-851.

    Google Scholar

    [14] I. Nyanquini and S. Ouar, Entropy solution for nonlinear elliptic problem involving variable exponent and Fourier type boundary condition, Afr. Mat., 23(2012), 205-228.

    Google Scholar

    [15] S. Ouaro and A. Tchousso, Well-posedness result for a nonlinear elliptic problem involving variable exponent and Robin type boundary condition, Afr. Diaspora J. Math., 11(2011), 36-64.

    Google Scholar

    [16] A. Prignet, Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sc, tome 6, 2(1997), 297-318.

    Google Scholar

    [17] M. Sanchon and J. M. Urbano, Entropy solutions for the p(x)-Laplace equation, Trans. Amer. Math. Soc., 361(2009), 6387-6405.

    Google Scholar

    [18] M. Ružička, Electrorheological fluids:modeling and mathematical theory, lecture Notes in Mathematics, Springer-Verlag, Berlin, 1748(2000).

    Google Scholar

    [19] L. Wang, Y. Fan and W. Ge, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator. Nonlinear Anal., 71(2009), 4259-4270.

    Google Scholar

    [20] J. Yao, Solutions for Neumann boundary value problems involving p(x)-Laplace operators, Nonlinear Anal., 68(2008), 1271-1283.

    Google Scholar

    [21] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izvestiya, 29(1987), 33-66.

    Google Scholar

    [22] V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system. Differential Equations., 33(1997), 108-115.

    Google Scholar

    [23] D. Zhao, W.J. Qiang and X.L. Fan, On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci., 9(1997), 1-7.

    Google Scholar

Article Metrics

Article views(1728) PDF downloads(899) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint