2013 Volume 3 Issue 2
Article Contents

Jaume Giné, Maite Grau, Xavier Santallusia. COMPOSITION CONDITIONS IN THE TRIGONOMETRIC ABEL EQUATION[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 133-144. doi: 10.11948/2013011
Citation: Jaume Giné, Maite Grau, Xavier Santallusia. COMPOSITION CONDITIONS IN THE TRIGONOMETRIC ABEL EQUATION[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 133-144. doi: 10.11948/2013011

COMPOSITION CONDITIONS IN THE TRIGONOMETRIC ABEL EQUATION

  • Fund Project:
  • In this paper we deal with the center problem for the trigonometric Abel equation /=a1(θ)ρ2 + a2(θ)ρ3, where a1(θ) and a2(θ) are trigonometric polynomials in θ. This problem is closely connected with the classical Poincaré center problem for planar polynomial vector fields.
    MSC: 34C25;34C05;34C07
  • 加载中
  • [1] A. Álvarez, J.L. Bravo and C. Christopher, On the trigonometric moment problem, Ergodic Theory Dynam. Systems., to appear. doi:10.1017/etds.2012.143

    Google Scholar

    [2] M.A.M. Alwash, On a condition for a centre of cubic nonautonomous equations, Proc. Roy. Soc. Edinburgh Sect. A, 113(1989), 289-291.

    Google Scholar

    [3] M.A.M. Alwash, Word problems and the centers of Abel differential equations, Ann. Differential Equations, 11(1995), 392-396.

    Google Scholar

    [4] M.A.M. Alwash, On the composition conjectures, Electron. J. Differential Equations, 69(2003), 4 pp. (electronic).

    Google Scholar

    [5] M.A.M. Alwash, The composition conjecture for Abel equation, Expo. Math., 27(2009), 241-250.

    Google Scholar

    [6] M.A.M. Alwash and N.G. Lloyd, Nonautonomous equations related to polynomial two-dimensional systems, Proc. Roy. Soc. Edinburgh Sect. A, 105(1987), 129-152.

    Google Scholar

    [7] E.A. Arnold, Modular algorithms for computing Grbner bases, J. Symbolic Comput., 35(2003), 403-419.

    Google Scholar

    [8] I. Bendixon, Sur les courbes définie par des équations différentielles, Acta Math., 24(1901), 1-88.

    Google Scholar

    [9] M. Blinov, Center and composition conditions for Abel equation, thesis, Weizmann Institute of Science, 2002.

    Google Scholar

    [10] M. Briskin, N. Roytvarf and Y. Yomdin, Center conditions at infinity for Abel differential equations, Ann. of Math., 172(2010), 437-483.

    Google Scholar

    [11] A. Brudnyi, An explicit expression for the first return map in the center problem, J. Differential Equations, 206(2004), 306-314.

    Google Scholar

    [12] A. Brudnyi, On the center problem for ordinary differential equations, Amer. J. Math., 128(2006), 419-451.

    Google Scholar

    [13] L.A. Cherkas, The number of limit cycles of a certain second order autonumous system (Russian), Differencial'nye Uravnenija, 12(1976), 944-946.

    Google Scholar

    [14] C. Christopher, Abel equations:composition conjectures and the model problem, Bull. London Math. Soc., 32(2000), 332-338.

    Google Scholar

    [15] A. Cima, A. Gasull and F. Mañosas, Centers for Trigonometric Abel Equations, Qual. Theory Dyn. Syst., 11(2012), 19-37.

    Google Scholar

    [16] A. Cima, A. Gasull and F. Mañosas, A simple solution of some composition conjectures for Abel equations, J. Math. Anal. Appl., 308(2013), 477-486.

    Google Scholar

    [17] D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, SpringerVerlag, New York, 1992.

    Google Scholar

    [18] J. Devlin, Word problems related to derivatives of the displacement map, Math. Proc. Cambridge Philos. Soc., 110(1991), 569-579.

    Google Scholar

    [19] J. Devlin, Word problems related to periodic solutions of a nonautonomous system, Math. Proc. Cambridge Philos. Soc., 108(1990), 127-151.

    Google Scholar

    [20] H. Dulac, Détermination et intégration d'une certain classe d'équations différentielle ayant pour point singulier un center, Bull. Sci. Math. Sér., 32(1908), 230-252.

    Google Scholar

    [21] M. Frommer, Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmheitsstellen, Math. Ann., 109(1934), 395-424.

    Google Scholar

    [22] J. Giné, M. Grau and J. Llibre, Universal centers and composition conditions, Proc. Lond. Math. Soc., 106(2013), 481-507.

    Google Scholar

    [23] W. Kapteyn, On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag. Afd. Natuurk. Konikl. Nederland, 19(1911), 1446-1457(Dutch).

    Google Scholar

    [24] W. Kapteyn, New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslag Afd. Natuurk., 20(1912), 1354-1365; 21(1912), 27-33(Dutch).

    Google Scholar

    [25] M.A. Liapunov, Problème général de la stabilité du mouvement, Ann. of Math. Stud. 17, Pricenton University Press, 1947.

    Google Scholar

    [26] H. Poincaré, Mémoire sur les courbes définies par les équations différentielles, Journal de Mathématiques, 37(1881), 375-422; 8(1882), 251-296; Oeuvres de Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, 3-84.

    Google Scholar

    [27] V.G. Romanovski and M. Prešern, An approach to solving systems of polynomials via modular arithmetics with applications, J. Comput. Appl. Math., 236(2011), 196-208.

    Google Scholar

Article Metrics

Article views(1633) PDF downloads(653) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint