M. A. Rincon, M. I. M. Copetti. NUMERICAL ANALYSIS FOR A LOCALLY DAMPED WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 169-182. doi: 10.11948/2013013
Citation: |
M. A. Rincon, M. I. M. Copetti. NUMERICAL ANALYSIS FOR A LOCALLY DAMPED WAVE EQUATION[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 169-182. doi: 10.11948/2013013
|
NUMERICAL ANALYSIS FOR A LOCALLY DAMPED WAVE EQUATION
-
1 Departamento de Ciêencia da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brasil;
-
2 Departamento de Matemática, Universidade Federal de Santa Maria, Brasil
-
Abstract
We consider a semi-discrete finite element formulation with artificial viscosity for the numerical approximation of a problem that models the damped vibrations of a string with fixed ends. The damping coefficient depends on the spatial variable and is effective only in a sub-interval of the domain. For this scheme, the energy of semi-discrete solutions decays exponentially and uniformly with respect to the mesh parameter to zero. We also introduce an implicit in time discretization. Error estimates for the semidiscrete and fully discrete schemes in the energy norm are provided and numerical experiments performed.
-
-
References
[1]
|
P.G. Ciarlet, The finite element method for elliptic problems, Amsterdam, North-Holland, 1978.
Google Scholar
|
[2]
|
T. Dupont, L2 estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal., 10(1973), 880-889.
Google Scholar
|
[3]
|
F. Gao and C. Chi, Unconditionally stable finite difference schemes for a one-space-dimensional linear hyperbolic equation, Appl. Math. Comput., 187(2007), 1272-1276.
Google Scholar
|
[4]
|
S. Larsson, V. Thomée and L.B Wahlbin, Finite-element methods for a strongly damped wave equation, IMA. J. Numer. Anal., 11(1991), 115-142.
Google Scholar
|
[5]
|
J.L. Lions, Quelques méthodes de résolutions des problèmes aux limites non linéaires, Paris, Dunod Gauthier-Villars, 1969.
Google Scholar
|
[6]
|
A. Munch and A.F. Pazoto, Uniform stabilization of a viscous numerical approximation for a locally damped wave equation, ESAIM Control Optimization and Calculus of Variations, 13(2007), 265-293.
Google Scholar
|
[7]
|
L.R.T Tébou and E. Zuazua, Uniform exponential long time decay for the space semi-discretization of a locally damped wave equation via an artificial numerical viscosity, Numer. Math., 95(2003), 563-598.
Google Scholar
|
[8]
|
L.R.T Tébou, Stabilization of the wave equation with localized nonlinear damping, J. Diff. Eq., 145(2002), 502-524.
Google Scholar
|
[9]
|
R.Teman, Infinite-dimensional dynamical systems in mechanics and Physics, Springer-Verlag, 1988.
Google Scholar
|
[10]
|
M.F. Wheeler, L1 estimates of optimal orders for Galerkin methods for onedimensional second order parabolic and hyperbolic equations, SIAM J. Numer. Anal., 10(1973), 908-913.
Google Scholar
|
-
-
-