2013 Volume 3 Issue 2
Article Contents

A. K. Tripathy. MOND-WEIR TYPE HIGHER ORDER MINIMAX MIXED INTEGER DUAL PROGRAMMING UNDER GENERALIZED (ϕ, α, ρ)-UNIVEXITY[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 197-211. doi: 10.11948/2013015
Citation: A. K. Tripathy. MOND-WEIR TYPE HIGHER ORDER MINIMAX MIXED INTEGER DUAL PROGRAMMING UNDER GENERALIZED (ϕ, α, ρ)-UNIVEXITY[J]. Journal of Applied Analysis & Computation, 2013, 3(2): 197-211. doi: 10.11948/2013015

MOND-WEIR TYPE HIGHER ORDER MINIMAX MIXED INTEGER DUAL PROGRAMMING UNDER GENERALIZED (ϕ, α, ρ)-UNIVEXITY

  • A new generalized class of higher order (ϕ, α, ρ)-univex function is introduced with an example and we formulate Mond-Weir type nondifferentiable higher order minimax mixed integer dual programs and symmetric duality theorems are establishFed.
    MSC: 90C29;90C30;49N15
  • 加载中
  • [1] I. Ahmad, Second order symmetric duality for nondifferentiable minimax mixed integer problem, Southeast Asian Bull. Math., 29(2005), 843-849.

    Google Scholar

    [2] I. Ahmad and Z. Husain, Nondifferentiable second order symmetric duality, Asia-Pasific J. Oper. Res., 22(2005), 19-31.

    Google Scholar

    [3] I. Ahmad, Z. Husain and S. Sharma, Higher order duality in nondifferentiable multiobjective programming, Numer. Funct. Anal. Optim., 28(2007), 989-1002.

    Google Scholar

    [4] I. Ahmad, Z. Husain and S. Sharma, Higher order duality in nondifferentiable minimax programming with generalized type 1 function, J. Optim. Theory Appl., 141(2009), 1-12.

    Google Scholar

    [5] E. Balas, Minimax and duality for linear and nonlinear mixed integer programming, Integer and Nonlinear Programming, North Holland, Amsterdam, (1970), 385-417.

    Google Scholar

    [6] A. Batatorescu, Preda and M. Beldiman, Higher order symmetric multiobjective duality involving generalized (F, ρ, γ, b)-convexity, Rev. Roumaine Math. Pure Appl., 52(2007), 619-630.

    Google Scholar

    [7] C.R. Bector, S. Chandra, S. Gupta and S.K. Suneja, Univex sets, functions and univex nonlinear programming, Lect. Notes in Eco. Math. System, Springer Verlag, Berlin, 405(1994), 1-8.

    Google Scholar

    [8] X. Chen, Higher order symmetric duality in nondifferentiable multiobjective programming problem, Math. Anal. Appl., 290(2004), 423-435.

    Google Scholar

    [9] G.B. Dantzing, E. Eisenberg and R.W. Cottle, Symmetric dual Nonlinear programs,, Pacific J. Math., 15(1965), 809-812.

    Google Scholar

    [10] G. Devi, Symmetric duality for nonlinear programming problem involvingbonvex function, European J. Oper. Res., 104(1998), 615-621.

    Google Scholar

    [11] W.S. Dorn, A symmetric dual theorem for quadratic programs, J. Oper. Res. Soc. Japan, 2(1960), 93-97.

    Google Scholar

    [12] T.R. Gulati and S.K. Gupta, Higher order nondifferentiable symmetric duality with generalized F-convexity, J. Math. Anal. Appl., 329(2007), 229-237.

    Google Scholar

    [13] T.R. Gulati, I. Husain and I. Ahamad, Symmetric duality for nondifferentiable minimax mixed integer programming problems, Optimization, 39(1997), 69-84.

    Google Scholar

    [14] M.A. Hanson, On sufficiency of the Kuhn -Tucker condition, J. Math. Anal. Appl., 80(1981), 845-850.

    Google Scholar

    [15] O.L. Mangasarian, Second order and Higher order duality in nonlinear programming, J. Math. Anal. Appl., 51(1975), 607-620.

    Google Scholar

    [16] S.K. Mishra and N.G. Rueda, Higher order generalized invexity and duality in mathematical programming, J. Math. Anal. Appl., 247(2000), 173-182.

    Google Scholar

    [17] S.K. Mishra and N.G. Rueda, Higher order generalized invexity and duality in nondifferentiable mathematical programming, J. Math. Anal. Appl., 272(2002), 496-506.

    Google Scholar

    [18] B. Mond and M. Schecther, Non-differentiable symmetric duality, Bull. Aust. Math. Soc., 53(1996), 177-188.

    Google Scholar

    [19] B. Mond and J. Zhang, Higher order invexity and duality in mathematical programming, Generalized convexity, Generalized Monotoncity, Recent Results, Edited by J.P.Crouzeix et al, Kluwer Academic Pub., Dordrecht, 1998, 357-372.

    Google Scholar

    [20] D.B. Ojha, Higher order duality for multiobjective programming involving (ϕ, ρ)-univexity, World Applied Programming, 1(2011), 155-162.

    Google Scholar

    [21] G.K. Thakur and B.B. Priya, Second order duality for nondifferentiable multiobjective programming involving (ϕ, ρ)-invexity, Kathmandu University J. Sc., Engg. and Tech., 7(2011), 92-104.

    Google Scholar

    [22] T. Weir and B. Mond, Symmetric and self duality in multiobjective programming, Asia-Pacific J. Oper.Res., 5(1991), 75-87.

    Google Scholar

    [23] X.M. Yang, K.L. Teo and X.Q. Yand, Higher order generalized convexity and duality in nondifferentiable multiobjective mathematical programming, Edited by J.A.Eberhard, R.Hill, D.Ralph and B.M.Glover, Kluwer Academic Publ. Dordrecht, Appl. Optimization, 30(1999), 101-116.

    Google Scholar

    [24] J.Zhang, Higher order convexity and duality in multiobjective programming problem, In. Progress in Optimization, Contribution from Australasia,(Eds:A.Eberhard, R.Hill, D.Ralph, B.M.Glover), Kluwer Academic Publisher, Dordrecht-Boston-London, Appl. Optimization, 30(1999), 101-116.

    Google Scholar

Article Metrics

Article views(1591) PDF downloads(647) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint