[1]
|
Uri M. Ascher, Steven J. Ruuth and Raymond J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 25(1997), 151-167.
Google Scholar
|
[2]
|
R. Bermejo and J. Carpio, An adaptive finite element semi-Lagrangian implicitexplicit Runge-Kutta-Chebyshev method for convection dominated reactiondiffusion problems, Applied Numerical Mathematics, 58(2009), 16-39.
Google Scholar
|
[3]
|
R. L. Burden and J. D. Faires, Numerical Analysis, Thomason Brooks/Cole, 2005.
Google Scholar
|
[4]
|
M. P. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Applied Numerical Mathematics, 535(2001).
Google Scholar
|
[5]
|
K. Debrabant and K. Strehmel, Convergence of Runge-Kutta methods applied to linear partial differential-algebraic equations, Applied Numerical Mathematics, 53(2005), 213-229.
Google Scholar
|
[6]
|
Tobin A. Driscol, A Composite Runge-Kutta Method for the Spectral Solution of Semilinear PDEs, Journal of Computational Physics, 182(2002), 357-367.
Google Scholar
|
[7]
|
G. B. Folland, Higher-Order Derivatives and Taylor's Formula in Several Variables, www.math.washington.edu/~folland/math425/taylor2.pdf, 2005.
Google Scholar
|
[8]
|
D. F. Griffiths and D. J. Higham, Numerical Methods for Ordinary Differential Equations:Initial Value Problems, Springer Undergrauate Mathematics Series, Springer-Verlag London Limited, 2010.
Google Scholar
|
[9]
|
Daniel X. Guo and John B. Drake, A global semi-Lagrangian spectral model of the shallow water equations with variable resolution, J. Comput. Phys., 206(2005), 559-577.
Google Scholar
|
[10]
|
Daniel X. Guo and John B. Drake, A global semi-Lagrangian spectral model for the reformulated shallow water equations, Dynamical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dyn. Syst. suppl., 2003, 375-385.
Google Scholar
|
[11]
|
P. J. van Houwen, The development of Runge-Kutta methods for partial differential equations, Applied Numerical Mathematics, 20(1996), 261-272.
Google Scholar
|
[12]
|
L. Portero, A. Arraras and J. C. Jorge, Variable step-size fractional step Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, 62(2012), 1463-1476.
Google Scholar
|
[13]
|
M. Seaid, An Eulerian-Lagrangian method for parabolic-hyperbolic equations, Applied Numerical Mathematics, 59(2009), 745-768.
Google Scholar
|
[14]
|
A. AJ. Simmons, Development of a high resolution, semi-Lagrangian version of the ECMWF forecast model, Proc. of the Seminar on Numerical Methods in Atmospheric Models, Reading, United Kingdom, ECMWF, 1991, 281-324.
Google Scholar
|
[15]
|
J. G. Verwer, Explicit Runge-Kutta methods for parabolic partial differential equations, Applied Numerical Mathematics, 22(1996), 359-379.
Google Scholar
|
[16]
|
D. L. Williamson and J. G. Olson, Climate Simulations with a Semi-Lagrangian Version of the NCAR Community Climate Model, Monthly Weather Review, 122(1994), 1594-1610.
Google Scholar
|