[1]
|
H. Berland, B. Owren and B. Skaflestad, B-series and order conditions for exponential integrators, SIAM J. Numer. Analy., 43(2005), 1715-1727.
Google Scholar
|
[2]
|
J. C. Butcher, Numerical methods for ordinary differential equations, John Wiley and Sons Ltd, Chichester, 2008.
Google Scholar
|
[3]
|
M. Caliari and A. Ostermann, Implementation of exponential Rosenbrocktype integrators, Appl. Numer. Math., 59(2009), 568C581.
Google Scholar
|
[4]
|
K. J. Engel and R. Nagel, One-Parameter semigroups for linear evolution equations, Springer, New York, 2000.
Google Scholar
|
[5]
|
M. Hochbruck and A. Ostermann, Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math. 53(2005), 323-339.
Google Scholar
|
[6]
|
M. Hochbruck and A. Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43(2006), 1069-1090.
Google Scholar
|
[7]
|
M. Hochbruck, A. Ostermann and J. Schweitzer, Exponential Rosenbrock-Type methods, SIAM J. Numer. Anal., 47(2009), 786-803.
Google Scholar
|
[8]
|
M. Hochbruck, C. Lubich and H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19(1998), 1552-1574.
Google Scholar
|
[9]
|
M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19(2010), 209-286.
Google Scholar
|
[10]
|
A. K. Kassam and L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM J. Sci. Comput., 26(2005), 1214C1233.
Google Scholar
|
[11]
|
S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys., 203(2005), 72C88.
Google Scholar
|
[12]
|
V. T. Luan and A. Ostermann, Exponential Rosenbrock methods of order fiveconstruction, analysis and numerical comparisons, J. Comput. Appl. Math., 255(2014), 417-431.
Google Scholar
|
[13]
|
J. Loffeld and M. Tokman, Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs, J. Comput. Appl. Math., 241(2013), 45-67.
Google Scholar
|
[14]
|
M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods, J. Comput. Phys., 213(2006), 748C776.
Google Scholar
|