2013 Volume 3 Issue 4
Article Contents

Hari Shankar Mahato, Michael Böhm. GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTION FOR A SYSTEM OF SEMILINEAR DIFFUSION-REACTION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2013, 3(4): 357-376. doi: 10.11948/2013027
Citation: Hari Shankar Mahato, Michael Böhm. GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTION FOR A SYSTEM OF SEMILINEAR DIFFUSION-REACTION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2013, 3(4): 357-376. doi: 10.11948/2013027

GLOBAL EXISTENCE AND UNIQUENESS OF SOLUTION FOR A SYSTEM OF SEMILINEAR DIFFUSION-REACTION EQUATIONS

  • In this paper, we consider a system of highly nonlinear multispecies diffusion-reaction equations with homogeneous Neumann boundary condition. All reactions are reversible (see (1.1)). For this system, the existence and uniqueness of the weak solution are proved on the interval[0, T) for any T>0. We obtain, global in time, L-estimates of the solution with the help of a Lyapunov functional. For the existence of the solution, we use Schaefer's fixed point theorem, maximal regularity and Lyapunov type arguments.
    MSC: 35K57;35K55;76S05;47J35
  • 加载中
  • [1] H. Amann, Linear and Quasilinear parabolic problems, Vol.I, Monographs in mathematics, Birkhäuser publication, 1995.

    Google Scholar

    [2] W. Arendt, R. Chill, S. Fornaro and C. Poupaud, Lp-maximal regularity for non-autonomous evolution equations Journal of Differential Equations, 237(2007), 1-26.

    Google Scholar

    [3] J. Bergh and J. Löfström, Interpolation spaces, An introduction, SpringerVerlag, 1976.

    Google Scholar

    [4] P. Clement and S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl., 3(1994), 17-32.

    Google Scholar

    [5] R.H-Dintelmann and J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary conditions, Journal of Differential Equations, 247(2009), 1354-1396.

    Google Scholar

    [6] G. Dore and A. Venni, On the closedness of the sum of two closed operators Mathematische Zeitschrift, 196(1987), 189-201.

    Google Scholar

    [7] L.C. Evans, Partial differential equations, AMS, 1998.

    Google Scholar

    [8] J.A. Griepentrog, K. Gröger, H.-C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary conditions, WIAS Preprint, 580(2000).

    Google Scholar

    [9] S. Kräutle, General multi-species reactive transport problems in porous media:Efficient numerical approcahes and existence of global solutions, Habilitation thesis, Universität Erlangen-Nürnberg, Germany, 2008.

    Google Scholar

    [10] S. Kräutle, Existence of global solutions of multicomponent reactive transport problems with mass action kinetics in porous media, Journal of Applied Analysis and Computation, 4(2011).

    Google Scholar

    [11] P.C. Kunstmann and L. Weis, Maximal regularity for parabolic equations, Fourier multiplier theorems and H-infinity calculus, Springer, 2004.

    Google Scholar

    [12] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Birkhäuser publication, 1995.

    Google Scholar

    [13] K. Krumbiegel and J. Rehberg, Second order sufficient optimality conditions for parabolic optimal control problems with pointwise state constraints, SIAM Journal on Control and Optimization, 51(2013), 304-331.

    Google Scholar

    [14] H.S. Mahato and M. Böhm, Homogenization of a system of semilinear diffusion-reaction equations in an H1,p setting, Electronic Journal of Differential Equations, 210(2013), 1-22.

    Google Scholar

    [15] S. Monniaux, Maximal regularity and applications to PDEs, Lecture notes, Functional Analytical Aspects of Partial Differential Equations, TU Berlin, 2009.

    Google Scholar

    [16] J. Prüss, Maximal regularity for evolution equations in Lp-spaces, Summer school on evolution equation, Monopoli, 2002.

    Google Scholar

    [17] J. Prüss and R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coeffcients continuous in time, J. Math. Anal. Appl., 256(2001), 405-430.

    Google Scholar

    [18] H. Triebel, Interpolation theory, Function spaces and Differenital operators, Johann Ambrosius Barth Verlag, 1995.

    Google Scholar

Article Metrics

Article views(1530) PDF downloads(678) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint