[1]
|
K. Alligood, T. Saue and J. Yorke, Chaos-An introduction to dynamical systems, Springer, 1996.
Google Scholar
|
[2]
|
J. Guckenheimer, K. Hoffman and W. Weckesser, The forced Van der Pol equation. I. The slow flow and its bifurcations, SIAM. J. Appl. Dyn. Syst., 2(2003), 1-35.
Google Scholar
|
[3]
|
J. Guckenheimer,and P. Holmes, Dynamical systems and bifurcations of vector fields, Springer-Verlag, New York, 1997.
Google Scholar
|
[4]
|
J. Hale and H. Kocak, Dynamics and Bifurcations, Springer-Verlag, 1991.
Google Scholar
|
[5]
|
C. Holmes and P. Holmes, Second order averaging and bifurcations to subharmonics in Duffing's equation, Journal of Sound and Vibration, 78(1981), 161-174.
Google Scholar
|
[6]
|
Z. Jing and R. Wang, Chaos in Duffing system with two external forcing, Chaos, Solitons and Fractals, 23(2005), 399-411.
Google Scholar
|
[7]
|
J. Jing, Z. Yang and T. Jiang, Complex dynamics in Duffing-Van der Pol equation, Chaos, Solitons and Fracals, 27(2006), 722-747.
Google Scholar
|
[8]
|
F. Kakmeni, S. Bowvng, C. Tchawoua and E. Kaptouom, Strange attractors an chaos control in a Duffing-Van der oscillator with two external periodic forces, J. Sound Viber., 227(2004), 783-799.
Google Scholar
|
[9]
|
Y. Kao and C. Wang, Analog study of bifurcation structures in a Van der Pol oscillator with a nonlinear restoring force, Phys. Rev. E, 48(1993), 2514-2520.
Google Scholar
|
[10]
|
T. Kapitaniak, Analytical condition for chaotic behavior of the Duffing oscillation, Phys. Lett. A, 144(1990), 322-324.
Google Scholar
|
[11]
|
H. Kielhöfer, Bifurcation theory-An introduction with applications to PDEs, Springer, 2004.
Google Scholar
|
[12]
|
Y. Kuznetsov, Elements of applied bifurcation theory, (3rd Edition), Springer, 2004.
Google Scholar
|
[13]
|
M. Lakshmanan and M. Murali, Chaos in nonlinear oscillations, World Scientific, 1996.
Google Scholar
|
[14]
|
A. Leung and Q. Zhang, Complex normal form for strongly non-linear vibration systems exemplified by Duffing-Van der Pol equation. J. Sound Viber., 213(1998), 907-914.
Google Scholar
|
[15]
|
Y. Liang and N. Namachchuraya, P-bifurcation in the noise Duffing-Van der Pol equation, Stochastic Dynamics, by H. Crauel, and M. Gundlach, Springer, New York, 1999.
Google Scholar
|
[16]
|
F. Moon, Chaotic and fractal dynamics-An in troduction for applied scientists and engineers, A Wiley-Interscience Pub., 1992.
Google Scholar
|
[17]
|
T. Mullin, The nature of chaos. Clarendon Press, Oxford, 1993.
Google Scholar
|
[18]
|
H. Nagashima and Y. Baba, Introduction to chaos, Institute of Physics Publishing, Bristol and Philadelphia, 1992.
Google Scholar
|
[19]
|
N. Nawachchivaga, R. Sowers and L. Vedula, Non-standrd reduction of nise Duffing-Van der Pol equation, Dyn Syst., 16(2001), 223-245.
Google Scholar
|
[20]
|
U. Parlitz U and W. Lauterborn W., Period-doubling cascades and Peril's staircases of the Driven Van der Pol oscillator, Phys. Rev. A, 36(1987), 1482-1434.
Google Scholar
|
[21]
|
J. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York, 1985.
Google Scholar
|
[22]
|
M. Wakako, M. Chieko, H. Koi-ichi and H. Yoshi, Integrable Duffing's maps and solutions of the Duffing equation, Chaos, Solitons and Fractals, 15(2003), 425-443.
Google Scholar
|
[23]
|
S. Wiggins, Introduction to applied nonlinear dynamical System and chaos, Springer-Verlag, New York, 1990.
Google Scholar
|
[24]
|
K. Yagasaki, Second-order averaging and Melnikov analyses for forced nonlinear oscillators, Journal of Sound Vibr., 190(1996), 587-609.
Google Scholar
|
[25]
|
K. Yagasaki, Homoclinic tangels, phase locking, chaos in a two frequency perturbation of Duffing's equation, J. Nonlinear Sci., 9(1999), 131-148.
Google Scholar
|