[1]
|
J.M. Appell, A.S. Kalitvin and P.P. Zabreiko, Partial Integral Operators and Integro-differential Equations, Marcel Dekker, New york, 2000.
Google Scholar
|
[2]
|
Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini and G.B. Loghmani, A semidiscrete scheme for solving nonlinear hyperbolic-type partial integro-differential equations using radial basis functions, J. Math. Phys., 52(2011), 063520.
Google Scholar
|
[3]
|
Z. Avazzadeh, Z. Beygi Rizi, F.M. Maalek Ghaini and G.B. Loghmani, A numerical solution of nonlinear parabolic-type Volterra partial integro-differential equations using radial basis functions, Eng. Anal. Boundary Elem., 36(2012), 881-893.
Google Scholar
|
[4]
|
S. Behzadi, S. Abbasbandy, T. Allahviranloo and A. Yildirim, Application of homotopy analysis method for solving a class of nonlinear Volterra-Fredholm integro-differential equations, J. Appl. Anal. Comput., 2(2012), 127-136.
Google Scholar
|
[5]
|
M.D. Buhmann, Radial Basis Functions:Theory and Implementations, Cambridge University Press, 2003.
Google Scholar
|
[6]
|
M.D. Buhmann and C.A. Micchelli, Multiquadric interpolation improved, Comput. Math. Appl., 24(1992), 21-26.
Google Scholar
|
[7]
|
M.D. Buhmann and C.A. Micchelli, Multivariate interpolation in odddimensional Euclidean spaces using multiquadrics, Const. Approx., 6(1990), 21-34.
Google Scholar
|
[8]
|
M.D. Buhmann, Multivariate cardinal interpolation with radial basis functions, Constr. Approx., 6(1990), 225-255.
Google Scholar
|
[9]
|
M.D. Buhmann, Multivariable Interpolation Using Radial Basis Functions, Ph.D. Dissertation, University of Cambridge, 1989.
Google Scholar
|
[10]
|
F. Bloom, Ill-posed Problems for Integrodifferential Equations in Mechanics and Electromagnetic Theory, SIAM, 1981.
Google Scholar
|
[11]
|
C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
Google Scholar
|
[12]
|
W. Chen, New RBF collocation schemes and kernel RBFs with applications, Lecture Notes in Computational Science and Engineering, Springer-Verlag., 26(2002), 75-86.
Google Scholar
|
[13]
|
W. Chen and M. Tanaka, A meshless, exponential convergence, integration-free, and boundary-only RBF technique, Comput. Math. Appl., 43(2002), 379-391.
Google Scholar
|
[14]
|
W. Chen, Z. Fu and B.T. Jin, A truly boundary-only meshfree method for inhomogeneous problems based on recursive composite multiple reciprocity technique, Eng. Anal. Bound. Elem., 34(2010), 196-205.
Google Scholar
|
[15]
|
W. Cheney and W. Light, A Course in Approximation Theory, William Allan, Newyork, 1999.
Google Scholar
|
[16]
|
A.H.-D. Cheng, M.A. Golberg, E.J. Kansa and G. Zammito,Exponential convergence and h-c multiquadric collocation method for partial differential equations, Numer. Methods Partial Differential Eq., 19(2003), 571-594.
Google Scholar
|
[17]
|
H. Engler, On some parabolic integro-differential equations:Existence and asymptotics of solutions, Proc. Int. Conf. Equadiff, Würzburg 1982, Lect. Notes Math., 1017(1983), 161-167.
Google Scholar
|
[18]
|
D.X. Guo, A semi-lagrangian Runge-Kutta method for time-dependent partial differential equations, J. Appl. Anal. Comput., 3(2013), 251-263.
Google Scholar
|
[19]
|
M. Grasselli, S.I. Kabanikhin and A. Lorenzi, An inverse hyperbolic integrodifferential problem arising in geophysics Ⅱ, Nonlinear Anal., 15(1990), 283-298.
Google Scholar
|
[20]
|
C.E. Greenwell-Yanik and G. Fairweather, Analyses of spline collocation methods for parabolic and hyperbolic problems in the two space variables, SIAM J. numer. Analysis., 23(1986), 282-296.
Google Scholar
|
[21]
|
Y.N. Grigoriev, N.H. Ibragimov, V.F. Kovalev and S.V. Meleshko, Symmetries of Integro-Differential Equations:With Applications in Mechanics and Plasma Physics, Springer, 2010.
Google Scholar
|
[22]
|
G.T. Habetler and R.L. Schiffman, A finite difference method for analyzing the compression of poro-viscoelastic media, Comput., 6(1970), 342-348.
Google Scholar
|
[23]
|
R.L. Hardy, Multiquadratic equation of topology and other irregular surface, J. Geophys. Res., 76(1971), 1905-1915.
Google Scholar
|
[24]
|
C.-S. Huang, C.F. Lee and A.H.-D. Cheng, Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method, Eng. Anal. Boundary Elem., 31(2007), 614-623.
Google Scholar
|
[25]
|
F. F. Izadi and M. Dehghan, The spectral methods for parabolic Volterra integro-differential equations, J. Comput. Appli. Math., 235(2011), 4032-4046.
Google Scholar
|
[26]
|
I.R.H. Jackson, "Radial Basis Function Methods for Multivariable Approximation", Ph.D. Dissertation, University of Cambridge, 1988.
Google Scholar
|
[27]
|
L. Jianyu, L. Siwei, Q. Yingjian and H. Yaping, Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Networks., 16(2003), 729-734.
Google Scholar
|
[28]
|
B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Walter de Gruyter, 2008.
Google Scholar
|
[29]
|
E.J. Kansa and Y.C. Hon, Circumventing the ill-conditioning problem with multiquadric radial basis functions:applications to elliptic partial differential equations, Comput. Math. Appl., 39(2000), 123-137.
Google Scholar
|
[30]
|
E.J. Kansa, Multiquadrics:A scattered data approximation scheme with applications to computational fluid dynamics:Ⅱ. Parabolic, hyperbolic, and elliptic partial differential equations, Comput. Math. Appl., 19(1990), 146-161.
Google Scholar
|
[31]
|
P. K. Kythe and M. R. Schäferkotter, Handbook of Computational Method for Integration, Chapman and Hall/CRC Press, 2005.
Google Scholar
|
[32]
|
J.-P. Kauthen, The method of lines for parabolic partial integro-differential equations, Journal of Integral equations and Application., 4(1992), 69-81.
Google Scholar
|
[33]
|
S. Larsson, V. Thomée and L.B. Wahlbin, Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comput., 67(1998), 45-71.
Google Scholar
|
[34]
|
S. Lowitzsch, Error estimates for matrix-valued radial basis function interpolation, J. Approx. Theory., 137(2005), 238-249.
Google Scholar
|
[35]
|
J. Ma, Finite element methods for partial Volterra integro-differential equations on two-dimensional unbounded spatial domains, Appl. Math. Comput., 186(2007), 598-609.
Google Scholar
|
[36]
|
W.R. Madych, Miscellaeous error bounds for multiquadratic and related interpolators, Comput. Math. Appl., 24(1992), 121-138.
Google Scholar
|
[37]
|
W.R. Madych, Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation, J. Approx. Theory., 70(1992), 94-114.
Google Scholar
|
[38]
|
W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Ⅱ, Math. Comput., 54(1990), 211-230.
Google Scholar
|
[39]
|
W.R. Madych and S.A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl., 4(1988), 77-89.
Google Scholar
|
[40]
|
C.A. Micchelli, Interpolation of scattered data:distance matrices and conditionally positive definite functions, Constr. Approx., 2(1986), 11-22.
Google Scholar
|
[41]
|
B.G. Pachpatte, On a nonlinear diffusion system arising in reactor dynamics, J. Math. Analysis Applic., 94(1983), 501-508.
Google Scholar
|
[42]
|
C.V. Pao, Bifurcation analysis of a nonlinear diffusion system in reactor dynamics, Appl. Analysis., 9(1979), 107-119.
Google Scholar
|
[43]
|
C.V. Pao, Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics, J. Math. Analysis Applic., 48(1974), 470-492.
Google Scholar
|
[44]
|
S. Serovajsky, Optimal control for systems described by hyperbolic equation with strong nonlinearity, J. Appl. Anal. Comput., 3(2013), 183-195.
Google Scholar
|
[45]
|
E.W. Sachs and A.K. Strauss, Efficient solution of a partial integro-differential equation in finance, Appl. Numer. Math., 58(2008), 1687-1703.
Google Scholar
|
[46]
|
R. Schaback, Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp., 68(1999), 201-216.
Google Scholar
|
[47]
|
R. Schaback, Error estimate and condition numbers for radial basis function interpolation, Adv. Comput. Math., 3(1995), 251-264.
Google Scholar
|
[48]
|
C. Shu, H. Ding and K.S. Yeo, Solution of partial differential equations by a global radial basis function-based differential quadrature method, Eng. Anal. Bound. Elem., 28(2004), 1217-1226.
Google Scholar
|
[49]
|
C. Shu, H. Ding and N. Zhao, Numerical comparison of least square-based finitedifference (LSFD) and radial basis function-based finite-difference (RBFFD) methods, Comput. Math. Appl., 51(2006), 1297-1310.
Google Scholar
|
[50]
|
W.X. Wu, C. Shu and C.M. Wang, Vibration analysis of arbitrarily shaped membranes using local radial basis function-based differential quadrature method, J. Sound Vib., 306(2007), 252-270.
Google Scholar
|
[51]
|
Y. Yan and G. Fairweather, Orthogonal spline collocation methods for some partial integrodifferential equations, SIAM J. Numer. Anal., 29(1992), 755-768.
Google Scholar
|
[52]
|
E.G. Yanik and G. Fairweather, Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12(1988), 785-809.
Google Scholar
|
[53]
|
M. Zarebnia, A numerical solution of nonlinear Volterra-Fredholm integral equations, J. Appl. Anal. Comput., 3(2013), 95-104.
Google Scholar
|
[54]
|
R. Zacher, Boundedness of weak solutions to evolutionary partial integrodifferential equations with discontinuous coefficients, J. Math. Anal. Appl., 348(2008), 137-149.
Google Scholar
|