[1]
|
A.V. Babin, and M.I. Vishik,Attractors of evolution equations, Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 25(1992). Translated and revised from the 1989 Russian original by Babin.
Google Scholar
|
[2]
|
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92(3)(1986), 205-245.
Google Scholar
|
[3]
|
M. Conti, S. Gatti and A. Miranville, Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 5(3)(2012), 485-505.
Google Scholar
|
[4]
|
L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54(2)(2009), 89-115.
Google Scholar
|
[5]
|
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, Masson, Paris, 1994.
Google Scholar
|
[6]
|
M. Efendiev, A. Miranville and S. Zelik, Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system, Math. Nachr., 248(2003), 72-96.
Google Scholar
|
[7]
|
M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272(2004), 11-31.
Google Scholar
|
[8]
|
P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dyn. Syst., 10(2004), 211-238. Partial differential equations and applications.
Google Scholar
|
[9]
|
M. Grasselli, A. Miranville, V. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280(2007), 13-14.
Google Scholar
|
[10]
|
L.A. Lyusternik and M.I. Vishik, Regular degeneration and boundary layer fot linear differential equations with small parameter, Amer. Math. Soc. Transl. Ser. 220.
Google Scholar
|
[11]
|
A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. Ⅱ. The non-autonomous case, C. R. Acad. Sci. Paris Sér. I Math., 328(1999), 907-912.
Google Scholar
|
[12]
|
A. Miranville and R. Quintanilla,A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 71(2009), 2278-2290.
Google Scholar
|
[13]
|
A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phasefield system, Appl. Anal., 88(6), 2009.
Google Scholar
|
[14]
|
R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, Springer-Verlag, New York, second edition, 68(1997).
Google Scholar
|