2014 Volume 4 Issue 2
Article Contents

Daniel Moukoko. WELL-POSEDNESS AND LONG TIME BEHAVIOR OF A HYPERBOLIC CAGINALP PHASE-FIELD SYSTEM[J]. Journal of Applied Analysis & Computation, 2014, 4(2): 151-196. doi: 10.11948/2014008
Citation: Daniel Moukoko. WELL-POSEDNESS AND LONG TIME BEHAVIOR OF A HYPERBOLIC CAGINALP PHASE-FIELD SYSTEM[J]. Journal of Applied Analysis & Computation, 2014, 4(2): 151-196. doi: 10.11948/2014008

WELL-POSEDNESS AND LONG TIME BEHAVIOR OF A HYPERBOLIC CAGINALP PHASE-FIELD SYSTEM

  • The aim of this paper is to prove the continuity of exponential attractors for a hyperbolic perturbed Caginalp system to an exponential attractor for the limit parabolic-hyperbolic Caginalp system. The symmetric distance between the perturbed and unperturbed exponential attractors in terms of the perturbation parameter is obtained.
    MSC: 35B40;35B41;35B45
  • 加载中
  • [1] A.V. Babin, and M.I. Vishik,Attractors of evolution equations, Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 25(1992). Translated and revised from the 1989 Russian original by Babin.

    Google Scholar

    [2] G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92(3)(1986), 205-245.

    Google Scholar

    [3] M. Conti, S. Gatti and A. Miranville, Asymptotic behavior of the Caginalp phase-field system with coupled dynamic boundary conditions, Discrete Contin. Dyn. Syst. Ser. S, 5(3)(2012), 485-505.

    Google Scholar

    [4] L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54(2)(2009), 89-115.

    Google Scholar

    [5] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential attractors for dissipative evolution equations, Research in Applied Mathematics, Masson, Paris, 1994.

    Google Scholar

    [6] M. Efendiev, A. Miranville and S. Zelik, Infinite dimensional exponential attractors for a non-autonomous reaction-diffusion system, Math. Nachr., 248(2003), 72-96.

    Google Scholar

    [7] M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 272(2004), 11-31.

    Google Scholar

    [8] P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dyn. Syst., 10(2004), 211-238. Partial differential equations and applications.

    Google Scholar

    [9] M. Grasselli, A. Miranville, V. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 280(2007), 13-14.

    Google Scholar

    [10] L.A. Lyusternik and M.I. Vishik, Regular degeneration and boundary layer fot linear differential equations with small parameter, Amer. Math. Soc. Transl. Ser. 220.

    Google Scholar

    [11] A. Miranville, Exponential attractors for a class of evolution equations by a decomposition method. Ⅱ. The non-autonomous case, C. R. Acad. Sci. Paris Sér. I Math., 328(1999), 907-912.

    Google Scholar

    [12] A. Miranville and R. Quintanilla,A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 71(2009), 2278-2290.

    Google Scholar

    [13] A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phasefield system, Appl. Anal., 88(6), 2009.

    Google Scholar

    [14] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Applied Mathematical Sciences, Springer-Verlag, New York, second edition, 68(1997).

    Google Scholar

Article Metrics

Article views(1786) PDF downloads(903) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint