2014 Volume 4 Issue 3
Article Contents

Mohamed Badr Benboubker, Hassane Hjiaj, Stanislas Ouaro. ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC ANISOTROPIC PROBLEM WITH VARIABLE EXPONENT[J]. Journal of Applied Analysis & Computation, 2014, 4(3): 245-270. doi: 10.11948/2014012
Citation: Mohamed Badr Benboubker, Hassane Hjiaj, Stanislas Ouaro. ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC ANISOTROPIC PROBLEM WITH VARIABLE EXPONENT[J]. Journal of Applied Analysis & Computation, 2014, 4(3): 245-270. doi: 10.11948/2014012

ENTROPY SOLUTIONS TO NONLINEAR ELLIPTIC ANISOTROPIC PROBLEM WITH VARIABLE EXPONENT

  • In this work, we give an existence result of entropy solutions for nonlinear anisotropic elliptic equation of the type -div(a(x, u, ∇u)) + g(x, u, ∇u) +|u|p0(x)-2u=f -divϕ(u), in Ω, where -div(a(x, u, ∇u)) is a Leray-Lions operator, ϕC0(IR, IRN). The function g(x, u, ∇u) is a nonlinear lower order term with natural growth with respect to|∇u|, satisfying the sign condition and the datum f belongs to L1(Ω).
    MSC: 35J20;35J25;35D30;35B38;35J60
  • 加载中
  • [1] E. Azroul, A. Barbara, M.B. Benboubker and S. Ouaro, Renormalized solutions for a p(x)-Laplacian equation with Neumann nonhomogeneous boundary conditions and L1-data, An. Univ. Craiova Ser. Mat. Inform., 40(1) (2013), 9-22.

    Google Scholar

    [2] E. Azroul, H. Hjiaj and A. Touzani, Existence and regularity of entropy solutions for strongly nonlinear p(x)-elliptic equations, Electronic J. Diff. Equ., 68(2013), 1-27.

    Google Scholar

    [3] H. Beiro da Veiga, On nonlinear potential theory, and regular boundary points, for the p-Laplacian in N space variables, Adv. Nonlinear Anal., 3(2014), 45-67.

    Google Scholar

    [4] M.B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growths, Electronic J. Diff. Equ., 62(2011), 1-16.

    Google Scholar

    [5] M. Bendahmane, M. Chrif and S. El Manouni, An approximation result in generalized anisotropic Sobolev spaces and application, Z. Anal. Anwend., 30(3) (2011), 341-353.

    Google Scholar

    [6] B.K. Bonzi, S. Ouaro and F D. Zongo, Entropy solutions for nonlinear elliptic anisotropic homogeneous Neumann problem, Int. J. Differ. Equ., 14(2013).

    Google Scholar

    [7] B.K. Bonzi, S. Ouaro and F D. Zongo, Entropy solutions to nonlinear elliptic anisotropic problems with Robin type boundary conditions, Matematiche, 68(2) (2013), 53-76.

    Google Scholar

    [8] M.M. Boureanu and V.D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. TMA, 75(12) (2012), 4471-4482.

    Google Scholar

    [9] A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated pLaplacian, Opuscula Math., 33(3) (2013), 439-453.

    Google Scholar

    [10] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.

    Google Scholar

    [11] X.L. Fan and D. Zhao, On the generalised Orlicz-Sobolev space Wk,p(x)(Ω), J. Gansu Educ. College, 12(1) (1998), 1-6.

    Google Scholar

    [12] P. Harjulehto and P. Hästö, Sobolev inequalities for variable exponents attaining the values 1 and n, Publ. Mat., 52(2) (2008), 347-363.

    Google Scholar

    [13] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-verlng, Berlin Heidelberg New York, 1965.

    Google Scholar

    [14] B. Koné, S. Ouaro and S. Traoré,Weak solutions for anisotropic nonlinear elliptic equations with variable exponent, Electron. J. Diff. Equ., 144(2009), 1-11.

    Google Scholar

    [15] B. Koné, S. Ouaro and S. Soma, Weak solutions for anisotropic nonlinear elliptic problems with variable exponent and measure data, Int. J. Evol. Equ., 5(3) (2011), 327-350.

    Google Scholar

    [16] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod et Gauthiers-Villars, Paris 1969.

    Google Scholar

    [17] M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(2008), 687-698.

    Google Scholar

    [18] S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L1-data, Cubo, 12(1) (2010), 133-148.

    Google Scholar

    [19] D. Zhao, W.J. Qiang and X.L. Fan, On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci., 9(2) (1997), 1-7.

    Google Scholar

    [20] V.V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3(1995), 249-269.

    Google Scholar

    [21] V.V. Zhikov, On some variational problem, Russian J. Math. Phys., 5(1997), 105-116.

    Google Scholar

Article Metrics

Article views(2188) PDF downloads(870) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint