[1]
|
E. Azroul, A. Barbara, M.B. Benboubker and S. Ouaro, Renormalized solutions for a p(x)-Laplacian equation with Neumann nonhomogeneous boundary conditions and L1-data, An. Univ. Craiova Ser. Mat. Inform., 40(1) (2013), 9-22.
Google Scholar
|
[2]
|
E. Azroul, H. Hjiaj and A. Touzani, Existence and regularity of entropy solutions for strongly nonlinear p(x)-elliptic equations, Electronic J. Diff. Equ., 68(2013), 1-27.
Google Scholar
|
[3]
|
H. Beiro da Veiga, On nonlinear potential theory, and regular boundary points, for the p-Laplacian in N space variables, Adv. Nonlinear Anal., 3(2014), 45-67.
Google Scholar
|
[4]
|
M.B. Benboubker, E. Azroul and A. Barbara, Quasilinear elliptic problems with nonstandard growths, Electronic J. Diff. Equ., 62(2011), 1-16.
Google Scholar
|
[5]
|
M. Bendahmane, M. Chrif and S. El Manouni, An approximation result in generalized anisotropic Sobolev spaces and application, Z. Anal. Anwend., 30(3) (2011), 341-353.
Google Scholar
|
[6]
|
B.K. Bonzi, S. Ouaro and F D. Zongo, Entropy solutions for nonlinear elliptic anisotropic homogeneous Neumann problem, Int. J. Differ. Equ., 14(2013).
Google Scholar
|
[7]
|
B.K. Bonzi, S. Ouaro and F D. Zongo, Entropy solutions to nonlinear elliptic anisotropic problems with Robin type boundary conditions, Matematiche, 68(2) (2013), 53-76.
Google Scholar
|
[8]
|
M.M. Boureanu and V.D. Radulescu, Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. TMA, 75(12) (2012), 4471-4482.
Google Scholar
|
[9]
|
A.C. Cavalheiro, Existence results for Dirichlet problems with degenerated pLaplacian, Opuscula Math., 33(3) (2013), 439-453.
Google Scholar
|
[10]
|
L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Heidelberg, 2011.
Google Scholar
|
[11]
|
X.L. Fan and D. Zhao, On the generalised Orlicz-Sobolev space Wk,p(x)(Ω), J. Gansu Educ. College, 12(1) (1998), 1-6.
Google Scholar
|
[12]
|
P. Harjulehto and P. Hästö, Sobolev inequalities for variable exponents attaining the values 1 and n, Publ. Mat., 52(2) (2008), 347-363.
Google Scholar
|
[13]
|
E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-verlng, Berlin Heidelberg New York, 1965.
Google Scholar
|
[14]
|
B. Koné, S. Ouaro and S. Traoré,Weak solutions for anisotropic nonlinear elliptic equations with variable exponent, Electron. J. Diff. Equ., 144(2009), 1-11.
Google Scholar
|
[15]
|
B. Koné, S. Ouaro and S. Soma, Weak solutions for anisotropic nonlinear elliptic problems with variable exponent and measure data, Int. J. Evol. Equ., 5(3) (2011), 327-350.
Google Scholar
|
[16]
|
J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod et Gauthiers-Villars, Paris 1969.
Google Scholar
|
[17]
|
M. Mihailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl., 340(2008), 687-698.
Google Scholar
|
[18]
|
S. Ouaro, Well-posedness results for anisotropic nonlinear elliptic equations with variable exponent and L1-data, Cubo, 12(1) (2010), 133-148.
Google Scholar
|
[19]
|
D. Zhao, W.J. Qiang and X.L. Fan, On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci., 9(2) (1997), 1-7.
Google Scholar
|
[20]
|
V.V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys., 3(1995), 249-269.
Google Scholar
|
[21]
|
V.V. Zhikov, On some variational problem, Russian J. Math. Phys., 5(1997), 105-116.
Google Scholar
|