[1]
|
M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley Interscience, New York, 2000.
Google Scholar
|
[2]
|
M. Ainsworth and J. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math., 65(1993), 23-50.
Google Scholar
|
[3]
|
I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability, Oxford University press, Oxford, 2001.
Google Scholar
|
[4]
|
C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Copm., 66(218) (1997), 465-476.
Google Scholar
|
[5]
|
Y. Chen, Y. Huang, W. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42(2010), 382-403.
Google Scholar
|
[6]
|
Y. Chen, Y. Huang and N. Yi, A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations, Sci. China Seri. A:Math., 51(8) (2008), 1376-1390.
Google Scholar
|
[7]
|
Y. Chen and W. Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model., 3(2006), 311-321.
Google Scholar
|
[8]
|
Y. Chen, Z. Lu and M. Fu A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems, Optim. Meth. Soft., 28(1) (2013), 37-53.
Google Scholar
|
[9]
|
J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44(169) (1985), 39-52.
Google Scholar
|
[10]
|
H. Fu and H. Rui, A priori error estimates for optimal control problems governed by transient advection-diffusion equationg, J. Sci. Comput., 38(2009), 290-315.
Google Scholar
|
[11]
|
R. Li, W. Liu and N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33(2007), 155-182.
Google Scholar
|
[12]
|
J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
Google Scholar
|
[13]
|
J. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer-verlag, Berlin, 1972.
Google Scholar
|
[14]
|
H. Liu and N. Yan, Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, J. Comput. Appl. Math., 209(2007), 187-207.
Google Scholar
|
[15]
|
W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15(2001), 285-309.
Google Scholar
|
[16]
|
W. Liu and N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93(2003), 497-521.
Google Scholar
|
[17]
|
C. Makridakis and R. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41(2003), 1585-1594.
Google Scholar
|
[18]
|
D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part I:problems without control constraints, SIAM J. Control Optim., 47(3) (2008), 1150-1177.
Google Scholar
|
[19]
|
D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part Ⅱ:problems with control constraints, SIAM J. Control Optim., 47(3) (2008), 1301-1329.
Google Scholar
|
[20]
|
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics, 606(1977), 292-315.
Google Scholar
|
[21]
|
S. Serovajsky, Optimal control for systems described by hyperbolic equation with strong nonlinearity, J. Appl. Anal. Comput., 3(2) (2013), 183-195.
Google Scholar
|
[22]
|
Y. Tang and Y. Chen, Recovery type a posteriori error estimates of fully discrete finite element methods for general convex parabolic optimal control problems, Numer. Math. Theor. Meth. Appl., 5(4) (2012), 573-591.
Google Scholar
|
[23]
|
C. Xiong and Y. Li, A posteriori error estimates for optimal distributed control governed by the evolution equations, Appl. Numer. Math., 61(2011), 181-200.
Google Scholar
|