2014 Volume 4 Issue 3
Article Contents

Yuelong Tang, Yuchun Hua. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC OPTIMAL CONTROL PROBLEMS[J]. Journal of Applied Analysis & Computation, 2014, 4(3): 295-306. doi: 10.11948/2014015
Citation: Yuelong Tang, Yuchun Hua. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC OPTIMAL CONTROL PROBLEMS[J]. Journal of Applied Analysis & Computation, 2014, 4(3): 295-306. doi: 10.11948/2014015

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC OPTIMAL CONTROL PROBLEMS

  • Fund Project:
  • In this article, a semidiscrete finite element method for parabolic optimal control problems is investigate. By using elliptic reconstruction, a posteriori error estimates for finite element discretizations of optimal control problem governed by parabolic equations with integral constraints are derived.
    MSC: 49J20;65M60
  • 加载中
  • [1] M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley Interscience, New York, 2000.

    Google Scholar

    [2] M. Ainsworth and J. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math., 65(1993), 23-50.

    Google Scholar

    [3] I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability, Oxford University press, Oxford, 2001.

    Google Scholar

    [4] C. Carstensen, A posteriori error estimate for the mixed finite element method, Math. Copm., 66(218) (1997), 465-476.

    Google Scholar

    [5] Y. Chen, Y. Huang, W. Liu and N. Yan, Error estimates and superconvergence of mixed finite element methods for convex optimal control problems, J. Sci. Comput., 42(2010), 382-403.

    Google Scholar

    [6] Y. Chen, Y. Huang and N. Yi, A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations, Sci. China Seri. A:Math., 51(8) (2008), 1376-1390.

    Google Scholar

    [7] Y. Chen and W. Liu, Error estimates and superconvergence of mixed finite element for quadratic optimal control, Int. J. Numer. Anal. Model., 3(2006), 311-321.

    Google Scholar

    [8] Y. Chen, Z. Lu and M. Fu A posteriori error estimates for mixed finite element approximation of nonlinear quadratic optimal control problems, Optim. Meth. Soft., 28(1) (2013), 37-53.

    Google Scholar

    [9] J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44(169) (1985), 39-52.

    Google Scholar

    [10] H. Fu and H. Rui, A priori error estimates for optimal control problems governed by transient advection-diffusion equationg, J. Sci. Comput., 38(2009), 290-315.

    Google Scholar

    [11] R. Li, W. Liu and N. Yan, A posteriori error estimates of recovery type for distributed convex optimal control problems, J. Sci. Comput., 33(2007), 155-182.

    Google Scholar

    [12] J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

    Google Scholar

    [13] J. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications, Springer-verlag, Berlin, 1972.

    Google Scholar

    [14] H. Liu and N. Yan, Recovery type superconvergence and a posteriori error estimates for control problems governed by Stokes equations, J. Comput. Appl. Math., 209(2007), 187-207.

    Google Scholar

    [15] W. Liu and N. Yan, A posteriori error estimates for distributed convex optimal control problems, Adv. Comput. Math., 15(2001), 285-309.

    Google Scholar

    [16] W. Liu and N. Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93(2003), 497-521.

    Google Scholar

    [17] C. Makridakis and R. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41(2003), 1585-1594.

    Google Scholar

    [18] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part I:problems without control constraints, SIAM J. Control Optim., 47(3) (2008), 1150-1177.

    Google Scholar

    [19] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part Ⅱ:problems with control constraints, SIAM J. Control Optim., 47(3) (2008), 1301-1329.

    Google Scholar

    [20] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2-nd order elliptic problems, Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics, 606(1977), 292-315.

    Google Scholar

    [21] S. Serovajsky, Optimal control for systems described by hyperbolic equation with strong nonlinearity, J. Appl. Anal. Comput., 3(2) (2013), 183-195.

    Google Scholar

    [22] Y. Tang and Y. Chen, Recovery type a posteriori error estimates of fully discrete finite element methods for general convex parabolic optimal control problems, Numer. Math. Theor. Meth. Appl., 5(4) (2012), 573-591.

    Google Scholar

    [23] C. Xiong and Y. Li, A posteriori error estimates for optimal distributed control governed by the evolution equations, Appl. Numer. Math., 61(2011), 181-200.

    Google Scholar

Article Metrics

Article views(1969) PDF downloads(1005) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint