[1]
|
M.P. Aghabab and A. Heydari, Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities, Appl. Math. Model., 36(2012), 1639-1652.
Google Scholar
|
[2]
|
S. Boccaletti, J. Kurthsc, G. Osipovd, D.L. Valladaresb and C.S. Zhouc, The synchronization of chaotic systems, Physics Reports, 366(2002), 1-101.
Google Scholar
|
[3]
|
Y. Chai, L. Chen, R. Wu and J. Dai, Q-S synchronization of the fractionalorder unified system, PRAMANA-journal of physic, 80(2013), 449-461.
Google Scholar
|
[4]
|
G. Chen, Controlling chaotic and hyperchaotic systems via a simple adaptive feedback controller, Computers and Mathematics with Applications, 61(2011), 2031-2034.
Google Scholar
|
[5]
|
G. Chen and X. Yu, Chaos Control-Theory and Applications, Springer, 2003.
Google Scholar
|
[6]
|
Z. Chen, Y. Yang, G. Qi and Z. Yuan, A novel hyperchaos system only with one equilibrium, Phys. Lett. A., 360(2007), 696-701.
Google Scholar
|
[7]
|
E.M. Elabbasy, H.N. Agiza and M.M. El-Dessoky, Global synchronization criterion and adaptive synchronization for new chaotic system, Chaos, Solitons and Fractals, 23(2005), 1299-1309.
Google Scholar
|
[8]
|
E.M. Elabbasy, H.N. Agiza and M.M. El-Dessoky, Adaptive synchronization of a hyperchaotic system with uncertain parameter, Chaos, Solitons and Fractals, 30(2006), 1133-1142.
Google Scholar
|
[9]
|
A.M.A. El-Sayed, A. Elsaid, H.M. Nour and A. Elsonbaty, Dynamical behavior, chaos control and synchronization of a memristor-based ADVP circuit, Commun. Nonlinear Sci. Numer. Simulat., 18(2013), 148-170.
Google Scholar
|
[10]
|
A.M.A. El-Sayed, H.M. Nour, A. Elsaid, A.E. Matouk and A. Elsonbaty, Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system, Appl. Math. Comp., 239(2014), 333-345.
Google Scholar
|
[11]
|
W.D. Feng and H. Pu, Adaptive generalized functional synchronization of chaotic systems with unknown parameters, Chin. Phys. B, 17(2008), 3603-3608.
Google Scholar
|
[12]
|
G. Fu, Robust adaptive modified function projective synchronization of different hyperchaotic systems subject to external disturbance, Commun Nonlinear Sci Numer Simulat., 17(2012), 2602-2608.
Google Scholar
|
[13]
|
G. Gambino, M.C. Lombardo and M. Sammartino, Global linear feedback control for the generalized Lorenz system, Chaos, Solitons and Fractals, 29(2006), 829-837.
Google Scholar
|
[14]
|
Z. Gang, L. Zeng-rong and M.A. Zhong-jun, Generalized synchronization of continuous dynamical system, Appl. Math. Mech. (English Edition), 28(2007), 157-162.
Google Scholar
|
[15]
|
T. Gao and Z. Chen, A new image encryption algorithm based on hyper-chaos, Physics Letters A, 372(2008), 394-400.
Google Scholar
|
[16]
|
A.S. Hegazi, E. Ahmed and A.E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun Nonlinear Sci Numer Simulat, 18(2013), 1193-1202.
Google Scholar
|
[17]
|
M. Hu and Z. Xu, A general scheme for Q-S synchronization of chaotic systems, Nonlin. Anal., 69(2008), 1091-1099.
Google Scholar
|
[18]
|
E.M. Izhikevich, Dynamical Systems in Neuroscience:The Geometry of Excitability and Bursting, Mit Press, 2007.
Google Scholar
|
[19]
|
W. Jawaad, M.S.M. Noorani and M.M. Al-sawalha, Anti-Synchronization of chaotic systems via adaptive sliding mode control, Chin. Phys. Lett., 29(2012), 1-3.
Google Scholar
|
[20]
|
W. Jawaad, M.S.M. Noorani and M.M. Al-sawalha, Robust active sliding mode anti-synchronization of hyperchaotic systems with uncertainties and external disturbances, Nonlin. Anal. Real World Applications, 13(2012), 2403-2413.
Google Scholar
|
[21]
|
H.R. Karimi, M. Zapateiro and N. Luo, Adaptive synchronization of masterslave systems with mixed neutral and discrete time-delays and nonlinear perturbations, Asian Journal of Control, 14(2012), 251-257.
Google Scholar
|
[22]
|
H.R. Karimi, Robust delay-dependent H-infinity control of uncertain time-delay systems with mixed neutral, discrete and distributed time-delays and Markovian switching parameters, IEEE Trans. Circuits and Systems I, 58(2011), 1910-1923.
Google Scholar
|
[23]
|
H.R. Karimi, New delay-dependent xxponential H(infinity) synchronization for uncertain neural networks With mixed time delays, IEEE Trans. on Systems, Man and Cybernetics Part B, 40(2010), 173-185.
Google Scholar
|
[24]
|
L. Kocarev and S. Lian, Chaos-Based Cryptography, Springer, 2011.
Google Scholar
|
[25]
|
W.L. Li and K.M. Chang, Robust synchronization of drive-response chaotic systems via adaptive sliding mode control, Chaos, Solitons and Fractals, 39(2009), 2086-2092.
Google Scholar
|
[26]
|
Z. Li and S. Shi, Robust adaptive synchronization of Rossler and Chen chaotic systems via slide technique, Phys. Lett. A, 311(2003), 389-395.
Google Scholar
|
[27]
|
R.hung. Li, Exponential generalized synchronization of uncertain coupled chaotic systems by adaptive control, Commun Nonlinear Sci Numer Simulat, 14(2009), 2757-2764.
Google Scholar
|
[28]
|
C. Long, S.Y. Dong and W.D. Shi, Adaptive generalized synchronization between Chen system and a multi-scroll chaotic system, Chin. Phys. B., 19(2010), 1-3.
Google Scholar
|
[29]
|
A.E. Matouk, Dynamical analysis, feedback control and synchronization of Liu dynamical system, Nonlinear Analysis, 69(2008), 3213-3224.
Google Scholar
|
[30]
|
A.E. Matouk and H.N. Agiza, Bifurcations, chaos and synchronization in ADVP circuit with parallel resistor, J. Math. Anal. Appl., 341(2008), 259-269.
Google Scholar
|
[31]
|
E. Padmanaban, R. Banerjee and S.K. Dana, Targeting and control of synchronization in chaotic oscillators, International Journal of Bifurcation and Chaos, 22(2012), 1-12.
Google Scholar
|
[32]
|
M. Pourmahmood, S. Khanmohammadi and G. Alizadeh, Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun Nonlinear Sci Numer Simulat, 16(2011), 2853-2868.
Google Scholar
|
[33]
|
N. Smaoui, A. Karouma and M. Zribi, A Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems, Commun Nonlinear Sci Numer Simulat, 16(2011), 3279-3293.
Google Scholar
|
[34]
|
P. Stavroulakis, Chaos Applications in Telecommunications, CRC Press, 2006.
Google Scholar
|
[35]
|
Z. Sun, Function projective synchronization of two four-scroll hyperchaotic systems with unknown parameters, Cent. Eur. J. Phys., 11(2013), 89-95.
Google Scholar
|
[36]
|
P.N.V. Tu, Dynamical Systems-An Introduction with Applications in Economics and Biology, Springer-Verlag, 1995.
Google Scholar
|
[37]
|
B. Wang, P. Shi, H.R. Karimi, Y. Songf and J. Wanga, Robust H-infinity synchronization of a hyper-chaotic system with disturbance input, Nonlinear Analysis:Real World Applications, 14(2013), 1487-1495.
Google Scholar
|
[38]
|
Z.L. Wang and X.R. Shi, Adaptive Q-S synchronization of non-identical chaotic systems with unknown parameters, Nonlin. Dyn., 59(2010), 559-567.
Google Scholar
|
[39]
|
J.J. Yan, M.L. Hung, T.Y. Chiang and Y.S. Yang, Robust synchronization of chaotic systems via adaptive sliding mode control, Phys. Lett. A., 356(2006), 220-225.
Google Scholar
|
[40]
|
Y. Yang and Y. Chen, The generalized Q-S synchronization between the generalized Lorenz canonical form and the Rossler system, Chaos, Solitons and Fractals, 39(2009), 2378-2385.
Google Scholar
|
[41]
|
G. Zhang, Z. Liu and Z. Ma, Generalized synchronization of different dimensional chaotic dynamical systems, Chaos, Solitons and Fractals, 32(2007), 773-779.
Google Scholar
|
[42]
|
C. Zhu, A novel image encryption scheme based on improved hyperchaotic sequences, Opt. Commun., 285(2012), 29-37.
Google Scholar
|