[1]
|
V.L. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989.
Google Scholar
|
[2]
|
J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley and Sons, 2008.
Google Scholar
|
[3]
|
M.M. Chawla, Las Cruces, and S. R. Sharma, New Delhi, Families of fifth order Nyström Methods for y″=f(x, y) and intervals of periodicity, Computing, 26(1981), 247-256.
Google Scholar
|
[4]
|
K. Dekker and J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, North-Holland, Amsterdam, 1984.
Google Scholar
|
[5]
|
K. Feng and M.Z. Qin, Symplectic Geometric Algorithms for Hamiltonian Systems, Springer, 2010.
Google Scholar
|
[6]
|
J.M. Franco and I. Gómez, Fourth-Order Symmetric DIRK Methods for Periodic Stiff Problems, Numerical Algorithms, 32(2003), 317-336.
Google Scholar
|
[7]
|
E. Hairer and G. Wanner, Symplectic Runge-Kutta methods with real eigenvalues, BIT, 34(1994), 310-312.
Google Scholar
|
[8]
|
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration:Structure Preserving Algorithms for Ordinary Differential Equations, Springer, Berlin, 2002.
Google Scholar
|
[9]
|
A. Iserles, Efficient Runge-Kutta methods for Hamiltonian equations, Bull. Greek. Math. Sot., 32(1991), 3-20.
Google Scholar
|
[10]
|
L.O. Jay and L.R. Petzold, Highly Oscillatory Systems and Periodic Stability, Preprint 95-015, Army High Performance Computing Research Center, Stanford, CA, 1995.
Google Scholar
|
[11]
|
Z. Kalogiratou, T. Monovasilis and T.E. Simos, A diagonally implicit symplectic Runge-Kutta method with minimum phase-lag, AIP Conference Proceedings, 1389(2011), 1977-1979.
Google Scholar
|
[12]
|
Z. Kalogiratou, T. Monovasilis and T.E. Simos, Diagonally Implicit Symplectic Runge-Kutta Method with Special Properties, AIP Conference Proceedings, 1479(2012), 1387-1390.
Google Scholar
|
[13]
|
J. Lambert and I. A. Watson, symmetric multistep methods for periodic initial value problems, J. Inst. Maths. Applics, 18(1976), 189-202.
Google Scholar
|
[14]
|
R.I. McLachlan, Y. Sun and P.S.P. Tse, Linear stability of partitioned RungeKutta methods[J], SIAM Journal on Numerical Analysis, 49(1)(2011), 232-263.
Google Scholar
|
[15]
|
M.Z. Qin and M.Q. Zhang, Symplectic Runge-Kutta algorithmz for Hamilton systems, Journal of computational mathematics, Supplementary Issue, (1992), 205-215.
Google Scholar
|
[16]
|
M. Sofroniou and W. Oevel, Sympletic Runge-Kutta shemes I:order conditions, SIAM J. Numer. Anal., 34(5)(1997), 2063-2086.
Google Scholar
|
[17]
|
J.M. Sanz-Serna, Runge-Kutta schemes for Hamilton systems, BIT, 28(1988), 877-883.
Google Scholar
|
[18]
|
Y.B. Suris, Canonical transformation generated by methods of Runge-Kutta type for the numerical integration of the system x″=-∂U/∂X, Zh Vychisl. Mat. iMat. Fiz., 29(1987), 202-211.
Google Scholar
|
[19]
|
J. M. Sanz-Serna and L. Abia, Order conditions for canonical Runge-Kutta schemes, SIAM J. Numer. Anal, 28(4)(1991), 1081-1096.
Google Scholar
|
[20]
|
G. Sun, A simple way constructing symplectic Runge-Kutta methods, Journal of Computational Mathematics, 18(1)(2000), 61-68.
Google Scholar
|